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We show that the average order of a dominating set of a forest graph G on n vertices with 
no isolated vertices is at most 2n/3. Moreover, the equality is achieved if and only if every 
non-leaf vertex of G is a support vertex with one or two leaf neighbors. Our result answers 
an open question of Beaton and Brown in [The average order of dominating sets of a graph, 
Discrete Math. 344(12) (2021)].
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1. Introduction

In this article all graphs are finite, simple, loopless and undirected. Given a graph G , let V (G) and E(G) be the vertex set 
and the edge set of G , respectively. The order of G is |V (G)| and the size of G is |E(G)|. A vertex u is a neighbor of vertex 
v in G if u and v are adjacent in G . The open neighborhood of v, NG(v), consists of all neighbors of v in G , and the closed 
neighborhood of v, NG [v], is equal to NG(v) ∪ {v}. A vertex v of G is called an isolated vertex of G if v has no neighbors in G . 
For a subset S of vertices of G , let G \ S denote the subgraph induced by the vertices in V (G) \ S (if S = {v} is a singleton, 
we simply write G \ v). If H is a subgraph of G , we write G \ H for the subgraph induced by V (G) \ V (H) in G . Also, let 
G/u be the graph obtained from G by deleting the vertex u and adding edges between all pairs of nonadjacent neighbors of 
u. The complete graph, empty graph and star graph on n vertices are denoted by Kn , K n and K1,n−1, respectively. A vertex 
of degree one is called a leaf and an edge containing a leaf vertex is called a pendant edge. Let LG (u) denote the set of all 
leaf neighbors of a vertex u in G and LG [u] = LG(u) ∪ {u}. We say that u is a support vertex of G if u is adjacent to a leaf 
vertex v of G , and u is called the support of v in G . An acyclic graph is called a forest and an acyclic connected graph is 
called a tree.

Average values of various graph invariants have been studied in the literature. In 1971, Doyle and Graver [12] initiated 
the study of mean (average) distance in a graph which received a considerable attention. They gave a formula for computing 
the mean distance of trees, and determined extremal graphs with maximum or minimum mean distance among connected 
graphs of a given order [12]. Extremal problems for the mean distance were also examined in certain other classes of graphs 
[18], [13]. Chung [7] showed that the independence number is an upper bound on the mean distance and Dankelmann [9]
proved upper bounds for it in terms of the so called k-packing number. Average eccentricity (a distance related notion), was 
recently studied in [10]. Average order of a subtree of a graph was introduced by Jamison [14] in 1983 and this invariant has 
been investigated by a number of researchers, see, for example, [6,16,19,20]. Moreover, the average connectivity of a graph 
was considered in [5]. Most recently, Andriantiana et al. [2,3] studied the average sizes of independent sets and matchings. 
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Lastly, the average distance [8] and the average size of independent sets [11] were also studied in the context of random 
graphs.

Our focus in this paper will be on the average order of a dominating set of a graph. A subset of vertices S is called a 
dominating set of G if every vertex in V (G) \ S is adjacent to some vertex in S . Let D(G) denote the family of all dominating 
sets of G . Recently Beaton and Brown [4] introduced the average order of a dominating set of G , denoted avd(G), which is 
given by

avd(G) =

∑
S∈D(G)

|S|
|D(G)| .

They showed that the complete graph Kn uniquely minimizes the average order of a dominating set among all graphs on 
n vertices [4]. It is trivial that avd(K n) = n ≥ avd(G) for every graph G on n vertices. So, the empty graph K n has the 
largest average order of a dominating set among graphs on n vertices. What if we do not allow isolated vertices? Which 
graphs have the largest average order of a dominating set among all graphs of order n without isolated vertices? While 
this question was examined in [4], the question remained unanswered in general. It was shown that avd(G) ≤ 3

4 n for every 
graph G of order n without isolated vertices [4]. However the factor 3/4 in the upper bound is not best possible, and 
the evidence provided in [4] suggests that the constant 3/4 can be improved to a smaller number. Indeed, the following 
conjecture was proposed.

Conjecture 1.1. [4] If G is a graph of order n with no isolated vertices, then avd(G) ≤ 2n
3 .

