Another proof of Seymour's 6-flow theorem

Matt DeVos* Jessica McDonald ${ }^{\dagger}$ Kathryn Nurse ${ }^{\ddagger}$

Abstract

In 1981 Seymour proved his famous 6 -flow theorem asserting that every 2-edgeconnected graph has a nowhere-zero flow in the group $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ (in fact, he offers two proofs of this result). In this note we give a new short proof of a generalization of this theorem where $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$-valued functions are found subject to certain boundary constraints.

Throughout we permit loops and parallel edges. Let $G=(V, E)$ be a digraph and let $v \in V$. We define $\delta^{+}(v)\left(\delta^{-}(v)\right)$ to be the set of edges with tail (head) v. Let Γ be an abelian group written additively and let $\phi: E \rightarrow \Gamma$. The boundary of ϕ is the function $\partial \phi: V \rightarrow \Gamma$ given by the rule:

$$
\partial \phi(v)=\sum_{e \in \delta^{+}(v)} \phi(e)-\sum_{e \in \delta^{-}(v)} \phi(e) .
$$

Note that the condition $\sum_{v \in V} \partial \phi(v)=0$ is always satisfied since every edge contributes 0 to this quantity. We say that ϕ is nowhere-zero if $0 \notin \phi(E)$ and we say that ϕ is a Γ-flow if $\partial \phi$ is the constant 0 function. Let us comment that reversing an edge and replacing the value assigned to this edge by its additive inverse preserves the boundary and maintains the condition nowhere-zero. So, in particular, the question of when a graph has a nowherezero function $\phi: E \rightarrow \Gamma$ with a given boundary is independent of the orientation. Setting $\mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z}$ we may state Seymour's theorem as follows.

Theorem 1 (Seymour [2]). Every 2-edge-connected digraph has a nowhere-zero \mathbb{Z}_{6}-flow.
This result combines with a theorem of Tutte [3] to show that every 2-edge-connected digraph has a nowhere-zero 6 -flow (i.e. a \mathbb{Z}-flow with range a subset of $\{ \pm 1, \pm 2, \ldots, \pm 5\}$). In this article we prove the following generalization of Seymour's theorem (set $T=U=\emptyset$ to derive Theorem (1). Here $\operatorname{supp}(f)$ denotes the support of a function f and for a graph G and a set $X \subseteq V(G)$ we use $d(X)$ to denote the number of edges with exactly one end in X.

[^0]Theorem 2. Let $G=(V, E)$ be a connected digraph and let $T \subseteq U \subseteq V$ have $|T|$ even and $|U| \neq 1$. Assume further that every $\emptyset \neq V^{\prime} \subset V$ with $V^{\prime} \cap U=\emptyset$ satisfies $d\left(V^{\prime}\right) \geq 2$. Then for $k=2,3$ there exist functions $\phi_{k}: E(G) \rightarrow \mathbb{Z}_{k}$ satisfying the following properties:

- $\left(\phi_{2}(e), \phi_{3}(e)\right) \neq(0,0)$ for every $e \in E$,
- $\operatorname{supp}\left(\partial \phi_{2}\right)=T$, and
- $\operatorname{supp}\left(\partial \phi_{3}\right)=U$.

Under the stronger hypothesis that G is 3-edge-connected, a theorem of Jaeger et. al. [1] shows that one may find a nowhere-zero \mathbb{Z}_{6}-valued function with any desired zero-sum boundary function. The main novelty of our result is that the hypotheses are relatively weak and the result has a quick proof by induction. In particular, we do not require the standard reductions to 3 -connected cubic graphs.

Our notation is fairly standard. For sets X, Y we use $X \oplus Y=(X \backslash Y) \cup(Y \backslash X)$ to denote symmetric difference. If G is a graph and $\left(G_{1}, G_{2}\right)$ is a pair of subgraphs satisfying $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G), E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$, and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=k$, then we call $\left(G_{1}, G_{2}\right)$ a k-separation. This separation is proper if $V\left(G_{1}\right) \backslash V\left(G_{2}\right) \neq \emptyset \neq V\left(G_{2}\right) \backslash V\left(G_{1}\right)$. Note that a graph with at least $k+1$ vertices is k-connected if and only if it has no proper ($k-1$)-separation.

Proof of Theorem 2. We proceed by induction on $|E|$. The case when $|V| \leq 2$ holds by inspection, so we may assume $|V| \geq 3$. If there exists $v \in V \backslash U$ with $\operatorname{deg}(v)=2$, then the result follows by contracting an edge incident with v (to eliminate this vertex) and applying induction. So we may assume no such vertex exists. Next suppose that G has a proper 1-separation $\left(G_{1}, G_{2}\right)$ with $\{v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. First suppose that $U \subseteq V\left(G_{1}\right)$. In this case the result follows by applying the theorem inductively to G_{1} with the given sets T, U and to G_{2} with $T=U=\emptyset$. Next suppose that U contains a vertex in both $V\left(G_{1}\right) \backslash\{v\}$ and $V\left(G_{2}\right) \backslash\{v\}$. For $i=1,2$ let $U_{i}=\left(V\left(G_{i}\right) \cap U\right) \cup\{v\}$ and choose $T_{i}=T \cap V\left(G_{i}\right)$ or $T_{i}=\left(T \cap V\left(G_{i}\right)\right) \oplus\{v\}$ so that $\left|T_{i}\right|$ is even. For $i=1,2$ apply the theorem inductively to G_{i} with T_{i}, U_{i} to obtain the functions ϕ_{2}^{i} and ϕ_{3}^{i}. Now taking $\phi_{2}=\phi_{2}^{1} \cup \phi_{2}^{2}$ and a suitable choice of $\phi_{3}=\phi_{3}^{1} \cup \pm \phi_{3}^{2}$ gives the desired functions for G. (To see this note that by choosing $\pm \phi_{3}^{2}$ we may arrange for $\partial \phi_{3}(v)$ to be zero or nonzero as desired).

