
On the Cryptographic Hardness of Local Search∗

Nir Bitansky† Idan Gerichter‡

January 5, 2020

Abstract

We show new hardness results for the class of Polynomial Local Search problems (PLS):

• Hardness of PLS based on a falsifiable assumption on bilinear groups introduced by
Kalai, Paneth, and Yang (STOC 2019), and the Exponential Time Hypothesis for ran-
domized algorithms. Previous standard model constructions relied on non-falsifiable
and non-standard assumptions.

• Hardness of PLS relative to random oracles. The construction is essentially different than
previous constructions, and in particular is unconditionally secure. The construction also
demonstrates the hardness of parallelizing local search.

The core observation behind the results is that the unique proofs property of incrementally-
verifiable computations previously used to demonstrate hardness in PLS can be traded with a
simple incremental completeness property.

∗This work was supported in part by ISF grant 18/484, and by Len Blavatnik and the Blavatnik Family Foundation.
An extended abstract appears in the proceedings of Innovations of Theoretical Computer Science 2020.
†Tel Aviv University, nirbitan@tau.ac.il. Member of the Check Point Institute of Information Security. Supported

also by the Alon Young Faculty Fellowship.
‡Tel Aviv University, idangrichter@mail.tau.ac.il.

Contents
1 Introduction 1

1.1 Our Results . 2

2 Technical Overview 3
2.1 Hardness via Incremental Computation . 3
2.2 Incremental Completeness . 4
2.3 Obtaining IVC with Incremental Completeness 4
2.4 Unconditional Hardness in the Random Oracle Model 6
2.5 More Related Work on Total Search Problems . 8

3 Preliminaries 9
3.1 Standard Computational Conventions . 9
3.2 Search Problems . 9
3.3 Average-Case Hardness of Search Problem . 10

4 PLS Hardness from IVC 10
4.1 IVC with Incremental Completeness . 11
4.2 Computationally Sound Karp Reduction . 12
4.3 The Hardness Reduction . 12
4.4 Security Analysis . 14
4.5 Applying the Reduction . 15

5 Instantiation under the KPY Assumption and ETH 16
5.1 IVC From KPY Assumption . 16
5.2 Fixed Space Polynomial Hardness via ETH . 17
5.3 Putting Things Together . 17

6 Unconditional PLS Hardness in the ROM 19
6.1 Graph Related Preliminaries . 19
6.2 Modified DLM . 21
6.3 Hard instances. 28
6.4 Depth Robust Instances . 30

A IVC under KPY Assumption 35
A.1 Quasi-Arguments . 36
A.2 GIVC with Incremental Completeness . 37
A.3 Recursive GIVC Construction . 39
A.4 Analysis . 41
A.5 Efficient IVC . 45
A.6 The KPY Assumption . 45

B Hardness from a Computational Reduction 46
B.1 Worst-Case Hardness . 46
B.2 Average-Case Hardness . 47

1 Introduction
Local search is a well known approach for tackling optimization problems. Local search algo-
rithms seek solutions that are locally optimal — they commonly try to improve on a given solution
by considering small perturbations of it, called neighbors, and testing whether they are better
according to some value function. Indeed, many algorithms use this approach with empirical suc-
cess, for instance, the Simplex linear programming algorithm, the Lin-Kernighan TSP algorithm,
and various machine learning algorithms [Nas00, LK73, IM98]. Nevertheless, the approach has
its limitations and many natural local search problems are not known to admit polynomial-time
algorithms.

Aiming to characterize the computational complexity of local search, Johnson, Papadimitriou,
and Yannakakis [JPY88] introduced the class Polynomial Local Search (PLS). The class is defined
by its canonical complete problem LOCAL-SEARCH (LS) [JPY88, HY16]. Here the input consists
of two polynomial-size circuits: a successor circuit S : {0, 1}n → {0, 1}n, which given a string
x outputs a string x′, and a value circuit F , which given a string x outputs an integer value. The
goal is to find a string x which is locally optimal in the sense that F(x) ≥ F(S(x)). Here strings
correspond to solutions, with a value assigned by F , and the successor assigned by S represents
“the best” neighbor. Important problems that are known to be PLS complete include finding a
locally optimal max-cut [SY91] and finding pure Nash equilibrium in congestion games [FPT04].

As observed in [JPY88], PLS belongs to the class TFNP of total search problems in NP;
namely, a local optimal solution always exists (and can be efficiently verified). As a result, it
is unlikely that PLS contains NP-hard problems, as this would imply that NP = coNP [JPY88,
MP91]. This barrier is shared of course by other prominent subclasses of TFNP, perhaps the most
famous example being the class PPAD that captures the hardness of finding Nash equilibrium in
bimatrix games [DGP09, CDT09]. Accordingly, researchers have turned to seek for alternative
evidence of hardness.

One natural place to look for such evidence is cryptography. Indeed, cryptography typically
relies on problems closer to the boundary of P than to NP hard problems. For some subclasses of
TFNP (such as PPP, PPA, and Ramsey) evidence of hardness has been shown based on standard
cryptographic assumptions [Pap94, BO06, Jer12, KNY17a, SZZ18]. Establishing the hardness
of PLS (and PPAD), however, has been far more elusive. Hubác̆ek and Yogev [HY16], building
on [BPR15, GPS16], demonstrated a hard problem in PLS ∩ PPAD based on indistinguishabil-
ity obfuscation [BGI+12], a strong cryptographic primitive, yet to be constructed under standard
assumptions.1 Similar hardness was then shown by Choudhuri et al. [CHK+19b] assuming hard-
ness of #SAT and the soundness of the Fiat-Shamir transform for the sumcheck protocol, which
in turn can be based on optimally-secure fully-homomorphic encryption against quasi-polynomial
attackers [CCR16]. More recently, the same has been shown based on the hardness of iterated
squaring and soundness of Fiat-Shamir for the iterated-squaring protocol of Pietrzak [Pie18] by
both Choudhuri et al. [CHK+19a] and Ephraim et al. [EFKP19].

Basing the hardness of PLS (or PPAD) on standard assumptions remains an open problem.

1More accurately, they show a hard problem in the class Continuous Local Search (CLS), which is known to be in
PLS ∩ PPAD [DP11].

1

1.1 Our Results
We provide new results regarding the hardness of PLS. Our first result shows worst-case hardness
of PLS based on the KPY assumption on bilinear groups and the randomized Exponential Time
Hypothesis (ETH). The KPY assumption was introduced recently by Kalai, Paneth, and Yang
[KPY19] toward the construction of publicly-verifiable delegation schemes. The assumption is
similar in spirit to previous standard assumptions that generalize Decisional Diffie Hellman (e.g.,
[BBG05, BGW05]). It is polynomially falsifiable and holds in the generic group model. Ran-
domized ETH postulates that solving SAT in the worst case requires exponential-time even for
randomized algorithms [IPZ01].

Theorem 1.1 (Informal). Under the KPY assumption on bilinear groups and randomized ETH,
PLS is hard in the worst case.

The result is, in fact, more general and shows a reduction of PLS hardness to a certain type
of incrementally-verifiable computation schemes (IVC) [Val08]. We then derive the required IVC
from the work of [KPY19]. We can also show average-case hardness at the cost of assuming
superpolynomial hardness of the KPY assumption and average-case randomized ETH. See further
details in the technical overview.

Our second result is a construction of PLS search problems that are unconditionally hard in the
random oracle model.

Theorem 1.2 (Informal). Relative to a random oracle, LOCAL-SEARCH is unconditionally hard-
on-average.

Previously, Choudhuri et al. [CHK+19b] showed hardness of CLS ⊆ PLS ∩ PPAD relative
to a random oracle, but their result is conditioned on hardness of #SAT (the construction does
not relativize with respect to this hardness and hence it cannot be derived from the random oracle
itself). Indeed, our construction is quite different from theirs. Whereas their construction is based
on the sum-check protocol [LFKN90] (which explains the non-black-box reliance on #SAT hard-
ness), ours comes from recent advancements in proofs of sequential work motivated by blockchain
applications [MMV13, CP18, DLM19].

The reliance on proofs of sequential work, in fact, translates to a result on the hardness of
parallelizing local search. Such hardness, in the random oracle model, was recently shown for
CLS (and in particular for both PLS and PPAD) by Ephraim et al. [EFKP19] further assuming that
repeated squaring modulo a composite is hard to parallelize [RSW00]. Specifically, they construct
CLS instances that can be solved in some tuneable sequential polynomial time, but cannot be
solved much faster by parallel algorithms. Our result gives a similar kind of hardness for PLS
in the random oracle model, without relying on any unproven computational assumptions. We
elaborate on this in the technical overview below.

2

2 Technical Overview
To motivate our approach, we start by recalling previous approaches taken toward proving PLS (or
rather CLS) hardness.

2.1 Hardness via Incremental Computation
So far, the common approach toward arguing cryptographic hardness of PLS went through an
intermediate problem called SINK-OF-VERIFIABLE-LINE (SVL) [AKV04, BPR15]. An instance
of SVL consists of a successor circuit S and a verifier circuit V . The successor S implicitly defines
a step-by-step (or, incremental) computation st+1 := S(st) starting from a canonical source s0 and
ending at a sink sT , for some superpolynomial T :

s0
S−→ . . .

