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Another proof of Seymour’s 6-flow theorem
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Abstract

In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-
connected graph has a nowhere-zero flow in the group Zs x Zs (in fact, he offers two
proofs of this result). In this note we give a new short proof of a generalization of
this theorem where Zs x Zgs-valued functions are found subject to certain boundary
constraints.

Throughout we permit loops and parallel edges. Let G = (V| E) be a digraph and let
v € V. We define 6" (v) (6 (v)) to be the set of edges with tail (head) v. Let T' be an abelian
group written additively and let ¢ : E — I'. The boundary of ¢ is the function d¢ : V. — T’
given by the rule:

do(v)= ) ole)— > dle).
e€dt(v) ecd— (v)

Note that the condition ) .\, 0¢(v) = 0 is always satisfied since every edge contributes 0
to this quantity. We say that ¢ is nowhere-zero if 0 € ¢(FE) and we say that ¢ is a [-flow
if 0¢ is the constant 0 function. Let us comment that reversing an edge and replacing the
value assigned to this edge by its additive inverse preserves the boundary and maintains
the condition nowhere-zero. So, in particular, the question of when a graph has a nowhere-
zero function ¢ : E — I with a given boundary is independent of the orientation. Setting
Zy = Z/kZ we may state Seymour’s theorem as follows.

Theorem 1 (Seymour [2]). Every 2-edge-connected digraph has a nowhere-zero Zg-flow.

This result combines with a theorem of Tutte [3] to show that every 2-edge-connected
digraph has a nowhere-zero 6-flow (i.e. a Z-flow with range a subset of {+1,£2 ... +5}).
In this article we prove the following generalization of Seymour’s theorem (set T'=U = ()
to derive Theorem [I). Here supp(f) denotes the support of a function f and for a graph G
and a set X C V(G) we use d(X) to denote the number of edges with exactly one end in X.
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Theorem 2. Let G = (V, E) be a connected digraph and let T C U C 'V have |T| even and
|U| # 1. Assume further that every O # V' C V with V' N U = 0 satisfies d(V') > 2. Then
for k = 2,3 there exist functions ¢y : E(G) — Zj, satisfying the following properties:

o (92(e), ¢3(e)) # (0,0) for every e € E,
e supp (0p9) =T, and

e supp (Jg3) = U.

Under the stronger hypothesis that G is 3-edge-connected, a theorem of Jaeger et. al. [1]
shows that one may find a nowhere-zero Zg-valued function with any desired zero-sum bound-
ary function. The main novelty of our result is that the hypotheses are relatively weak and
the result has a quick proof by induction. In particular, we do not require the standard
reductions to 3-connected cubic graphs.

Our notation is fairly standard. For sets X, Y weuse X @Y = (X \Y)U (Y \ X) to
denote symmetric difference. If G is a graph and (G, Gz) is a pair of subgraphs satisfying
E(Gy) U E(Gy) = E(G), E(G1) N E(Gy) = 0, and |V (G1) N V(Gs)| = k, then we call
(G1,Gs) a k-separation. This separation is proper if V(G1) \ V(Ga) # 0 # V(G2) \ V(Gy).
Note that a graph with at least k + 1 vertices is k-connected if and only if it has no proper
(k — 1)-separation.

Proof of Theorem[2. We proceed by induction on |E|. The case when |V| < 2 holds by
inspection, so we may assume |V| > 3. If there exists v € V' \ U with deg(v) = 2, then the
result follows by contracting an edge incident with v (to eliminate this vertex) and applying
induction. So we may assume no such vertex exists. Next suppose that G has a proper
1-separation (G, Gz) with {v} = V(G1) NV (G2). First suppose that U C V(Gy). In this
case the result follows by applying the theorem inductively to GGy with the given sets T', U
and to Gy with T = U = (). Next suppose that U contains a vertex in both V(Gy) \ {v}
and V(Gs) \ {v}. Fori = 1,2let U; = (V(G;) NU) U {v} and choose T; = T'NV(G;) or
T, = (I'NV(G;)) ®{v} so that |T;| is even. For i = 1,2 apply the theorem inductively to G;
with T}, U; to obtain the functions ¢} and ¢%. Now taking ¢ = ¢ U $3 and a suitable choice
of ¢3 = ¢L U +¢2 gives the desired functions for G. (To see this note that by choosing +¢2
we may arrange for dpz(v) to be zero or nonzero as desired).

By the above arguments, we may now assume that G is 2-connected. If U = (), choose an
edge e = uw and apply the theorem inductively to G' = G — e with T" = () and U’ = {u, w}
to obtain ¢, and ¢4. Extend ¢} to a function ¢o : E — Zy by setting ¢o(e) = 0. Since
Y pey 005 = 0 we have 0¢5(u) = —0(w) = £1. Therefore, we may extend ¢4 to a function
¢3 1 E — Zs3 by setting ¢3(e) = £1 so that d¢p3 = 0, thus completing the proof in this case.

Now we may assume |U| > 2. By Menger’s theorem we may choose a nontrivial path
P so that both ends of P are in U and furthermore, some component, say H, of G — E(P)

2



contains both ends of P. Over all such paths, choose one P so that H is maximal. Suppose
(for a contradiction) that some component H' # H of G — E(P) satisfies V(H') N U # (.
Choose u € V(H')NU and choose two internally vertex-disjoint paths @1, Q2 C H' starting
at u and ending in V(P). Now we may choose a nontrival path P’ C P U @, with one end
u and the other an end of P so that H U ()5 is contained in some connected component of
G — E(P'), thus contradicting our choice of P. Therefore, every component of G — E(P)
apart from H contains no vertices in U. Note that by our choice, every interior vertex of P
isin V' \ U (and thus has degree > 3).

Let {u1,us} be the ends of P and let G’ = G — E(P). Define 7" = T & {uy,us} and
U = UUV(P). Now apply the theorem inductively to each component of G’ with the
corresponding restrictions of 77 and U’ to obtain ¢, : E(G') — Zs and ¢ : E(G') — Zs.
Extend ¢), to a function ¢y : E — Zy by defining ¢s(e) = 1 for every e € E(P) and note that
supp(d¢y) = T as desired. By possibly reorienting we may assume that P is a directed path
with edges in order ey, ..., e,. By greedily assigning values to these edges in order, we may
extend ¢4 to a function ¢3 : E — Zj with the property that d¢s(v) = 0 for every internal
vertex v of P. Now the function ¢3 satisfies the desired boundary condition at every vertex
except possibly the ends of P. Let t € Z3 and modify ¢35 by adding ¢ to ¢3(e) for every
e € E(P). This has no effect on the boundaries of the internal vertices of P, and for some
t € Zs the resulting function will have nonzero boundary at both ends of P. This gives us
our desired functions ¢y and ¢s. O

References

[1] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs—A nonhomoge-
neous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992),
no.2, 165-182.

[2] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), 130-135.

[3] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6
(1954), 80-91.