Conjecture 1.1 was verified for all graphs up to 9 vertices, all graphs with minimum degree at least 4, and all quasi-
regularizable graphs (which include all graphs containing a perfect matching or a hamiltonian cycle) [4]. Beaton and Brown 
[4] also studied such extremal problems within the family of trees. They showed that for every tree graph G of order n with 
G � K1,n−1,

avd(G) >
n − 1 + 2n−2(n + 1)

2n−1 + 1
= avd(K1,n−1)

and hence the star graph K1,n−1 is the unique extremal graph with minimum average order of a dominating set. On the 
other hand, the problem of determining extremal graphs maximizing this parameter among trees remained as an open 
problem. In this article, we settle this problem by proving the following:

Theorem 1.2. If G is a tree of order n ≥ 2, then avd(G) ≤ 2n
3 . Moreover, the equality holds if and only if every non-leaf vertex of G is a 

support vertex with one or two leaf neighbors.

We actually prove Conjecture 1.1 for forests, see our Theorem 3.4 which immediately implies Theorem 1.2.

2. Preliminaries

The domination number γ (G) of a graph G is the cardinality of a minimum dominating set of G . Let dk(G) be the number 
of dominating sets of G with cardinality k. The domination polynomial of G , denoted by DG (x), is given by

DG(x) =
|V (G)|∑

k=γ (G)

dk(G) xk.

Observe that avd(G) is equal to the logarithmic derivative of DG (x) evaluated at x = 1, that is,

avd(G) = D ′
G(1)

DG(1)
.

Let H1, . . . , Hc be the connected components of G . It is well known that

DG(x) =
c∏

i=1

D Hi (x),

and moreover, it was observed in [4] that

avd(G) =
c∑

avd(Hi).
i=1

2
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Let V (G) = {v1, . . . , vn} and let G(vk1
1 , vk2

2 , . . . , vkn
n ) be the graph obtained from G by adding ki leaves to each vertex vi

for i ∈ {1, . . . , n}. For k1, . . . , kn > 0, it was observed in [1] and [17] that

D
G(v

k1
1 ,v

k2
2 ,...,vkn

n )
(x) =

n∏
i=1

D K1,ki
(x).

Thus, avd(G(vk1
1 , vk2

2 , . . . , vkn
n )) =

n∑
i=1

avd(K1,ki ). In particular, if G ′ is obtained from G by adding one leaf to each of p

vertices of G and two leaves to each of q vertices of G , where |V (G)| = p + q, then

avd(G ′) = p avd(K1,1) + q avd(K1,2) = 4

3
p + 2q = 2

3
(2p + 3q) = 2

3
|V (G ′)|.

Thus, we see that the extremal graphs mentioned in Theorem 1.2 indeed achieve the given upper bound.
We will also make use of the following recursive formula for the domination polynomials of graphs containing vertices 

with nested closed neighborhoods.

Lemma 2.1. [15] Let u and v be two vertices of G such that NG [v] ⊆ NG [u]. Then,

DG(x) = xDG/u(x) + DG\u(x) + xDG\NG [u](x).

In particular, if v is a leaf vertex and u is its neighbor, then

DG(x) = x
[

DG/u(x) + DG\{u,v}(x) + DG\NG [u](x)
]
.

Lastly, observe that if H is a subgraph of a graph G , then D H (1) ≤ DG(1) because the function f :D(H) →D(G) defined 
by f (S) = S ∪ (V (G) \ V (H)) is clearly one-to-one.

3. Main result

In the proof of the following result, let dk(G, u) (respectively dk(G, u) denote the number of dominating sets of G of 
order k which contain the vertex u (respectively do not contain the vertex u). Clearly, dk(G) = dk(G, u) + dk(G, u) for every 
vertex u.

Lemma 3.1. Let G be a graph of order n and w be a support vertex of G with LG(w) = {v1, . . . , vt} for some integer t ≥ 1. Let also 
H = G \ LG [w]. Suppose that every vertex u in NG(w) \ LG(w) is a support vertex in G, and 3D ′

H (1) ≤ 2(n − t − 1)D H (1). Then,

3D ′
G(1) ≤ 2nDG(1)

with equality if and only if t ∈ {1, 2} and 3D ′
H (1) = 2(n − t − 1)D H (1).

Proof. Let S be a dominating set of G of order k. If vt /∈ S , then w must be in S , as vt is a leaf. Since every vertex in 
NG(w) \ LG(w) is a support vertex of G , the vertex subset S ∩ V (H) must be a dominating set of H on k − 1 − i vertices 
where i is the number of vertices in S ∩ {v1, . . . , vt−1}. Therefore,

dk(G, vt) =
t−1∑
i=0

(
t − 1

i

)
dk−1−i(H).

