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MONOCHROMATIC BOXES OF UNIT VOLUME

VJEKOSLAV KOVAČ

Abstract. Erdős and Graham asked whether, for any coloring of the Euclidean plane R
2 in

finitely many colors, some color class contains the vertices of a rectangle of every given area.
We give the negative answer to this question and its higher-dimensional generalization: there
exists a finite coloring of the Euclidean space R

n, n > 2, such that no color class contains the
2n vertices of a rectangular box of volume 1. The present note is a very preliminary version
of a longer treatise on similar problems.

1. Introduction

Systematic study of the Euclidean Ramsey theory was initiated by Erdős, Graham, Mont-
gomery, Rothschild, Spencer, and Straus [5, 6, 7] in the 1970s. Graham [9] answered positively
a question of Gurevich by showing that for any finite coloring of the Euclidean plane some
color class contains the vertices of a triangle of any given area. In fact, he could choose the
triangles to be right-angled with axis-aligned legs. Erdős and Graham [3, p. 331] (in a paper
which is also published as a chapter in the well-known problem book [4]), after mentioning
Graham’s result on triangles, posed a natural follow-up question:

Is this also true for rectangles?

The following precise wording of this problem is literally taken from Thomas Bloom’s website
Erdős problems [1].

Problem 1 ([1, #189]). If R
2 is finitely coloured then must there exist some colour class

which contains the vertices of a rectangle of every area?

To the best of author’s knowledge, Problem 1 has not been addressed in the literature so far.
It was explicitly mentioned as being open in Mathematical Reviews MR0558877 by Karsten
Steffens and MR2106573 by Sheila Oates-Williams. Finally, Problem 1 (for rectangles, but
also for a few other configurations) was stated as an open problem in the 2015 edition of the
book Rudiments of Ramsey theory by Graham and Butler [8, p. 56].

Here we show that the question in Problem 1 has the negative answer.

Theorem 2. It is possible to partition R
2 into 25 color classes such that none of them contains

the vertices of a rectangle of area 1.

We have singled out the two-dimensional case in Theorem 2 above, because its proof is
particularly elegant. However, with a bit more work one can show a natural generalization to
higher dimensions.

Theorem 3. For every integer n > 2 there exists a finite coloring of the Euclidean space R
n

such that there is no rectangular box of volume 1 with all of its 2n vertices colored the same.

In the proofs of these theorems, i.e., for any coloring constructed in this paper, we will
choose each color class to be a countable union of Jordan-measurable sets. For this reason our
constructions can also disprove some density theorems that could potentially hold for subsets
A ⊆ R

n of positive upper density; see Remark 5 for an example. Namely, in any partition of
1
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Figure 1. Coordinatization of a parallelogram.

R
n into finitely many Lebesgue-measurable color classes, at least one of the classes needs to

have strictly positive upper density.
The purpose of this note is to motivate further questions related to Problem 1, which

actually have positive answers and their proofs require more substantial tools. Some of these
questions will be addressed by the author in the next version of this manuscript, which is still
in preparation.

2. Proof of Theorem 2

We are about to give a coloring of R2 that uses 25 colors and has a slightly stronger property:
no color class will contain the vertices of a parallelogram such that the product of lengths of
its two consecutive sides equals 1. For rectangles this clearly specializes to the property of
their area being equal to 1.

Proof of Theorem 2. Let us place a (possibly degenerate) parallelogram P = ABCD in the
complex plane, so that its vertices A,B,C,D are respectively coordinatized by the complex
numbers zA, zB , zC , zD as in Figure 1. Consider a complex quantity I (P) defined as

I (P) := z2A − z2B + z2C − z2D. (2.1)

In this definition we specify the vertex A to be the one with the smallest coordinate zA in the
lexicographic ordering of C ≡ R

2. Otherwise, I (P) would have only been determined up to
multiplication by ±1.

There exist u, v, z ∈ C such that the vertices of P have complex coordinates

zA = z, zB = z + u, zC = z + u+ v, zD = z + v;

see Figure 1 again. The quantity I (P) now simplifies as

I (P) = z2 − (z + u)2 + (z + u+ v)2 − (z + v)2 = 2uv.

Consecutive side lenghts of P are |u| and |v|, so we have

|I (P)| = 2

whenever their product equals 1. As we have already mentioned, this holds in particular if P
is a rectangle of area 1. Therefore, it remains to find a coloring of C such that, if all vertices
of P are assigned the same color, then the complex number I (P) does not lie on the circle

{w ∈ C : |w| = 2}. (2.2)
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Figure 2. The circle misses the squares.