By the above arguments, we may now assume that G is 2-connected. If $U=\emptyset$, choose an edge $e=u w$ and apply the theorem inductively to $G^{\prime}=G-e$ with $T^{\prime}=\emptyset$ and $U^{\prime}=\{u, w\}$ to obtain ϕ_{2}^{\prime} and ϕ_{3}^{\prime}. Extend ϕ_{2}^{\prime} to a function $\phi_{2}: E \rightarrow \mathbb{Z}_{2}$ by setting $\phi_{2}(e)=0$. Since $\sum_{v \in V} \partial \phi_{3}^{\prime}=0$ we have $\partial \phi_{3}^{\prime}(u)=-\partial_{3}^{\prime}(w)= \pm 1$. Therefore, we may extend ϕ_{3}^{\prime} to a function $\phi_{3}: E \rightarrow \mathbb{Z}_{3}$ by setting $\phi_{3}(e)= \pm 1$ so that $\partial \phi_{3}=0$, thus completing the proof in this case.

Now we may assume $|U| \geq 2$. By Menger's theorem we may choose a nontrivial path P so that both ends of P are in U and furthermore, some component, say H, of $G-E(P)$
contains both ends of P. Over all such paths, choose one P so that H is maximal. Suppose (for a contradiction) that some component $H^{\prime} \neq H$ of $G-E(P)$ satisfies $V\left(H^{\prime}\right) \cap U \neq \emptyset$. Choose $u \in V\left(H^{\prime}\right) \cap U$ and choose two internally vertex-disjoint paths $Q_{1}, Q_{2} \subseteq H^{\prime}$ starting at u and ending in $V(P)$. Now we may choose a nontrival path $P^{\prime} \subseteq P \cup Q_{1}$ with one end u and the other an end of P so that $H \cup Q_{2}$ is contained in some connected component of $G-E\left(P^{\prime}\right)$, thus contradicting our choice of P. Therefore, every component of $G-E(P)$ apart from H contains no vertices in U. Note that by our choice, every interior vertex of P is in $V \backslash U$ (and thus has degree ≥ 3).

Let $\left\{u_{1}, u_{2}\right\}$ be the ends of P and let $G^{\prime}=G-E(P)$. Define $T^{\prime}=T \oplus\left\{u_{1}, u_{2}\right\}$ and $U^{\prime}=U \cup V(P)$. Now apply the theorem inductively to each component of G^{\prime} with the corresponding restrictions of T^{\prime} and U^{\prime} to obtain $\phi_{2}^{\prime}: E\left(G^{\prime}\right) \rightarrow \mathbb{Z}_{2}$ and $\phi_{3}^{\prime}: E\left(G^{\prime}\right) \rightarrow \mathbb{Z}_{3}$. Extend ϕ_{2}^{\prime} to a function $\phi_{2}: E \rightarrow \mathbb{Z}_{2}$ by defining $\phi_{2}(e)=1$ for every $e \in E(P)$ and note that $\operatorname{supp}\left(\partial \phi_{2}\right)=T$ as desired. By possibly reorienting we may assume that P is a directed path with edges in order e_{1}, \ldots, e_{k}. By greedily assigning values to these edges in order, we may extend ϕ_{3}^{\prime} to a function $\phi_{3}: E \rightarrow \mathbb{Z}_{3}$ with the property that $\partial \phi_{3}(v)=0$ for every internal vertex v of P. Now the function ϕ_{3} satisfies the desired boundary condition at every vertex except possibly the ends of P. Let $t \in \mathbb{Z}_{3}$ and modify ϕ_{3} by adding t to $\phi_{3}(e)$ for every $e \in E(P)$. This has no effect on the boundaries of the internal vertices of P, and for some $t \in \mathbb{Z}_{3}$ the resulting function will have nonzero boundary at both ends of P. This gives us our desired functions ϕ_{2} and ϕ_{3}.

References

[1] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992), no.2, 165-182.
[2] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), 130-135.
[3] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.

[^0]: *Email: mdevos@sfu.ca. Supported by an NSERC Discovery Grant (Canada)
 ${ }^{\dagger}$ Email: mcdonald@auburn.edu. Supported in part by Simons Foundation Grant \#845698
 ${ }^{\ddagger}$ Email: knurse@sfu.ca