S−→ sT

The verifier V(s∗, t) is promised to accept any s∗ as the t-th state if and only if it is correct, namely
s∗ = S(t)(s0). The goal is to find the sink sT = S(T)(s0), given (S,V).

It is not hard to see that solving SVL can be reduced to solving a local search problem in PLS
[HY16], and thus it is sufficient to prove the hardness of SVL.

Valiant’s Incrementally-Verifiable Computation and Uniqueness. A natural way to approach
SVL hardness is Valiant’s notion of incrementally-verifiable computation (IVC) [Val08]. Accord-
ing to this notion, we can take a Turing machine computation given by a machine M and input x
with a configuration graph:

M0
x −→ . . . −→MT

x ,

and associate with each intermediate configuration M t
x a short proof πt, attesting to its correctness.

The proofs are incremental — the next proof πt+1 can be efficiently computed from πt.
At first glance, this general notion seems to directly yield SVL hardness. Indeed, we can take

any polynomial-space machine M solving some hard search problem R on input x and consider
the corresponding incrementally-verifiable computation:

(M0
x , π0)

S−→ . . .
S−→ (MT

x , πT) .

Here the successor simply advances the computation of M and incrementally computes the corre-
sponding proofs. The SVL verifier is derived directly from the IVC verifier.

The reason that the above simple transformation does not work is that the IVC proofs may not
be unique. In particular, a correct intermediate configuration may have many different accepting
proofs attesting to its correctness, whereas SVL requires that only a single string can be accepted
as the t-th node (for any t). Choudhuri et al. [CHK+19b] show that the SVL uniqueness re-
quirement can be somewhat relaxed and traded with computational uniqueness meaning that it is
computationally hard to find more than a single proof for any given statement (even if such proofs
exist).

So far, however, incrementally-verifiable computation with (even computational) uniqueness
has not been achieved under standard assumptions. This is, in fact, the case even for specific
(hard) computations, let alone for general ones.

3

2.2 Incremental Completeness
We show that the hardness of PLS does not require SVL hardness nor IVC with unique proof.
Rather, we observe that IVC with a conceptually simple incremental completeness property suf-
fices. Then we derive such IVC for polynomially-long computations from the delegation scheme
construction of Kalai, Paneth, Yang [KPY19] and combine it with ETH to obtain PLS hardness.
We next explain the notion of incremental completeness and why it suffices. In the next subsection,
we explain how it is obtained.

Incremental-Complete IVC and PLS Hardness. An incremental complete IVC has the prop-
erty that given any accepting proof π for an intermediate state M t

x of the computation, running
the prover results in an accepting proof π′ for the next state M t+1

x . This differs from Valiant’s
original formulation where completeness is only guaranteed for the prescribed proof generated by
iteratively applying the prover t times.

Let us now describe how to construct hard LOCAL-SEARCH instances from incrementally-
complete IVC. Once again, we start from some hard computation given by a polynomial-space
machine M and instance x. Rather than considering a verifiable computation chain, we shall con-
sider a DAG with nodes of the form (t, C, π), where t is a timestamp, C is an alleged configuration
of M(x) at time t, and π is an IVC proof. We call such a node valid if the corresponding proof is
accepting. For simplicity, we assume for now that the IVC is also perfectly sound, meaning that
valid nodes are always such that C is the correct configurationM t

x. Note that for every time t, there
may very well be multiple corresponding valid nodes. We can visualize this as multiple ”parallel
universes”, which the verifiable computation lives in simultaneously. Incremental completeness
says that in every such universe, as time moves forward, the computation may proceed. In particu-
lar, by induction, we always reach a sink of the form (T,MT

x , π) that contains the last state of the
computation.

This naturally gives an LS instance. Valid nodes (t,M t
x, π) are given value t and are always

succeeded by another valid node (t + 1,M t+1
x , π′) derived by advancing the computation and in-

crementing the IVC proof. Invalid nodes are given value −1 and are succeeded by some canonical
source in the DAG (0,M0

x , ε), where ε is the empty proof, which by convention is accepted as a
proof forM0

x . The local maximums of the corresponding instance are exactly the sinks of the DAG,
which by incremental completeness are of the form (T,MT

x , π), containing the last state. There-
fore, finding a local-maximum reduce to solving the underlying hard computational task given by
the computation M(x).

Our actual construction does not assume perfect soundness of the IVC, but only computational
soundness. There may exist so called fooling nodes (t, C∗, π∗) that pass verification although
C∗ is not the correct configuration M t

x. These nodes may be local maximums and finding them
may not reduce to solving the underlying problem. Nonetheless, finding fooling local maximum
corresponds to breaking the soundness of the IVC, which is computationally infeasible.

2.3 Obtaining IVC with Incremental Completeness
Valiant [Val08] put forth a general approach toward constructing IVC by recursive proof compo-
sition. Oversimplifying, the basic idea is that to move from the t-th configuration C = M t

x and
proof πt to the next configuration C ′ = M t+1

x and proof πt+1, the new proof πt+1 asserts that:

4

1. There exists a proof π that passes IVC verification as a valid proof that C = M t
x (this part is

recursive in the sense that it relies on IVC verification for smaller times stamps),

2. C ′ is obtained from C by applying Mx’s transition function.

For this to be feasible, each “single-step proof” is computed using a succinct non-interactive NP
proof system where verification time (and in particular, the size of the proof) is fixed and is not
affected by the complexity of the NP relation. We observe that any IVC construction following the
above blueprint is incrementally complete by definition as long as the succinct NP proof system
used has perfect completeness.

Succinct Proof Systems. Succinct proofs for NP with unconditional soundness are unlikely to
exist [GH98, GVW02]. Accordingly, Valiant suggested to instantiate the blueprint using compu-
tationally sound succinct arguments. This brings about some extra complications in following the
blueprint. For once, proving that a previous proof exists is meaningless in the case of computa-
tional soundness. Rather we need the guarantee that a proof exists and can be efficiently found.
Such systems are known as succinct non-interactive arguments of knowledge (SNARKs) and admit
an efficient knowledge extractor that can efficiently extract a witness from a convincing prover.

Using such SNARKs enables the construction of IVC for arbitrary poly-time computations (or
superpolynomial ones, if the SNARK is superpolynomially secure) [Val08, BCCT13], and the cor-
responding constructions are incrementally complete by the fact that the underlying SNARKs are
perfectly complete. (The actual constructions are somewhat different from the described blueprint;
in particular, to deal with issues such as blowup in knowledge extraction complexity, they aggre-
gate proofs in a tree-like fashion rather than a chain, in order to reduce the depth of the recursion.
Incremental completeness holds just the same.)

Following the above, we can obtain an incrementally-complete IVC, and thus PLS hardness
from SNARKs. However, the existence of SNARKs is a strong non-falsifiable assumption. It is only
known under non-standard knowledge assumptions and its construction from standard assumptions
is subject to barriers [GW11, BCPR16].

Incrementally-Complete IVC from Weaker Succinct Arguments. In a recent work, Kalai,
Paneth, and Yang [KPY19] considered a relaxation of SNARKs called quasi-arguments that in-
stead of standard knowledge extraction only requires a certain weaker no-signaling extraction
requirement. Unlike SNARKs, such arguments are not subject to any known lower bounds, and
were in fact constructed from the learning with errors assumption in their privately-verifiable form
[KRR14, PR17, BHK17, BKK+18] and recently also in their publicly-verifiable form based on the
so called KPY assumption in bilinear groups [KPY19].

Furthermore, Kalai, Paneth, and Yang show that similarly to SNARKs such quasi-arguments
can, in fact, be recursively composed toward verifying a long computation, provided that the com-
putation is deterministic. Their explicit goal was not to construct IVC but rather to bootstrap
quasi-arguments with a long common reference string (CRS) to succinct arguments with a short
CRS. However, this is done by implicitly constructing an IVC (this connection is also apparent in
previous constructions of SNARKs with a short CRS from ones with a long CRS [BCCT13]). The
resulting IVC, like other IVCs based on recursive composition, is incrementally complete.

5

The Class of Supported Computations and the Reliance on ETH. In its native form, the
IVC derived from the KPY construction supports computations of arbitrary polynomial length
T = λO(1) in the security parameter λ, with fixed prover-verifier running time (say, λ). However,
as explained earlier, to get PLS hardness, we would like to apply the IVC for a hard (and thus
superpolynomial) computation.

To circumvent this difficulty, we employ a fine-grained reduction. The idea is to construct
instances which are tailor-made to be hard for LS algorithms of a specific polynomial running
time. Fix any constant c > 0 and nc-time algorithm A that supposedly solve LS (here n is the size
of the LS instance (S,F)). Consider a search problem R and a Turing machine M that solves it in
polynomial time T (λ), while no randomized algorithm can solve it in time T δ for constant δ < 1.
If we can bound the blowup of the IVC reduction by at most T δ/c, we can use A to construct a
randomized adversary A′ that solves R in time T δ and get a contradiction.