Similarly, one can check that the number of dominating sets of G of order k which contain vt but not w is dk−t(H), and 
the number of dominating sets which contain both vt and w is 

∑t−1
i=0

(t−1
i

)
dk−2−i(H). Hence,

dk(G, vt) = dk−t(H) +
t−1∑
i=0

(
t − 1

i

)
dk−2−i(H).

Since dk(G) = dk(G, vt) + dk(G, vt), we have

dk(G) = dk−t(H) +
t−1∑(

t − 1

i

)
dk−2−i(H) +

t−1∑(
t − 1

i

)
dk−1−i(H).
i=0 i=0

3
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By rewriting the latter as a polynomial equation and applying the binomial theorem, we get

DG(x) = xt D H (x) +
t−1∑
i=0

(
t − 1

i

)
xi+2 D H (x) +

t−1∑
i=0

(
t − 1

i

)
xi+1 D H (x)

= xt D H (x) + (x2 + x)D H (x)
t−1∑
i=0

(
t − 1

i

)
xi

= xt D H (x) + (x2 + x)D H (x)(x + 1)t−1

= [
xt + x(x + 1)t] D H (x).

Since DG(x) = [
xt + x(x + 1)t

]
D H (x), we obtain that

D ′
G(x) = [

xt + x (x + 1)t] D ′
H (x) + [

t xt−1 + (x + 1)t + x t (x + 1)t−1] D H (x).

Evaluations of DG (x) and D ′
G (x) at x = 1 yield

DG(1) = (1 + 2t) D H (1)

and

D ′
G(1) = (1 + 2t) D ′

H (1) + (t + 2t + t 2t−1) D H (1).

Now, we have

2nDG(1) − 3D ′
G(1) = 2n(1 + 2t)D H (1) − 3(1 + 2t)D ′

H (1) − 3(t + 2t + t2t−1)D H (1)

≥ 2n(1 + 2t)D H (1) − 2(1 + 2t)(n − t − 1)D H (1) − 3(t + 2t + t2t−1)D H (1)

= (2 − t + t 2t−1 − 2t) D H (1)

= (t − 2) (2t−1 − 1) D H (1)

≥ 0

where the first inequality holds by the assumption that 3D ′
H (1) ≤ 2(n − t − 1)D H (1), and the last inequality is an equality 

if and only if t ∈ {1, 2}. Thus, 3D ′
G(1) ≤ 2nDG(1) with equality if and only if t ∈ {1, 2} and 3D ′

H (1) = 2(n − t − 1)D H (1). �
Given a graph G with a specified vertex u ∈ V (G), we write G(u,k) to denote the graph obtained by gluing G and Kk+1

at the vertex u. That is, G(u,k) = Kk+1 ∪ G and Kk+1 ∩ G = {u}.

Lemma 3.2. Let G be a graph and u ∈ V (G). Then, for every integer k ≥ 1,

DG(u,k)
(x) = (x + 1)k−1 [

DG(u,1)
(x) + DG\u(x)

] − DG\u(x).

Proof. We proceed by induction on k. The statement is clear for k = 1. Suppose that k ≥ 2 and let V (G(u,k)) \ V (G) =
{v1, . . . , vk} where the vertices v1, . . . , vk induce a k-clique in G(u,k) and u is adjacent to each vi for 1 ≤ i ≤ k. Since vk and 
vk−1 have the same closed neighborhoods in G(u,k) , we obtain

DG(u,k)
(x) = xDG(u,k)/vk (x) + DG(u,k)\vk (x) + xDG(u,k)\NG(u,k)

[vk](x)

= xDG(u,k−1)
(x) + DG(u,k−1)

(x) + xDG\u(x)

= (x + 1)DG(u,k−1)
(x) + xDG\u(x)

= (x + 1)
[
(x + 1)k−2 (

DG(u,1)
(x) + DG\u(x)

) − DG\u(x)
]

+ xDG\u(x)

= (x + 1)k−1 [
DG(u,1)

(x) + DG\u(x)
] − DG\u(x). �

Lemma 3.3. Let T be a tree with |V (T )| ≥ 3 and u be a vertex of T . Suppose that u is not a support vertex of T and u has at most one 
neighbor in T which is not a support vertex in T . Let G1 be the graph obtained from T by attaching a new leaf vertex v at u. Then,