For each pair (j, k) ∈ {0, 1, 2, 3, 4}2 define a color class Cj,k as

Cj,k :=

{

z ∈ C : z2 ∈ 10

3

(

Z+ iZ+
j + ik

5
+

[

0,
1

5

)

+ i

[

0,
1

5

)

)}

.

If the four vertices of P = ABCD belonged to the same color class, then, by the definition
(2.1), we would clearly have

I (P) ∈ 10

3

(

Z+ iZ+
(

− 2

5
,
2

5

)

+ i

(

− 2

5
,
2

5

)

)

.

The above set does not intersect the circle (2.2); see Figure 2. Indeed, the central square lies

fully inside (2.2) because of 4
√
2/3 < 2, while all remaining open squares clearly belong to its

exterior. �

We can say that the above solution uses the help of the invariant quantity |I (P)| assigned to
rectangles of area 1. It does not generalize to all higher dimensions, since it uses multiplication
of complex numbers, so we will resort to an “almost invariant” quantity in the next section.

Construction of the above coloring could be thought of as a complex modification of the
approach of Erdős at al. [5, §3] who used |z|2 in place of z2.

Let us illustrate the coloring constructed in the previous proof. Boundaries of the color
classes are given in the (x, y)-coordinate system by the equations

x2 − y2 =
2a

3
and xy =

b

3

for arbitrary a, b ∈ Z. These are two mutually orthogonal families of hyperbolas (including
degenerate ones for a = 0 or b = 0), depicted in Figure 3.
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Figure 3. Boundaries of color classes Cj,k.

3. Proof of Theorem 3

The idea is based on the following simple observation. Let us first take an axes-aligned box
in R

n with edge lengths a1, a2, . . . , an ∈ (0,∞). Its vertices can be enumerated by subsets T
of {1, 2, . . . , n} as

(

q+
∑

j∈T

ajej : T ⊆ {1, 2, . . . , n}
)

, (3.1)

where q = (q1, . . . , qn) ∈ R
n is some point. Let us compute the alternating sum of the product

of coordinates of the box vertices,

∑

T⊆{1,2,...,n}

(−1)n−|T |
(

∏

j∈T c

qj

)(

∏

j∈T

(qj + aj)
)

=

n
∏

j=1

(−qj + qj + aj) = a1a2 · · · an,

and notice that we have obtained precisely the box volume.
The crucial part of the proof will be to show that the same quantity is almost invariant for

slightly rotated rectangular boxes, where the “slightness” can be prescribed uniformly over
all box eccentricities. Note that this property is not quite obvious and it is sensitive to the
pattern shape, as the uniformity will fail already for parallelograms in R

2. After we construct
a coloring that prohibits those slightly tilted boxes, in the last step we will rotate it by finitely
many matrices U1, . . . , Um ∈ SO(n), thanks to compactness of the rotation group.

Before the proof we need a simple identity.

Lemma 4. The identity

∑

T⊆{1,2,...,n}

(−1)n−|T |
n
∏

k=1

(

pk +
∑

j∈T

vj,k

)

=
∑

σ∈Sn

v1,σ(1)v2,σ(2) · · · vn,σ(n) (3.2)

holds for real numbers (pk)16k6n and (vj,k)16j,k6n.
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It is peculiar to notice that the right hand side RHS of (3.2) is the permanent of the matrix
(vj,k)j,k.

Proof of Lemma 4. We will prove the identity by induction on n. The basis case n = 1 is
trivial as then the identity reads

−p1 + (p1 + v1,1) = v1,1.

Take a positive integer n > 2. Observe that the left hand side LHS of (3.2) is a homogeneous
polynomial of degree n in n2 + n variables pk and vj,k, but the degree of each of the variables
in it is at most 1. Differentiating it with respect to the variable vn,l for some l ∈ {1, . . . , n}
we obtain

∂

∂vn,l
LHS =

∑

T⊆{1,...,n−1}

(−1)n−1−|T |
∏

16k6n
k 6=l

(

pk + vn,k +
∑

j∈T

vj,k

)

=
∑

σ∈Sn

σ(n)=l

v1,σ(1)v2,σ(2) · · · vn−1,σ(n−1),

where in the last equality we applied the inductions hypothesis to a smaller collection of
numbers

(pk + vn,k)16k6n,k 6=l, (vj,k)16j6n−1,16k6n,k 6=l

and renamed the indices. Therefore

LHS−
n
∑

l=1

vn,l
∂

∂vn,l
LHS = LHS− RHS

and this quantity can be evaluated by plugging vn,1 = · · · = vn,n = 0 into the left hand side:

∑

T⊆{1,...,n}

(−1)n−|T |
n
∏

k=1

(

pk +
∑

16j6n−1
j∈T

vj,k

)

= 0.