The blowup of the IVC reduction is polynomially related to (a) the input size, (b) the space
used by M , and (c) the efficiency of the IVC scheme. Accordingly, we require a computation
where there is an arbitrarily large (polynomial) gap between the space used and the hardness of
the underlying problem. To this end, we use the randomized ETH assumption. By appropriately
choosing the size of the underlying SAT instance, we get computations that can be solved using
fixed-space and some polynomial time via brute-force but not in much faster polynomial time,
even by randomized algorithms. To bound the blowup due to the IVC efficiency, we follow the
efficiency analysis by [KPY19] and adapt it to the incremental setting. (In the body, we show the
above in the non-uniform setting: assuming non-uniform ETH and using standard non-uniform
derandomization techniques while taking special care to bound the associated blowup.)

We note that the above only gives worst-case hardness. That is, we do not show a single
distribution that is hard for all polynomial-time algorithms. Assuming slight super-polynomial
security of the KPY assumption and average-case randomized ETH, we can get average-case PLS
hardness by essentially the same reduction (in fact, we can slightly weaken average-case ETH to a
slightly subexponential time hypothesis).

2.4 Unconditional Hardness in the Random Oracle Model
Our second result, in the random model, is based on recent advancements in proofs of sequential
work (PoSW) [MMV13]. Roughly speaking, in a PoSW, the prover is given a statement χ and a
time parameter T , and can generate a corresponding proof π by making T sequential steps. The
soundness requirement is that provers that make� T sequential steps, will fail to generate a valid
proof for χ, except with negligible probability (namely, proof computation is not parallelizable).
The construction we present relies on the PoSW of Cohen and Pietrzak [CP18] and its extension
by Döttling, Lai, and Malavolta [DLM19] to so called incremental proof of sequential work; both
are proven sound in the random oracle model. We now move to recalling how these systems work,
and explain how we derive from them hard PLS instances relative to random oracles.

The CP PoSW. To construct a PoSW, Cohen and Pietrzak [CP18] suggest an elegant tree label-
ing procedure that is inherently sequential. They consider a binary tree whose edges are directed
from the leaves toward the root. In addition, they add directed edges from every node ` having
a sibling r on the right, to all the leaves in the tree rooted at r. We call this the CP graph (see

6

Figure 1 in Section 6 for an illustration). The nodes of the CP graph are then given random labels
as follows: the label of any given node is obtained by applying a random oracle Hχ = H(χ, ·) to
the labels of its incoming nodes (the oracle is seeded with χ to guarantee an independent oracle for
every statement). Intuitively, the added edges enforce that in order to compute the labels of some
subtree rooted at some r, it is first necessary to compute the labels of its left sibling `; in this sense,
labeling must be done sequentially.

To turn this into an actual proof of sequential work π for χ, the prover publishes the label of
the root of the entire tree. The verifier then responds with random challenge leaves to which the
prover answers by providing all the labels in the corresponding paths toward the root along with
the labels of the siblings along the path, as in standard Merkle tree authentication (indeed here the
tree serves both the purpose of of a commitment and of enforcing the sequential nature). Finally,
they make the proof non interactive by using the Fiat-Shamir transform. Cohen and Pietrzak prove
that to successfully compute an accepting proof, a prover must sequentially call the random oracle
≈ T times, where T is the size of the tree.

Incremental PoSW and the DLM Construction. Cohen and Piertzak further show that the stan-
dard streaming algorithm for Merkle commitments [Mer79], can also be applied to their labeling
procedure. That is, one can keep track of a small amount of nodes (about log T), each a root of
some tree in a gradually growing forest, and when needed, merging two nodes on the same level.
In other words, the CP labeling can be done by an incremental computation with small space.

One thing that is of course missing toward getting PLS hardness is verifiability of the corre-
sponding intermediate states. One Naı̈ve idea toward such local verifiability is to apply the CP
proof strategy for each subtree in the incremetal labeling process. Indeed, each such subtree is,
in fact, CP labeled on its own, so we can use Fiat-Shamir to compute random challenges for that
particular subtree. While this is a step in the right direction it is still not enough for the goal of PLS
hardness, since the intermediate proofs themselves are not computed incrementally — computing
each local proof may take time proportional the size of the corresponding subtree.

Döttling, Lai, and Malavolta [DLM19] suggested a neat idea to make the CP proofs incremen-
tally computable.2 Roughly speaking rather than sampling fresh challenges for each subtree, they
suggested to derive them at random from the previously computed challenges of this subtree. In
a bit more detail, whenever merging two subtrees rooted at ` and r into a new (taller) subtree, we
assume by induction that each of the two already has a set of corresponding challenges S` and Sr,
where say the size of each one is some parameter k. Then, for the new subtree, rooted at their
parent v, we choose a new set Sv of k challenges by choosing k challenges at random from the 2k
challenges in S`∪Sr (this is again done non-interactive using Fiat-Shamir). Each of the challenges
is again just a Merkle authentication path, which can be easily augmented to an authentication path
for v. They prove that this choice of challenges guarantees, for every intermediate state, essentially
the same soundness as the original CP construction guarantees for the final state.

Incremental Completeness and PLS Hardness. What we get from the DLM incremental PoSW
(in the random oracle) is somewhat analogous to an IVC system in the standard model. However,
while in the standard model we applied general IVC over some long (hard) computation, here

2They were motivated by blockhains and aimed to make PoSW a process that can be advanced in a distributed
fashion by different parties.

7

there is no such underlying hardness. Rather, the difficulty is only in computing the accepting
proofs themselves. Similarly to our standard model approach, here too we can address the concept
of incremental completeness. Indeed, we observe that merging two accepting proofs in the DLM
construction always yields an accepting proof. From here incremental completeness follows. For-
mally, we need to slightly augment the DLM construction to enforce consistency among different
subtrees in a forest to guarantee such incremental completeness (see Section 6 for the details).

Choosing the parameters appropriately, yields problems in PLS relative to a random oracle
which are exponentially hard-on-average. This translates to sub-exponential hardness of the canon-
ical LS probalem (due to polynomial blowup of the reduction). Also, by choosing the size of
the tree to be a polynomial of our choice, we get search problems in PLS which are moderately
hard but ”depth-robust” in the sense that they cannot be solved much faster by parallel algorithms
[EFKP19]. This follows from the sequential hardness of DLM.

2.5 More Related Work on Total Search Problems
The class TFNP was introduced by Megiddo and Papadimitriou [MP91]. They observed that
TFNP is unlikely to include NP hard problems as this would imply that NP = coNP. Furthermore,
it is strongly believed that TFNP does not have complete problems (see for instance discussion in
[GP18]). Toward understanding of the complexity of total search problems, Papadimitriou [Pap94]
introduced several “syntactic” subclasses of TFNP that cluster problems according to the mathe-
matical argument used to establish their totality. Recently, Goldberg and Papadimitriou [GP18]
presented a subclass called provable TFNP that contains previously defined subclasses (and can
be seen as generalizing them) and admits complete problems.

A long line of works have investigated the complexity of TFNP and its subclasses, searching
for efficient algorithms on one hand and evidence of hardness on the other. As explained earlier
in the intro, cryptography is a natural place to look for such evidence. Indeed, basing the hardness
of TFNP or its subclasses, on standard cryptographic assumptions, has been successful in several
cases. For example, Papadimitriou [Pap94] observed that PPP is hard assuming one-way permu-
tations or collision-resistant hash functions, and Jeřábek [Jer12], building on the work of Buresh-
Oppenheim [BO06], demonstrated the hardness of PPA assuming factoring is hard. Hubáček,
Naor and Yogev [HNY17] showed TFNP-hardness assuming any average-case hard NP language
exists (in particular one-way functions) and derandomization assumptions. Komargodski, Naor,
and Yogev [KNY17b] showed that hardness of the class RAMSEY is equivalent to the existence of
multi-collision resistant hash functions.

As discussed earlier, demonstrating hardness for PPAD and PLS has been more challenging
and so far only achieved under non-standard cryptographic assumptions. Trying to explain our
failure so far to base such hardness on standard cryptographic primitives, Rosen, Segev and Shahaf
[RSS17] show that TFNP hard instances constructed in a black box way from random oracles (or
some variants thereof) must have a nearly exponential number of solutions (which is indeed the
case in our result in the random oracle model).

Finally, we note that in the smooth complexity setting, several PLS complete problems, with
natural noise distributions, have been shown to be solvable in smooth polynomial-time. This in-
clude finding locally optimal Max-Cut [ABPW16] and finding pure Nash equilibrium in network
coordination games [BKM18]. These algorithms suggest an explanation of why local search may
be empirically easy, while hard instances exist under reasonable assumptions and can be sampled.

8

3 Preliminaries
Notation. Throughout, λ will denote security parameters. When the input size is not the security
parameter, we denote it by n. For a ≤ b integers we denote by [a, b] the set {a, ..., b} and by [a] the
set [1, a].

3.1 Standard Computational Conventions
We recall standard computational conventions and definitions.

• By algorithm we mean a uniform Turing machine. An algorithm is efficient if it is polynomial-
time.