(i) DG1 (1) ≤ DT (1) + 3DT \u(1),
(ii) DG1 (1) ≤ 5DT \u(1) and

(iii) DT (1) ≤ 3DT \u(1).
4
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Proof. Given a graph G containing T \u as a subgraph, let us first define AG and BG as follows: AG = {S : S ∈D(G) and S ∩
V (T \ u) ∈D(T \ u)} and BG =D(G) \AG . It is clear that DG(1) = |AG | +|BG |. By adding v , u or both, one can extend every 
dominating set of T \ u to a dominating set of G1 in three different ways. So, we have |AG1 | = 3DT \u(1). If all neighbors of 
u in T are support vertices in T , then BG1 = ∅, and the results in (i) and (ii) are clear as DG1 (1) = 3DT \u(1) in this case. 
So, we may assume that u is adjacent to exactly one non-support vertex in T , say u′ . Let T ′ be the component of T \ u
which contains u′ and let T ∗ = (T \ u) \ T ′ . Note that if S belongs to BG1 , then S ∩ V (T ∗) is a dominating set of T ∗ since 
every neighbor of u in T ∗ is a support vertex of T . Also, u must be in S and S contains no vertex of NT ′ [u′]. Now, the 
function f : BG1 →D(T ) defined by

f (S) =
{

S if v /∈ S

(S \ {u, v}) ∪ {u′} if v ∈ S

is one-to-one. Hence, |BG1 | ≤ DT (1) and the result in (i) follows. Let λ(T ′ \ u′) be the number of dominating sets of T ′ \ u′
which do not contain any vertex from NT ′ (u′). Observe that

|BG1 | = 2DT ∗(1)λ(T ′ \ u′) ≤ 2DT ∗(1)DT ′\u′(1) ≤ 2DT ∗(1)DT ′(1) = 2DT \u(1)

and therefore (ii) follows. Lastly, |AT | ≤ 2DT \u(1) because adding the vertex u to a dominating set of T \ u may or may 
not yield a dominating set for T . Moreover, if S ∈ BT , then u must be in S and S contains no vertex of NT ′ [u′]. Now the 
function g : BT →D(T \ u) defined by g(S) = (S \ u) ∪{u′} is one-to-one and therefore we obtain that |BT | ≤ DT \u(1). Thus, 
DT (1) = |AT | + |BT | ≤ 3DT \u(1) and (iii) is established. �

We are now ready to prove our main result.

Theorem 3.4. Let G be a forest on n vertices with no isolated vertices. Then, avd(G) ≤ 2n
3 and, moreover, equality holds if and only if 

every non-leaf vertex of G is a support vertex with one or two leaf neighbors.

Proof. We proceed by strong induction on the number of vertices. If n = 2, then G ∼= K2 and it is clear that avd(K2) = 4/3. 
We may assume that n ≥ 3. First suppose that G is connected, that is G is a tree. Let G be a rooted tree and let v be a 
support vertex of maximum distance from the root of G . Also let LG (v) = {v1, . . . , vk} for some k ≥ 1. If V (G) = LG [v], then 
G ∼= K1,k and it is easy to see that avd(K1,k) ≤ 2|V (G)|/3 with equality iff 1 ≤ k ≤ 2. So we may assume that V (G) = LG [v]. 
Let T = G \ LG [v] and u ∈ V (T ) be the parent of v in G . Note that NG (v) = LG(v) ∪ {u}, as the chosen support vertex v is 
of maximum distance from the root of G . If u is a support vertex in G , then the result follows from Lemma 3.1 and the 
induction hypothesis. So we may assume that u has no leaf neighbors in G . Since u is neither a leaf nor a support vertex of 
G , we have |V (T )| ≥ 3. Now we shall show that the strict inequality 3D ′

G (1) < 2nDG(1) holds.

DG(x) = x
[

DG/v(x) + DG\{v,vk}(x) + DG\NG [v](x)
]

(1)

= x
[

DT(u,k)
(x) + xk−1 DT (x) + DT \u(x)

]
(2)

= x
[
(x + 1)k−1[DT(u,1)

(x) + DT \u(x)] − DT \u(x) + xk−1 DT (x) + DT \u(x)
]

(3)

= x(x + 1)k−1 [
DG\LG (v)(x) + DT \u(x)

] + xk DT (x) (4)

where (1) follows from Lemma 2.1; (2) holds as G/v ∼= T(u,k) , G \ {v, vk} ∼= K k−1 ·∪ T and G \ NG [v] ∼= T \ u; (3) follows from 
Lemma 3.2; and (4) follows since T(u,1)

∼= G \ LG(v). Let us write G1 = G \ LG(v), then

D ′
G(x) =

[
(x + 1)k−1 + (k − 1)x(x + 1)k−2

] [
DG1(x) + DT \u(x)

]
+x(x + 1)k−1

[
D ′

G1
(x) + D ′

T \u(x)
]
+ kxk−1 DT (x) + xk D ′

T (x).

