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Another proof of Seymour’s 6-flow theorem

Matt DeVos∗ Jessica McDonald† Kathryn Nurse‡

Abstract

In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-

connected graph has a nowhere-zero flow in the group Z2 × Z3 (in fact, he offers two

proofs of this result). In this note we give a new short proof of a generalization of

this theorem where Z2 × Z3-valued functions are found subject to certain boundary

constraints.

Throughout we permit loops and parallel edges. Let G = (V,E) be a digraph and let

v ∈ V . We define δ+(v) (δ−(v)) to be the set of edges with tail (head) v. Let Γ be an abelian

group written additively and let φ : E → Γ. The boundary of φ is the function ∂φ : V → Γ

given by the rule:

∂φ(v) =
∑

e∈δ+(v)

φ(e)−
∑

e∈δ−(v)

φ(e).

Note that the condition
∑

v∈V
∂φ(v) = 0 is always satisfied since every edge contributes 0

to this quantity. We say that φ is nowhere-zero if 0 6∈ φ(E) and we say that φ is a Γ-flow

if ∂φ is the constant 0 function. Let us comment that reversing an edge and replacing the

value assigned to this edge by its additive inverse preserves the boundary and maintains

the condition nowhere-zero. So, in particular, the question of when a graph has a nowhere-

zero function φ : E → Γ with a given boundary is independent of the orientation. Setting

Zk = Z/kZ we may state Seymour’s theorem as follows.

Theorem 1 (Seymour [2]). Every 2-edge-connected digraph has a nowhere-zero Z6-flow.

This result combines with a theorem of Tutte [3] to show that every 2-edge-connected

digraph has a nowhere-zero 6-flow (i.e. a Z-flow with range a subset of {±1,±2, . . . ,±5}).

In this article we prove the following generalization of Seymour’s theorem (set T = U = ∅

to derive Theorem 1). Here supp(f) denotes the support of a function f and for a graph G

and a set X ⊆ V (G) we use d(X) to denote the number of edges with exactly one end in X .
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Theorem 2. Let G = (V,E) be a connected digraph and let T ⊆ U ⊆ V have |T | even and

|U | 6= 1. Assume further that every ∅ 6= V ′ ⊂ V with V ′ ∩ U = ∅ satisfies d(V ′) ≥ 2. Then

for k = 2, 3 there exist functions φk : E(G) → Zk satisfying the following properties:

• (φ2(e), φ3(e)) 6= (0, 0) for every e ∈ E,

• supp (∂φ2) = T , and

• supp (∂φ3) = U .

Under the stronger hypothesis that G is 3-edge-connected, a theorem of Jaeger et. al. [1]

shows that one may find a nowhere-zero Z6-valued function with any desired zero-sum bound-

ary function. The main novelty of our result is that the hypotheses are relatively weak and

the result has a quick proof by induction. In particular, we do not require the standard

reductions to 3-connected cubic graphs.

Our notation is fairly standard. For sets X, Y we use X ⊕ Y = (X \ Y ) ∪ (Y \ X) to

denote symmetric difference. If G is a graph and (G1, G2) is a pair of subgraphs satisfying

E(G1) ∪ E(G2) = E(G), E(G1) ∩ E(G2) = ∅, and |V (G1) ∩ V (G2)| = k, then we call

(G1, G2) a k-separation. This separation is proper if V (G1) \ V (G2) 6= ∅ 6= V (G2) \ V (G1).

Note that a graph with at least k + 1 vertices is k-connected if and only if it has no proper

(k − 1)-separation.

Proof of Theorem 2. We proceed by induction on |E|. The case when |V | ≤ 2 holds by

inspection, so we may assume |V | ≥ 3. If there exists v ∈ V \ U with deg(v) = 2, then the

result follows by contracting an edge incident with v (to eliminate this vertex) and applying

induction. So we may assume no such vertex exists. Next suppose that G has a proper

1-separation (G1, G2) with {v} = V (G1) ∩ V (G2). First suppose that U ⊆ V (G1). In this

case the result follows by applying the theorem inductively to G1 with the given sets T, U

and to G2 with T = U = ∅. Next suppose that U contains a vertex in both V (G1) \ {v}

and V (G2) \ {v}. For i = 1, 2 let Ui = (V (Gi) ∩ U) ∪ {v} and choose Ti = T ∩ V (Gi) or

Ti = (T ∩V (Gi))⊕{v} so that |Ti| is even. For i = 1, 2 apply the theorem inductively to Gi

with Ti, Ui to obtain the functions φi
2 and φi

3. Now taking φ2 = φ1
2∪φ2

2 and a suitable choice

of φ3 = φ1
3 ∪ ±φ2

3 gives the desired functions for G. (To see this note that by choosing ±φ2
3

we may arrange for ∂φ3(v) to be zero or nonzero as desired).

By the above arguments, we may now assume that G is 2-connected. If U = ∅, choose an

edge e = uw and apply the theorem inductively to G′ = G− e with T ′ = ∅ and U ′ = {u, w}

to obtain φ′

2 and φ′

3. Extend φ′

2 to a function φ2 : E → Z2 by setting φ2(e) = 0. Since∑
v∈V

∂φ′

3 = 0 we have ∂φ′

3(u) = −∂′

3(w) = ±1. Therefore, we may extend φ′

3 to a function

φ3 : E → Z3 by setting φ3(e) = ±1 so that ∂φ3 = 0, thus completing the proof in this case.

Now we may assume |U | ≥ 2. By Menger’s theorem we may choose a nontrivial path

P so that both ends of P are in U and furthermore, some component, say H , of G− E(P )
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contains both ends of P . Over all such paths, choose one P so that H is maximal. Suppose

(for a contradiction) that some component H ′ 6= H of G − E(P ) satisfies V (H ′) ∩ U 6= ∅.

Choose u ∈ V (H ′)∩U and choose two internally vertex-disjoint paths Q1, Q2 ⊆ H ′ starting

at u and ending in V (P ). Now we may choose a nontrival path P ′ ⊆ P ∪ Q1 with one end

u and the other an end of P so that H ∪ Q2 is contained in some connected component of

G − E(P ′), thus contradicting our choice of P . Therefore, every component of G − E(P )

apart from H contains no vertices in U . Note that by our choice, every interior vertex of P

is in V \ U (and thus has degree ≥ 3).

Let {u1, u2} be the ends of P and let G′ = G − E(P ). Define T ′ = T ⊕ {u1, u2} and

U ′ = U ∪ V (P ). Now apply the theorem inductively to each component of G′ with the

corresponding restrictions of T ′ and U ′ to obtain φ′

2 : E(G′) → Z2 and φ′

3 : E(G′) → Z3.

Extend φ′

2 to a function φ2 : E → Z2 by defining φ2(e) = 1 for every e ∈ E(P ) and note that

supp(∂φ2) = T as desired. By possibly reorienting we may assume that P is a directed path

with edges in order e1, . . . , ek. By greedily assigning values to these edges in order, we may

extend φ′

3 to a function φ3 : E → Z3 with the property that ∂φ3(v) = 0 for every internal

vertex v of P . Now the function φ3 satisfies the desired boundary condition at every vertex

except possibly the ends of P . Let t ∈ Z3 and modify φ3 by adding t to φ3(e) for every

e ∈ E(P ). This has no effect on the boundaries of the internal vertices of P , and for some

t ∈ Z3 the resulting function will have nonzero boundary at both ends of P . This gives us

our desired functions φ2 and φ3.
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