• A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that Cλ is of
size poly(λ) and has poly(λ) input and outputs wires.

• We follow the standard practice of modeling efficient adversaries A as polynomial-size cir-
cuit families A = (Aλ)λ∈N. Such an adversary is called an efficient adversary.

• A function f : N → R is negligible if for every c > 0, there exists N ∈ N such that
f(n) < n−c for all n > N . We will denote negligible functions by negl.

• Turing machines have separate input, work and output tape. A configuration of a Turing
machine doesn’t contain the content of the input tape.

3.2 Search Problems
We recall definitions of search problems and the class PLS.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Denote by R(x, y) the indicator function for (x, y) ∈ R.
Denote by Rx = {y ∈ {0, 1}∗ | R(x, y) = 1} the set of witnesses for x.

Definition 3.1 (Search Problem). A relation R is a search problem. A Turing machine M is said
to solve R, if given any input x (a) if Rx 6= ∅, it returns y such that R(x, y) = 1, (b) otherwise,
M declares no such y exists. The set of all search problems that can be solved by polynomial-time
Turing machines is denoted FP. The set of search problems that can be solved by polynomial-size
circuits is called FP/Poly.

Definition 3.2 (NP Search Problem). An NP search problem R is a search problem with the ad-
ditional properties: (i) R(x, y) is computed in time poly(|x|). (ii) For every x we have Rx ⊆
{0, 1}poly(|x|)) for a fixed polynomial. The set of all NP search problems is called functional NP
and is denoted FNP.

Definition 3.3 (Total NP Search Problem). A total NP search problem is described via a pair
(I, R), where I ⊆ {0, 1}∗ is an efficiently recognizable set of instances and R is an NP search
problem with the guarantee that Rx is non-empty for every instance x ∈ I . The set of all total NP
search problems is called total FNP and is denoted TFNP.

In an equivalent definition for TFNP we use, the search problem is given by R, an NP search
problem and the set of instances is implicitly defined to be IR = {x | Rx 6= ∅} such that it is
efficiently recognizable. We abuse notation and write R ∈ TFNP to denote (R, IR) ∈ TFNP.

9

3.2.1 Polynomial Local Search

The complexity class polynomial local search (PLS) consists of all total NP search problems
polynomial-time reducible to the LOCAL-SEARCH problem [JPY88, HY16] we denote by LS.

Definition 3.4 (LOCAL-SEARCH). The search problem LS is the following: given two polynomial-
size circuits S : {0, 1}n → {0, 1}n and F : {0, 1}n → N, find a string v ∈ {0, 1}n such that
F(S(v)) ≤ F(v).

We refer to S as the successor circuit and to F as the value circuit. Intuitively, the circuits
S and F could be seen as representing an implicit DAG over {0, 1}n. In this graph, a node v is
connected to u = S(v) if and only if F(u) > F(w). This is a DAG since F induce a topological
ordering. Notice also that every sink corresponds to a local maximum with respect to F . With this
perspective, the totality of LS follows from the fact every finite DAG has a sink.

Oracle aided PLS. We denote by CO = {COλ } an oracle aided circuit family. That is a circuit
family with oracle gates to Oλ : {0, 1}r(λ) → {0, 1}`(λ). The complexity class PLSO relative to an
oracle O, is naturally defined as all TFNPO search problem polynomial-time reducible to LSO.

Definition 3.5 (Oracle Aided LOCAL-SEARCH). The search problem LSO is the following: given
two polynomial-size, oracle aided, circuits SO : {0, 1}n → {0, 1}n and FO : {0, 1}n → N, find a
string v ∈ {0, 1}n such that FO(SO(v)) ≤ FO(v).

3.3 Average-Case Hardness of Search Problem
We recall the definition of average-case hard FNP search problem.

Definition 3.6 (Hard on average search problem). Let R be an FNP search problem. R is hard-
on-average if there exists an efficient sampler D with the following requirements:

1. For every λ ∈ N:
Pr
[
Rx 6= ∅

∣∣ x← D(1λ)
]

= 1 .

2. For every efficient adversary A, there exists a negligible function µ, such that for every
λ ∈ N:

Pr

[
R(x, y) = 1

∣∣∣∣ x← D(1λ)
y ← A(x)

]
≤ µ(λ) .

4 PLS Hardness from IVC
In this section, we give a computational reduction from search problems having an IVC with
incremental completeness to LS. This, in turn, establishes that any (worst/average-case) hard
search problem, having an IVC with incremental completeness, implies the hardness of PLS (in
the worst/average-case, respectively). We start by formally defining IVC with incremental com-
pleteness.

10

4.1 IVC with Incremental Completeness
Conventions. Let M be a Turing machine with T = T (λ) and S = S(λ) bounds on its run time
and space, respectively, for input of length λ. Throughout, we assume w.l.o.g thatM always makes
exactly T steps and the size of a configuration is exactly S. Let x ∈ {0, 1}λ be an input to M , we
denote by M t

x ∈ {0, 1}S the configuration in the t step of the computation M(x). We denote by
Mx : {0, 1}S → {0, 1}S the transition circuit between configurations.

Definition 4.1 (IVC with Incremental Completeness). Let M be a Turing machine with T = T (λ)
and S = S(λ) bounds on its run time and space, respectively, for input of length λ.

An Incremental Verifiable Computation scheme (IVC) for M , with incremental completeness,
consists of three algorithms IVC = (IVC.G, IVC.P, IVC.V):

• IVC.G(x) is a randomized algorithm that given x ∈ {0, 1}λ outputs public parameters pp.

• IVC.P(pp, t, C, π) is a deterministic algorithm that given public parameters pp, a natural
number t, an arbitrary configuration C and an arbitrary proof π, outputs a proof π′.

• IVC.V(pp, t, C, π) is a deterministic algorithm that given public parameters pp, a natural
number t, an arbitrary configuration C and an arbitrary proof π, outputs ACC or REJ.

We make the following requirements:

1. Incremental Completeness: For every security parameter λ ∈ N:

(a) For every input x ∈ {0, 1}λ, time t ∈ [0, T − 1] and candidate proof π ∈ {0, 1}∗:

Pr

[
IVC.V(pp, t,M t

x, π) = ACC =⇒
IVC.V(pp, t+ 1,M t+1

x , π′) = ACC

∣∣∣∣ pp← IVC.G(x)
π′ = IVC.P(pp, t,M t

x, π)

]
= 1 ,

where M t
x,M

t+1
x are the configurations in the t and t + 1 steps of the computation of

M(x), respectively.

(b) For every input x ∈ {0, 1}λ:

Pr
[
IVC.V(pp, 0,M0

x , ε) = ACC
∣∣ pp← IVC.G(x)

]
= 1 ,

where M0
x is the first configuration of the computation of M(x), and ε is the empty

proof.

2. Soundness: For every efficient adversary A, there exists a negligible function µ such that
for every λ ∈ N and x ∈ {0, 1}λ:

Pr

[
C∗ 6= M t

x

IVC.V(pp, t, C∗, π∗) = ACC

∣∣∣∣ pp← IVC.G(x)
(t, C∗, π∗)← A(x, pp)

]
≤ µ(λ) ,

where M t
x is the configuration in the t step of the computation of M(x).

3. Efficiency: The efficiency of IVC, denoted by TIVC(λ), is the maximal worst-case run-time
among IVC.G, IVC.P, IVC.V for input having security parameter λ. We require TIVC(λ) ≤
p(λ) for a fixed polynomial p.

11

4.2 Computationally Sound Karp Reduction
As discussed in the introduction, since we use IVC with computational soundness, the reduction
we give is also computationally sound. In what follows, we define the notion of computationally
sound Karp reduction.

For R,R′ ∈ FNP, a computationally sound reduction from R to R′ consists of a pair of efficient
algorithms (X ,W). Where X (x) is a randomized algorithm that given an instance x ofR, samples
an instance x′ ← X (x) of R′. W(w′) is a deterministic algorithm that translates a witness w′ for
x′, to a candidate witness w of x. We require that its infeasible to find w′, such that w =W(w′) is
not a witness for x in R.

Definition 4.2 (Computational Karp Reduction). For R,R′ ∈ FNP, a computational Karp reduc-
tion from R to R′ consists of a pair (X ,W), where X (x) is a randomized efficient algorithm and
W(w) is a deterministic efficient algorithm. We make the following requirement:

• Computational Soundness: For every efficient adversary A, there exists a negligible func-
tion µ such that for every λ ∈ N and x ∈ {0, 1}λ for which Rx is non-empty:

Pr

 w′ ∈ R′x′
w 6∈ Rx

∣∣∣∣∣∣
x′ ← X (x)
w′ ← A(x′)
w =W(w′)

 ≤ µ(λ) ,

where Rx and R′x′ are the set of witnesses for x in R and x′ in R′ respectively.

Definition 4.3 (Reduction Efficiency). The efficiency of a computational Karp reduction (X ,W),
denoted TRed(λ), is the maximum of TX (λ),TW(λ) where:

1. TX (λ) is the worst-case run-time of X for input x ∈ {0, 1}λ.

2. TW(λ) is the worst-case run-time ofW for input w′ ∈

w′
∣∣∣∣∣∣
x ∈ {0, 1}λ
x′ ∈ Supp(X (x))
w′ ∈ Rx′

.