It follows that DG (1) = 2k−1
[

DG1 (1) + DT \u(1)
] + DT (1) and

D ′
G(1) = (k + 1)2k−2 [

DG1(1) + DT \u(1)
] + 2k−1

[
D ′

G1
(1) + D ′

T \u(1)
]
+ kDT (1) + D ′

T (1).

It is not difficult to calculate that 2nDG (1) − 3D ′
G(1) is equal to

2k−1[2(n − k)DG1(1) − 3D ′
G1

(1)
] + 2k−1

[
2(n − k − 2)DT \u(1) − 3D ′

T \u(1)
]

+ [
2(n − k − 1)DT (1) − 3D ′

T (1)
] + 2k−2 [

(k − 3)DG1(1) + (k + 5)DT \u(1)
] − (k − 2)DT (1).
5
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Each of the subgraphs T , G1 and T \u is a proper subforest of G without isolated vertices. So, by the induction hypothesis, 
we have 3D ′

T (1) ≤ 2(n − k − 1)DT (1), 3D ′
G1

(1) ≤ 2(n − k)DG1 (1) and 3D ′
T \u(1) ≤ 2(n − k − 2)DT \u(1). Therefore, in order to 

show that 3D ′
G (1) ≤ 2nDG(1) it suffices to prove only that

(k − 2)DT (1) ≤ 2k−2 [
(k − 3)DG1(1) + (k + 5)DT \u(1)

]
. (5)

Observe that all but possibly one connected components of T \ u are star graphs because v is of maximum distance from 
the root of G . So, the vertex u has at most one neighbor in T which is not a support vertex of T and Lemma 3.3 applies 
here. If k = 1, the inequality (5) is DG1 (1) ≤ DT (1) + 3DT \u(1) and this follows from Lemma 3.3(i). If all neighbors of u in 
T are support vertices in T , then by the proof of Lemma 3.3(i), we have DG1 (1) = 3DT \u(1) and therefore strict inequality 
holds in (5) which implies 3D ′

G (1) < 2nDG(1). If u has a neighbor in T which is not a support vertex of T , then by the 
induction hypothesis the strict inequality 3D ′

T (1) < 2(n − k − 1)DT (1) holds and again we get 3D ′
G (1) < 2nDG(1). For k ≥ 2, 

we shall show that (5) holds strictly.
If k = 2, the strict inequality for (5) is DG1 (1) < 7DT \u(1) and this follows from Lemma 3.3(ii). If k = 3, it is DT (1) <

16DT \u and this is verified by Lemma 3.3(iii). If k ≥ 4, we have (k − 2) < 2k−2(k − 3) and DT (1) ≤ DG1 (1) since T is a 
subgraph of G1. Thus, 3D ′

G (1) < 2nDG(1) is established for all k.
Lastly, suppose that G is a disconnected forest with connected components H1, . . . , Hc where c ≥ 2. By the induction 

hypothesis, for each i we have avd(Hi) ≤ 2|V (Hi)|
3 with equality iff every non-leaf vertex of Hi is a support vertex with one 

or two leaf neighbors. Since avd(G) =
c∑

i=1
avd(Hi) ≤

c∑
i=1

2|V (Hi)|
3 = 2n/3, the proof is completed. �

4. Concluding remarks

Every graph G without isolated vertices contains a spanning forest F without isolated vertices, and F can be obtained 
from G by a succession of non-pendant edge removals. So it would be interesting to investigate how avd(G) is effected by 
the removal of a non-pendant edge. In particular we ask the following:

Question 4.1. In every graph G (which is not a disjoint union of stars or empty graphs) does there exist a non-pendant edge 
e of G such that avd(G) < avd(G \ e)?

Observe that an affirmative answer to Question 4.1 would yield a proof of Conjecture 1.1 in general because of our 
Theorem 3.4 and the remark above. We also note that Beaton and Brown [4] conjectured that in every non-empty graph G , 
there exists an edge e such that avd(G) < avd(G \ e) and they verified this conjecture for graphs on up to 7 vertices. On the 
other hand, they did not specify any property of such an edge.
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