The last sum equals 0 because its terms can be paired to cancel each other: adding/subtracting
the element n to/from the set T gives exactly the same term, only with the opposite sign

(−1)n−|T |. �

Now we turn to the proof of the announced result.

Proof of Theorem 3. To each rectangular box R in R
n we assign a real quantity J (R) defined

as
J (R) :=

∑

x=(x1,...,xn) is a vertex of R

(−1)n−par(x) x1 · · · xn. (3.3)

Here par(x) denotes the parity of the vertex x, which is computed as follows. Choose the base
vertex of R to be the one with the smallest coordinate representation in the lexicographic
ordering of Rn. The parity of any vertex of R is defined to be the parity of its distance from
the base vertex in the 1-skeleton graph of R. This number is either 0 or 1 and it changes as
we move from a vertex to its neighbor along the 1-edge of R. Clearly, the expression (3.3)
has 2n terms, half of them get the + sign and half of them come with the − sign; see the
illustration of these signs in Figure 4.

Every rectangular box R can be obtained by rotating an axes-aligned box R0 about the
origin, where the rotation is given by a special orthogonal transformation, U ∈ SO(n):

R = UR0. (3.4)



6 VJEKOSLAV KOVAČ

Figure 4. Signs attached to box vertices.

Suppose that the vertices of R0 are (3.1), while the vertices of R are given by
(

p+
∑

j∈T

vj : T ⊆ {1, 2, . . . , n}
)

,

where p = Uq and vj = ajUej for each index 1 6 j 6 n. Also, write coordinate-wise:

p = (pk)16k6n, vj = (vj,k)16k6n

and note that Lemma 4 gives

J (R) = ±
∑

σ∈Sn

v1,σ(1)v2,σ(2) · · · vn,σ(n). (3.5)

First, suppose that the rotation U satisfies ‖U − I‖op < ε, where

ε :=
1

2n+2n!
.

In particular,
∣

∣

∣

1

aj
vj − ej

∣

∣

∣
= |(U − I)ej | < ε,

so that

|vj,k − ajδj,k| < εaj .

Consequently,
∣

∣

∣

∑

σ∈Sn

v1,σ(1)v2,σ(2) · · · vn,σ(n) − a1a2 · · · an
∣

∣

∣

6 |v1,1v2,2 · · · vn,n − a1a2 · · · an|+
∑

σ∈Sn

σ 6=id

|v1,σ(1)v2,σ(2) · · · vn,σ(n)|

< nε(1 + ε)n−1a1a2 · · · an + (n!− 1)ε(1 + ε)n−1a1a2 · · · an

6 2nn!εa1a2 · · · an 6
1

4
a1a2 · · · an. (3.6)
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Let us now additionally assume that R has volume 1. Then (3.5) combined with (3.6) and
a1a2 · · · an = 1 gives

J (R) ∈
(

− 5

4
,−3

4

)

∪
(3

4
,
5

4

)

. (3.7)

Partition R
n into the sets

Sl :=

{

(x1, x2, . . . , xn) ∈ R
n : x1x2 · · · xn ∈ 3

2

(

Z+
[ l

3 · 2n ,
l + 1

3 · 2n
)

)}

for 0 6 l 6 3 · 2n − 1. We claim that the vertices of R cannot all belong to the same set Sl.
Namely, if they did, then the definition of J (R) would give

J (R) ∈ 3

2
Z+

(

− 1

4
,
1

4

)

= · · · ∪
(

− 7

4
,−5

4

)

∪
(

− 1

4
,
1

4

)

∪
(5

4
,
7

4

)

∪ · · · . (3.8)

However, (3.7) and (3.8) together lead to a contradiction as the sets on their right hand sides
are disjoint.