Note that TRed(λ) is a bound on instance size sampled using X .

4.3 The Hardness Reduction
Using the notion of computational Karp reduction, our hardness result is formalized in the follow-
ing theorem.

Theorem 4.1 (IVC Reduction). LetR ∈ FNP, solvable by a polynomial-space Turing machineM .
If there exists an IVC scheme with incremental completeness for M , there exists a computationally
sound Karp reduction (X ,W) from R to LS. The efficiency of the reduction is

TRed = poly(TIVC, S, λ, |M |) ,

where S(λ) is a bound onM space and TIVC(λ) is the efficiency of the IVC. The polynomial doesn’t
depend on the IVC scheme, M nor R.

12

Remark 4.1 (Efficiency Independent of T). Jumping ahead, the fact that TRed does not depend
directly on the time of the computation T , plays an important role in the fine-grained reduction for
polynomial-time computations presented in Section 5.

Next, we describe the reduction and in the following section we analyze its security.

4.3.1 The Reduction

Let IVC = (IVC.G, IVC.P, IVC.V) be an incremental verifiable computation scheme with incremen-
tal completeness for M . Let S = S(λ) be the polynomial bound on space of M when executed on
x ∈ {0, 1}λ, guaranteed by the statement. Recall that we denote by M t

x the configuration in the t
step of the computation of M(x). We assume w.l.o.g that the configuration size is exactly S. Let
T = T (λ) = 2S(λ) ≤ 2poly(λ) be an upper bound on the running time of M . We further assume
w.l.o.g that M always makes exactly T steps. With the above notation, the configuration graph of
M when executing x is:

M0
x −→ · · · −→MT

x .

In the following, we describe the construction of X (x) for an input x ∈ {0, 1}λ. Recall that we
denote by Mx : {0, 1}S → {0, 1}S the transition circuit of M(x), taking a configuration as input
and returning the next configuration as output.

Instance translation: The algorithm X (x) begins by sampling pp ← IVC.G(x). Given pp, we
apply a deterministic procedure I to generate an LS instance (S,F) = I(x, pp). The constructed
LS instance corresponds to a graph on vertices of a polynomial length ` = `(λ) ≥ λ. Each vertex
is of the form (t, C, π) ∈ {0, 1}` where t is parsed as an integer in [0, T], C as a configuration of
length S and π as a proof for the IVC padded to length ` if needed. We describe the successor S
and value circuits F formally in the following.

Remark 4.2. We assume w.l.o.g that Mx always outputs something. If the transition function of
M fails to generate the next configuration given C, it will simply output M0

x , the initial state.

Remark 4.3. We assume w.l.o.g that F outputs values in [−1, T].

In what follows, v0 := (0,M0
x , ε) where M0

x is the initial state of M(x) and ε is the empty proof.

Successor Circuit S(t, C, π)

Hardwired: The public parameters pp, and the input x.
Algorithm:
1. If IVC.V(pp, t, C, π) = REJ, output v0.

2. If t = T , output (t, C, π).

3. Compute C ′ = Mx(C), π′ = IVC.P(pp, t, C, π). Output (t+ 1, C ′, π′).

13

Value Circuit F(t, C, π)

Hardwired: The public parameters pp.
Algorithm:
1. If IVC.V(pp, t, C, π) = REJ, output −1.

2. Else, output t.

Witness translation: The algorithmW(t, C, π) simply returns the content of the output tape in
the configuration C.

Efficiency. The successor circuit Mx is of size poly(S, λ, |M |). The computations related to IVC
are of size poly(TIVC) by Turing machine simulation. All other computations are polynomial in
the input length `. We have that ` = poly(S,TIVC). It follows that TRed = poly(TIVC, S, λ, |M |).
All the above polynomials don’t depend on M nor IVC.

By the factM is poly-space and the efficiency requirement of IVC, that is TIVC ≤ poly(λ), both
X ,W are polynomial-time algorithms, as required. In turn, this further implies that S,F are of
size poly(λ). Since the input length ` is at least λ, we have that S,F are polynomial-size circuits.

4.4 Security Analysis
Fix λ ∈ N and x ∈ {0, 1}λ. Let (S,F) be an instance in the support of X (x) and let pp be the
public parameters hardwired in (S,F). We prove that all local maximums of (S,F) are one of
two types:

• Honest: Nodes (T,MT
x , π) where IVC.V(pp, T,MT

x , π) = ACC.

• Fooling: Nodes (t, C∗, π∗) for which C∗ 6= M t
x and IVC.V(pp, t, C∗, π∗) = ACC.

The proof of the following claim use the incremental completeness of IVC.

Claim 4.1. All local maximums of (S,F) are honest-type or fooling-type.

Proof of claim: Let v = (t, C, π) be a local maximum of (S,F), that is F(S(v)) ≤ F(v). We
have that IVC.V(pp, t, C, π) = ACC, as otherwise it is given value−1 and is connected to v0 which
is of value 0. If C 6= M t

x then v is a fooling-type local maximum and if C = M t
x and t = T then v

is an honest-type local maximum.
We are left with the case C = M t

x and t < T . By construction, S(v) = (t + 1,M t+1
x , π′) for

π′ = IVC.P(pp, t,M t
x, π). By incremental completeness, IVC.V(pp, t + 1,M t+1

x , π′) = ACC and
thus F(S(v)) = t+1 while F(v) = t. Therefore it is not a local maximum, proving the claim.

Note that only honest-type local maximums translate byW to a valid witness for R, the under-
lying search problem. While there exist fooling-type local maximums, by the security of the IVC,
finding them efficiently is infeasible. We proceed to prove Theorem 4.1.

14

Proof of Theorem 4.1. Let A be an efficient adversary that attempts breaking the computational
soundness of the reduction (X ,W). Let λ ∈ N and x ∈ {0, 1}λ be such that Rx is non-empty. We
denote by ε = ε(x) the probability of success of A. That is

ε(x) := Pr

 F(S(w′)) ≤ F(w′)
w 6∈ Rx

∣∣∣∣∣∣
(S,F)← X (x)
w′ ← A(S,F)
w =W(w′)

 .

It follows by Claim 4.1 that all witnesses w′ for (S,F) such thatW(w′) = w 6∈ Rx are fooling-
type local maximums. Indeed, for every honest-type local maximum, W outputs the content of the
output tape of MT

x . As M solves R and Rx is non-empty, we have that the output tape of MT
x , the

last configuration, consists of w such that w ∈ Rx.
Consider A′ = {A′λ}λ∈N that attempts breaking the soundness of the IVC defined as follows.

Recall I(x, pp) is the deterministic procedure used by X to construct the circuits S and F .

A′(x, pp):

1. Compute (S,F) = I(x, pp).

2. Simulate w′ ← A(S,F).

3. Output w′ = (t, C, π).

Note that, every fooling-type local maximum corresponds to (t, C∗, π∗) breaking the IVC scheme.
Further notice that the distribution (S,F) = I(x, pp) for pp ← IVC.G(x) is, by definition, the
distribution of X (x). Therefore, the success probability of A′(x, pp) is at least ε(x). Using the
soundness of IVC, there exists a negligible function µ such that for every λ ∈ N and x ∈ {0, 1}λ
such that Rx is non-empty we have the following:

ε(x) ≤ Pr

[
C∗ 6= M t

x

IVC.V(pp, t, C∗, π∗) = ACC

∣∣∣∣ pp← IVC.G(x)
(t, C∗, π∗)← A′(x, pp)

]
≤ µ(λ) .

Establishing the computational soundness of the reduction. The efficiency part of the theorem has
been argued in Section 4.3.

4.5 Applying the Reduction
In this section we present results that establish that a computational Karp reduction from an
underlying hard (worst-case/average-case) problem to LS implies the hardness of LS (in worst-
case/average-case respectively). The proofs of the following propositions are given in appendix B.

4.5.1 Worst-Case Hardness

The existence of a computational Karp reduction from R to LS and an efficient solver for LS
implies, in a straightforward way, the existence of an efficient randomized solver for R, successful
with high probability. Proposition 4.1 extends this and show the existence of a deterministic solver
for R. This is by standard non-uniform derandomization techniques. We use n to denote the size
of LS instances and λ the size of R instances. The proof is given in appendix B.1

15

Proposition 4.1 (Worst-Case Hardness). LetR be an FNP search problem having a computational
Karp reduction to LS. Assume there exists a adversary A = {An}n∈N of polynomial-size s(n)
solving LS in the worst-case. Then there exists an adversary A′ = {Aλ}λ∈N solving R in the
worst-case. The size of A′ is

size(A′) = poly(s(TRed),TR, λ) ,

where TRed(λ) is the efficiency of the reduction and TR(λ) is the efficiency of the NP verification
R(x, y).

4.5.2 Average-Case Hardness

Proposition 4.2 (Average-Case Hardness). If there exists a hard-on-average FNP problem R, with
a computationally sound Karp reduction from R to LS, then LS is hard-on-average.