Finally, we handle completely arbitrary rectagular boxes R of unit volume. Consider an
open neighborhood O of the identity I in the rotation group SO(n) defined as

O := {V ∈ SO(n) : ‖V − I‖op < ε}.
Then the family {UO : U ∈ SO(n)} constitutes an open cover of the compact space SO(n), so
it can be reduced to a finite subcover {U1O, U2O, . . . , UmO}. The color classes of the desired
coloring of Rn can now be defined as

Cl1,l2,...,lm := (U1Sl1) ∩ (U2Sl2) ∩ · · · ∩ (UmSlm),

where (l1, l2, . . . , lm) run over all m-tuples of elements from {0, 1, 2, . . . , 3 · 2n − 1}. Suppose
that the vertices of R belong to the same color class Cl1,l2,...,lm. Let U ∈ SO(n) be as in (3.4),
but without any assumption on the norm of U − I. Take an index i ∈ {1, . . . ,m} such that
U ∈ UiO. Then the box

R′ := U−1
i R

satisfies

R′ = U−1
i UR0, ‖U−1

i U − I‖op < ε

and all of its vertices are in the set

U−1
i Cl1,l2,...,lm ⊆ U−1

i UiSli = Sli .

This contradicts the previous part of the proof. �

The number of colors needed in the above proof grows superexponentially in n.
The trick of using compactness of the underlying transformation group (which is SO(n) in

our case) is essentially due to Straus [11]. However, note that its applicability is far from
automatic; see Remark 6.

4. Other configurations

Here we give a couple of simple observations on further applicability of constructions from
Sections 2 and 3.

Remark 5. Let us conveniently work in the complex plane again. Take a positive integer
n > 2, positive numbers a1, . . . , an, and complex numbers z, u1, . . . , un. If 2

n points

z + r1u1 + r2u2 + · · · + rnun for (r1, r2, . . . , rn) ∈ {0, 1}n (4.1)
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Figure 5. Embedding of a 1-skeleton of an n-box.

are mutually distinct and |uj| = aj for 1 6 j 6 n, then we can say that (4.1) is an embedding

in the plane of a 1-skeleton of an n-dimensional box

[0, a1]× [0, a2]× · · · × [0, an];

see Figure 5.
Predojević and the author [10] showed that a measurable subset A ⊆ R

2 of positive upper
density contains all sufficiently large dilates of a fixed 1-skeleton of an n-box; for instance
we can take a1 = · · · = an = λ for all sufficiently large numbers λ ∈ (0,∞). On the other
extreme, a fixed 1-skeleton, such as the one with a1 = · · · = an = 1 need not be embeddable
in A, simply because there is no reason why A should contain two point at distance 1 apart.
Moreover, by a simple modification of the construction from Section 2 we can even find a
measurable finite coloring of R2 such that no color class contains a 1-skeleton of an n-box
satisfying a1 · · · an = 1. Namely, let us first observe that the identity (3.2) remains to hold
for complex numbers pk, vj,k, simply by acknowledging the same proof given in Section 2. By
taking pk = z and vj,k = uj for each index k, we obtain a simpler identity

∑

T⊆{1,2,...,n}

(−1)n−|T |
(

z +
∑

j∈T

uj

)n

= n!u1u2 · · · un

for z, u1, u2, . . . , un ∈ C. (Actually, its analogous inductive proof is even notationally slightly
simpler.) It is now easy to color C appropriately, according to where zn lies with respect to
the Gaussian integers Z+ iZ.

Remark 6. In this paper we do not study parallelograms, which were also mentioned by Erdős
and Graham [3, p. 331], but we comment on them rather briefly. The same quantity J from
Section 3 is actually an invariant for parallelograms with one side parallel to the horizontal
axis. Thus, a finite coloring of R2 can certainly avoid axis-parallel parallelograms. Using the
same trick of compactness of the group of rotations SO(2) one can easily also construct a finite
coloring of R2 that avoids monochromatic parallelograms with a fixed angle. For these reasons
the author believes that the variant of Problem 1 for parallelograms is quite difficult. There
is another reason adding to this belief. Erdős remarked [2, p. 324] (without a reference) that
he and Mauldin constructed a set S ⊆ R

2 of infinite measure that does not contains vertices
of a parallelogram of area 1. Even if this has no implications to finite colorings of R2 or to
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positive density subsets of R2, it still hints that sets that avoid the vertices of parallelograms
of unit area can be quite large.
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1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, volume Vol. 10 of Colloq. Math. Soc.
János Bolyai, pages 529–557. North-Holland, Amsterdam-London, 1975.
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