Using the computational Karp reduction constructed in Section 4.3, we get the following corollary:

Corollary 4.1 (IVC Average-Case Hardness). Let R be a hard-on-average FNP problem. If there
exists an IVC scheme with incremental completeness for a polynomial-space Turing machine M
solving R, then LS is hard-on-average.

5 Instantiation under the KPY Assumption and ETH
In Section 4 we were able to prove that an IVC scheme with incremental completeness for some
super-polynomially hard computation, suffices to show that LS is hard. It is left to instantiate
the above under the KPY assumption and construct an IVC scheme for a super-polynomially hard
computation. Unfortunately, under the KPY assumption we are able to construct IVC schemes only
for polynomial computations. By a more careful analysis and by using non-uniform exponential
time hypothesis, in this section we show the worst-case hardness of LS.

Remark 5.1. For ease of notation, in the following section we assume w.l.o.g λ > 1.

5.1 IVC From KPY Assumption
The following theorem is proven in appendix A.

Remark 5.2 (Dependence of Constants). In the following, we use the constant c instead of big O
notation in order to emphasize that the constant is independent of α.

Theorem A.1 (IVC from KPY Assumption). Fix any constants c, ε > 0. Let α be a large enough
constant and let M be a Turing machine of run-time T (λ) ≤ cλα, configuration size S(λ) ≤ cλ
and description size |M | ≤ c log2 α. Under the KPY assumption, there exists an IVC scheme with
incremental completeness for M having efficiency TIVC = λεα.

Remark 5.3 (Non-Uniform Reduction). The security reduction of the IVC scheme given in The-
orem A.1 is non-uniform and therefore we require that the IVC scheme, and accordingly the KPY
assumption, to hold against non-uniform polynomial-time attackers. This is to be expected when
dealing with worst-case hardness.

16

5.2 Fixed Space Polynomial Hardness via ETH
In this section, assuming the non-uniform ETH assumption, we show the existence of arbitrarily
polynomially hard computations for circuits that can be solved by Turing machines using a fixed
amount of space and slightly larger polynomial time.

Assumption 5.1 (Non-Uniform ETH). There exists a constant δ > 0 such that no circuit family of
size O(2δn) solves 3SAT, where n is the length of the input 3CNF formula.

Proposition 5.1 (Polynomial Hardness). Under the non-uniform ETH assumption, there exists
constants c, δ > 0 such that for every constant α > 1 there exists a search problem Rα ∈ FNP
satisfying the following:

• Algorithm: There exists a Turing machine Mα of run-time T (λ) ≤ cλα, configuration size
S(λ) ≤ cλ and description size |Mα| ≤ c logα solving Rα.

• Verifer: There exists an NP verifier for Rα of run-time TRα ≤ cλ.

• Lower Bound: No circuit family of size O(λδα) can solve Rα.

Proof. Consider
Rα :=

{
(x02|x|/α−|x|, w)

∣∣∣ (x,w) ∈ 3SAT
}

.

Algorithm: The naive brute force algorithm for Rα satisfy the requirement. In the following α
is not suppressed by O notation. For x ∈ {0, 1}n and input of the form x02n/α−n, brute force takes
O(2n) time while the whole input is of size λ = 2n/α. The description size is O(logα) and the
memory used is O(λ).

Verifier: Let x be a 3SAT instance of size n. A witness w for 3SAT is an assignment of size
O(n). Verifing an assignment satisfies x can be done time O(n). A verifier of run time cλ for Rα

follows.

Lower Bound: Let δ > 0 be the constant assumed to exist by non-uniform ETH. Every cir-
cuit family of size O(λδα) solving Rα can be turned to a circuit of size O(2δα) solving 3SAT.
Contradicting non-uniform ETH.

5.3 Putting Things Together
In this section, we put things together to prove that under non-uniform ETH and the KPY assump-
tion we have PLS 6⊆ FP/Poly.

Theorem 5.1 (PLS Hardness). Assuming non-uniform ETH and the KPY assumption we have
PLS 6⊆ FP/Poly.

Toward proving the theorem, we start by bounding the blowup associated with the IVC reduction
when applied to the brute-force computation solving Rα defined by Proposition 5.1.

17

Lemma 5.1 (Bounding the Blowup). Fix a constant ε > 0. Let α be a large enough constant.
Under the KPY assumption, there exists a computationally sound Karp reduction (X ,W) from Rα

to LS with efficiency TRed ≤ λεα.

Proof. Fix ε > 0 and let ε′ > 0 be a constant to be chosen later. Let c be the constant guaranteed by
Proposition 5.1. That is, for every α > 1 there exists a Turing machine Mα of run-time T ≤ cλα,
configuration size S ≤ cλ and description size |Mα| ≤ c log2 α solving Rα. Let α be a large
enough constant such that Theorem A.1 apply to Mα with constant ε′. This gives an IVC scheme
with incremental completeness for Mα having efficiency TIVC ≤ λε

′α.
Applying Theorem 4.1 using the aforementioned IVC results in a computationally sound Karp

reduction (X ,W) from Rα to LS with efficiency:

TRed ≤ (TIVC · S · λ · |Mα|)η ≤ λε
′αη · (cλ log2 α)3η ≤ λ4ε′αη ,

where η is a constant independent of α and ε and the last inequality is true for large α. By taking
ε′ < ε/4η we get TRed ≤ λεα . This completes the proof the lemma.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Assume toward contradiction that under non-uniform ETH and the KPY
assumption we have that PLS ⊆ FP/Poly. Hence, there exists a constant η and adversary A =
{An}n∈N of size s(n) = nη solving LS instances of size n.

Let ε > 0 be a constant to be chosen later. By bounding the blowup lemma, Lemma 5.1, there
exists a large enough constant α such that there is a computationally sound Karp reduction (X ,W)
from Rα to LS having efficiency TRed ≤ λεα. Note that the efficiency of the NP verifier for Rα

is TRα = O(λ) with a constant independent of α. By Proposition 4.1, there exists an adversary
A′ = {A′λ}λ∈N, solving Rα instances of size λ of circuit size:

size(A′λ) ≤ poly (s(TRed),TRα , λ) ≤ poly (λεαη, λ) ≤︸︷︷︸
α>1/εη

poly (λεαη) = O(λεαξ) ,

where ξ is a constant independent of ε and α. Let δ > 0 be the constant associated with the lower
bound of Rα. Recall δ is fixed and independent of α and ε. By choosing ε < δ/ξ we have

size(A′λ) = O(λεαξ) = O(λδα) .

A contradiction to the lower bound. We conclude that PLS 6⊆ FP/Poly. This completes the
proof.

Remark 5.4 (Average-Case Hardness). In this remark we sketch how one can establish the average-
case hardness of LS assuming superpolynomial security of the KPY assumption and average-case
exponential time hypothesis. Let T = T (λ) be a superpolynomial such that the KPY assumption
holds for adversaries of size TO(1) and with distinguish advantage of T−ω(1). Using the same IVC
construction as the one used in the above, we are able to get a secure IVC scheme with incremental
completeness having time parameter T . By appropriate padding for SAT, assuming average-case
ETH yields search problems that are hard-on-average yet can be solved with polynomial-space
Turing machines with less than T time. Using Corollary 4.1 we have that indeed LS is hard-on-
average as desired.

18

6 Unconditional PLS Hardness in the ROM
In this section we show that relative to a random oracle, there exist average-case exponentially
hard problems in PLS. We further show, relative to a random oracle, the existence of depth-robust
moderately hard problems in PLS. Our result is based on the incremental proofs of sequential work
(iPoSW) by Döttling, Lai, and Malavolta [DLM19]. We modify the DLM construction such that
an incremental completeness analog is achieved.

6.1 Graph Related Preliminaries
We recall some graph related definitions and lemmas used in the DLM scheme.

Notation. Throughout, we consider directed acyclic graphs (DAGs) G = (V,E) where V ⊆
{0, 1}≤d is the vertex set and we refer to the parameter d as the depth of G. A vertex v ∈ V is a
parent of u ∈ V if (v, u) ∈ E. The set of parents of u is denoted by parents(u). A vertex v is an
ancestor of u if there is a directed path from v to u in G. The set of ancestors of u is denoted by
ancestors(u). Any vertex v ∈ V ∩ {0, 1}d is called a leaf. Denote by leaves(u) the set of all leaf
nodes that are ancestors of u.

6.1.1 CP Graphs

We recall the definition of CP graphs (see Figure 1), a family of directed acyclic graphs defined by
Cohen and Pietrzak [CP18]. We denote the aforementioned graph family by CP = {CPd}d∈N.

Figure 1: The CP4 graph; red edges corresponds to E ′′.

Definition 6.1 (CP Graphs, [CP18]). Let Bd = (V,E ′) be the complete binary tree of depth d with
edges pointing from the leaves to the root. The graph CPd = (V,E) is constructed from Bd with
some added edges E ′′. Where E ′′ contains (v, u) for any leaf u ∈ {0, 1}d and any v which is a left
sibling to a node on the path form u to the root. Formally, E = E ′ ∪ E ′′ where:

E ′′ := {(v, u) | u ∈ {0, 1}d, u = a||1||a′, v = a||0, for some a, a′ ∈ {0, 1}≤d} .

The following fact on non-leaves in CP graphs is used in the construction and analysis.

Fact 6.1 (Left and Right Parents). Let CPd = (V,E) and let v ∈ V be a non-leaf node which is
not the root. The node v has exactly two parents ` and r. We have the following:

leaves(v) = leaves(`) ∪ leaves(r) .

19

6.1.2 Graph Labeling

Notation. For two sets A and B, we denote by A
⊎
B the disjoint union.

Definition 6.2 (Partial Vertex Labeling). For a graph G = (V,E), a partial vertex labeling is a
function L : V → {0, 1}∗ ∪ {⊥}. The label for node u ∈ V is denoted by L[u].

Definition 6.3 (Valid DAG Labeling). Let G = (V,E) be a DAG with V ⊆ {0, 1}∗ and let f :
{0, 1}∗ → {0, 1}w be a labeling function. The labeling ofG with respect to f is defined recursively,
for every v ∈ V :

L[v] := f(v,L[p1], ...,L[pr]) ,

where (p1, ..., pr) = parents(v), ordered lexicographically.

Note that the above labeling is well defined since G is a acyclic and can be computed with |V |
queries to f in a topological order.

In the following lemma we recall the labeling procedure from [CP18]. See Figure 2 for an
illustration of the procedure.

Lemma 6.1 (CP Labeling Procedure, Lemma 3 in [CP18]). The labeling of CPd with respect to
f : {0, 1}∗ → {0, 1}w can be computed in a topologicial ordering using O(w · d) bits of memory.

Figure 2: The CP labeling procedure for CP2; black nodes represent labels the algorithm keeps
track of; denoted Ut when computing the t label.

We require some additional properties from the labeling procedure for the modified DLM
scheme. We describe the procedure bellow and prove several corresponding lemmas.

The Labeling Procedure. The algorithm is recursive. The base case CP0 consist of one node
and labeling is trivial. For d ≥ 1, let v be the root of CPd and let `, r be the left and right parents
of v, respectively. The subtree rooted by ` is isomorphic to CPd−1 and hence its labels can be
computed recursively. Keep track of the last label L[`] and proceed to the subtree rooted by r.
Apart from edges coming from ` to the leaves, it is isomorphic to CPd−1. One can use L[`], which
is in memory, and recursively compute the right subtree. Keep track of the last label L[r]. Compute
the root label L[v] = f(v,L[`],L[r]) and forget both L[`] and L[r]. Output the root label L[v].

20

Incremental Labeling. We consider an incremental version of the above procedure. Fix d ∈ N
and let v1, v2, . . . , vT be the topological ordering in which labels are being outputted by the CP
labeling procedure for depth d. Let Ut ⊆ V be the set of nodes the procedure keeps track of after
outputting vt. For the incremental version, we are interested in algorithms that efficiently compute
Ut and vt given t. We show that Ut and vt can be computed efficiently given t.

Lemma 6.2 (Computing Ut Efficiently). For CPd, computing Ut can be done in poly(d) time.

Proof. The algorithm is recursive and follows the same post-order traversal as the labeling pro-
cedure. For CPd, let v be the root node and let `, r be its left and right parents respectively. If
t = 2d+1 − 1 return the root node, {v}. If t ≤ 2d − 1, proceed to recursively compute Ut on the
left subtree rooted by `, which is isomorphic to CPd−1. Output the resulting set. Else t > 2d − 1,
recursively compute Ut−(2d−1) on the subtree rooted by r while ignoring the extra edges from `.
This graph is also isomorphic to CPd−1. Append ` to the resulting set and output.

The algorithm’s correctness follows by induction. For efficiency, notice that the depth of the
recursion is d and every level takes poly(d) time.

Lemma 6.3 (Computing vt Efficiently). For CPd, computing vt can be done in poly(d) time.

Proof. Notice that by construction of the CP labeling procedure, v1, . . . , vT is a post-order traversal
on the binary tree Bd which is the base of CPd. Finding the t-th node in a post-order traversal can
be done by a simple recursion with efficiency poly(d).

Lemma 6.4 (One Vertex at a Time). For every t ∈ [2, T] we have Ut = {vt}
⊎

(Ut ∩ Ut−1).

Proof. The theorem statement is equivalent to proving Ut \ Ut−1 = {vt}. By definition we have
that vt ∈ Ut. Apart from vt, the procedure only forget nodes, hence Ut ⊆ {vt} ∪ Ut−1. It is left to
show that vt 6∈ Ut−1. Indeed, using the above, by induction Ut−1 ⊆ {v1, . . . , vt−1}, in particular
vt 6∈ Ut−1.

6.2 Modified DLM
In this section, we present a modified version of the incremental proof of sequential work (iPoSW)
due to [DLM19]. The main difference, apart from syntax, is that we require stricter conditions
when verifying nodes.

Parameters. Let λ be a computational security parameter. Let T (λ) = T = 2λ+1 − 1 and let
s(λ) = s = Θ(λ3) that is a power of 2. Let H : {0, 1}∗ → {0, 1}λ and H′ : {0, 1}∗ → {0, 1}3s be
independently chosen random oracle ensembles depending on λ.

Remark 6.1 (Random Coins Count). The use of 3s random coins allows to sample a statistically
close to uniform subset. See [DLM19] for details.

Syntax. The scheme consists of two algorithms, DLM.PH,H′(χ, t, π),DLM.VH,H′(χ, t, π) with the
following syntax.

1. DLM.PH,H′(χ, t, π) is a deterministic algorithm with oracle access to H,H′. Given a state-
ment χ, a natural number t and proof π, it outputs a proof π′.

2. DLM.VH,H′(χ, t, π) is a deterministic algorithm with oracle access to H,H′. Given a state-
ment χ, a natural number t and proof π, it outputs ACC or REJ.

21

Proof Structure. The proofs π are of the form π = (L, (ui, Sui ,Pui)mi=1) where:

• L is a partial vertex labeling for CPλ.

• ui is a node of CPλ.

• Sui is a set of challenge leaves, indexed by the node ui.

• Pui is a set of candidate authentication paths, indexed by the node ui.

• Path ∈ Pui is an ordered list of the form Path = (wj)j where each wj is a node of CPλ.

Remark 6.2 (Labeling Data Structure). The partial vertex labeling L is given by a dictionary data
structure. Where keys are nodes v and the value associated is the corresponding label L[v]. A
node which is not in the dictionary is given the default value⊥. Let n be the amount of nodes v for
which L[v] 6= ⊥. We use a dictionary implementation where size and retrieval time are poly(n).

6.2.1 Algorithms Description

Conventions. A random oracle salted with the statement χ ∈ {0, 1}∗ is denoted by Hχ :=
H(χ, ·). Let v1, v2, . . . , vT be the topological order given by Lemma 6.1 for nodes of CPλ. Recall
that Ut is the list of nodes the CP labeling procedure keeps track of when computing the label for
vt. We extend the definition such that U0 = ∅. For a set of candidate authentication paths P we
define the set

AP :=

v
∣∣∣∣∣∣

Path ∈ P
w ∈ Path
v = w or v ∈ parents(w)

 ,

the set of nodes whose labels are used in Merkle authentication verification.

22

DLM.PH,H′(χ, t, π)
Input:
1. String χ ∈ {0, 1}λ.

2. Time t ∈ [T].

3. Candidate proof π = (L, (ui, Sui ,Pui)mi=1) .
Algorithm:
1. If {u1, . . . , um} 6= Ut−1 output ε.

2. Set L[vt] = Hχ(vt,L[p1], ...,L[pr]) where (p1, ..., pr) = parents(vt) in lexicographic
order.

3. If vt is a leaf, let Svt = {vt} and Pvt = {(vt)}.
4. Otherwise, vt has two parents, `, r ∈ Ut−1.

(a) Sample a random subset Svt of size min(s, |leaves(vt)|) from S` ∪Sr using rand←
H′χ(vt,L[vt]) as random coins.

(b) Let Pvt = ∅. For every Path ∈ P` ∪ Pr starting from a leaf in Svt , extend with vt
and append to Pvt .

5. Remove labels from L for all nodes but
⋃
u∈Ut APu .

6. Output π′ = (L, (u, Su,Pu)u∈Ut).

Note that in the above we use the efficient algorithms due to computing Ut efficiently Lemma 6.2
and computing vt efficiently Lemma 6.3 to compute Ut−1,Ut and vt. We also use one vertex at a
time Lemma 6.4 in Line 5 and Line 6.

In Line 5 we remove labels that are not used by the verifier. By doing so, the proof size remains
short. Jumping forward, the verifier checks that indeed the partial vertex labeling L only contains
the relevant labels and reject otherwise. This allows us to immediately reject proofs that are too
long — important for efficiency of the scheme.

23

DLM.VH,H′(χ, t, π)
Input:
1. String χ ∈ {0, 1}λ.

2. Time t ∈ [T].

3. Candidate proof π = (L, (ui, Sui ,Pui)mi=1) .
Algorithm:
1. Verify that u1, . . . , um are distinct and {u1, . . . , um} = Ut−1. Otherwise, output REJ.

2. Short Proof Verification:

Verify the nodes having label in L are exactly
⋃
u∈Ut−1

APu . Otherwise, output REJ.

3. Authentication Path Verification:

For i = 1, . . . ,m:
(a) Validate Sui ⊆ leaves(ui) and is of size min(s, |leaves(ui)|). Otherwise output REJ.
(b) Check that every path in Pui is a valid path from a leaf in Sui to ui. Check that

every leaf in Sui has exactly one corresponding path in Pui . Otherwise output REJ.
(c) Let (Path1, . . . ,Pathk) = Pui ordered in lexicographic order of corresponding

source leaves.
(d) For j = 1, . . . , k:

i. If VerifyMerklePathH(χ,Pathj,L) rejects, output REJ.

ii. If VerifyRandChoiceH
′
(χ,Pathj,L, j) rejects, output REJ.

4. Output ACC.

In the above description we used the subroutines VerifyAuthPathH and VerifyRandChoiceH
′

that
are described in the following.

Merkle Authentication Path Verification VerifyAuthPathH(χ,Path,L): Let Path = (wj)j be
a candidate authentication path. For every node wj with (p1, . . . , pr) = parents(wj) ordered in
lexicographic order, verify

L[wj] = Hχ(wj,L[p1], . . . ,L[pr]) .

If all checks pass, output ACC, otherwise output REJ.

Random Choice Verification VerifyRandChoiceH
′
(χ,Path,L, ind): We give a sketch of the ver-

ification, for further details see [DLM19]. Let Path = w1 → · · · → wr be a path where
w1 ∈ leaves(wr). In order to verify the random choice done by H′χ, we recreate the choice go-
ing from the top down. We are given the index of Path in P ordered by source leaves, let us denote
it by ind. This is also the index of the leaf that was picked in the last random choice.

Note that since s is a power of 2, the random choice procedure used by the prover either chooses
an s-size subset from a 2s-size set or takes the whole set. Starting from wr, use H′χ to generate the
random coins rand. Using rand pick an s-size subset from the set [2s]. Let i be the ind-th element

24

in the resulting subset. If i ≤ s, we know that wr−1 should be a left parent to wr. Otherwise i > s
which tells us that wr−1 should be a right parent.

We continue to verify wr−1, changing ind appropriately according to wr−1 being a left or right
parent. More concretely, if i ≤ s then ind := i, else i > s then ind := i − s. We continue with
this procedure until we get to a node with less than s leaves. If all verifications of the path passed,
output ACC, otherwise output REJ.

Efficiency. All the computations done above are polynomial in the input length that is of size
poly(λ, |π|). Notice that due to the short proof verification (Line 2 of DLM.V), the size of all
accepted proofs is poly(λ). Therefore, for all accepted proofs the runtime is poly(λ) for a fixed
polynomial. Hence, we may modify DLM.V to reject and DLM.P to output ε once this poly(λ)
time limit exceeds. This way, the efficiency of DLM.V and DLM.P is poly(λ) for every input.

Remark 6.3 (Proofs are Not Computationally Unique). Proofs in the DLM scheme are not com-
putationally unique. To see why, consider the following adversary that attempts to find a collision
for accepting proofs of time t = Θ(s2) = Θ(λ6) that is of the form 2k+1 − 1. The first proof is
generated honestly. For the second proof, select uniformly at random u ← leaves(vt). Compute
the proof honestly up until the label for u is computed. Alter the label for u. Continue as the hon-
estly generated proof. With overwhelming probability, the two proofs generated are different. The
second proof is accepting if there is no authentication path starting with u. Since t is of the form
2k+1 − 1, there are s authentication paths starting with leaves in leaves(vt). Also, all the leaves
have the same probability to be chosen. There are 2k leaves, therefore the probability u is selected
is s/2k = O(λ−3). Thus, the probability of accepting is 1 − Ω(λ−3). The described adversary is
efficient and successful with noticeable probability.

6.2.2 Incremental Completeness

In this section, we prove that the modified construction we propose achieves incremental com-
pleteness.

Proposition 6.1 (Incremental Completeness of Modified DLM). For every security parameter
λ ∈ N, time t ∈ [T − 1], candidate proof π ∈ {0, 1}∗ and statement χ ∈ {0, 1}λ:

If DLM.VH,H′(χ, t, π) = ACC then DLM.VH,H′(χ, t+ 1, π′) = ACC ,

where π′ = DLM.PH,H′(χ, t, π).

Proof. Fix λ ∈ N, t ∈ [T − 1], χ ∈ {0, 1}λ and π ∈ {0, 1}∗ such that DLM.VH,H′(χ, t, π) = ACC.
Let π′ = DLM.PH,H′(χ, t, π). Parse π = (L, (ui, Sui ,Pui)mi=1) and π′ = (L′, (u′i, S ′u′i ,P

′
u′i

)ki=1).
Since π passes verification we have that {u1, . . . , um} = Ut−1

3 and u1, . . . , um are distinct. By
construction of DLM.P this implies that {u′1, . . . , u′k} = Ut and u′1, . . . , u

′
k are distinct. We also

have by construction that the nodes having labels in L′ are exactly the ones verified by short proof
verification (Line 2 of DLM.V).

Next, in the authentication path verification (Line 3 of DLM.V) the checks are performed on
every vertex in {u′i} = Ut separately. By the one vertex at a time Lemma 6.4 we have Ut =
{vt}

⊎
(Ut ∩ Ut−1). We consider two cases: 1) u ∈ Ut ∩ Ut−1 and 2) u = vt.

3For t = 1, recall that we defined U0 = ∅.

25

Case 1. Fix u ∈ Ut ∩ Ut−1. Fix u ∈ Ut ∩ Ut−1. The checks on S ′u and P ′u in Line 3.a and Line
3.b pass since Su = S ′u and P ′u = Pu by the construction. To see why the checks in Line 3.d
involving VerifyMerklePath and VerifyRandChoice pass, we observe that both subroutines use the
labels of nodes contained in AP ′u , where recall AP ′u is the set of all nodes in P ′u and their parents.
It suffices to prove that for every node v ∈ AP ′u we have L′[v] = L[v] as this implies that the
checks due to VerifyMerklePath and VerifyRandChoice pass verification. Indeed, note that since
AP ′u ⊆ {v1, . . . , vt−1} we have vt 6∈ AP ′u . We further have by construction (Line 5 of DLM.P) that
labels of AP ′u are not discarded. Hence the labels of AP ′u remain unchanged. This concludes the
proof of this case.

Case 2. If vt is a leaf, all checks pass by construction. Otherwise, by the structure of the CP
graph, vt has two parents `, r ∈ Ut−1.

Line 3.a. We have that S ′vt ⊆ S` ∪ Sr. By the verification on S` and Sr, we have S` ⊆
leaves(`) and Sr ⊆ leaves(r). By properties of the CP graph, leaves(vt) = leaves(`) ∪ leaves(r)
hence S ′vt ⊆ leaves(vt). By construction we have |Svt| = min(s, |leaves(vt)|). Therefore the check
in Line 3.a of DLM.V pass.

Line 3.b. Consider Path′ ∈ P ′vt . It is constructed by taking Path ∈ P`∪Pr, that starts from a
leaf in S ′vt and extending it with vt. Since Path is a valid path to ` or r, parents of vt, the resulting
path is a valid path from a leaf in S ′vt to vt. Since P` and Pr contain all paths corresponding
with leaves from S` and Sr, respectively, in P ′vt there are all paths corresponding to leaves in
S ′vt ⊆ S` ∪ Sr. Therefore the check in Line 3.b of DLM.V pass.

Line 3.d. We continue to prove that VerifyMerklePath passes on paths inP ′vt . By construction
of the prover (Line 5 in DLM.P), we have that for every label that corresponds to a node in APvt is
not discarded. Note that the only other label that can be changed is the label corresponding to vt.
Hence, for every node v ∈ APvt \ {vt} that L′[v] = L[v]. For the verification on vt, in Line 2 of
DLM.P, we construct its label to be

L′[vt] = Hχ(vt,L[`],L[r]) .

We are left to show that L′[`] = L[`] and L′[r] = L[r]. Indeed, `, r are parents of vt. Since P ′vt is
non-empty and vt ∈ Path′ for every Path′ ∈ P ′vt also `, r ∈ APvt .

The random choice verification pass by construction, for more details see the Random Choice
Verification paragraph.

We conclude that DLM.VH,H′(χ, t+ 1, π′) = ACC, proving the proposition.

6.2.3 Soundness

In this section, we state the soundness property of the modified DLM system. While we altered the
DLM construction, we did so by enforcing stricter verification conditions. Accordingly, we inherit
the soundness of the original scheme — every valid proof in the modified scheme corresponds to
a valid proof in the original scheme without the use of the random oracle in the correspondence.

26

Theorem 6.1 (DLM Soundness, Follows From [DLM19]). Let AH,H′ = {AH,H′

λ } be an oracle
aided adversary that makes at most q = q(λ) total queries to both H and H′. For every λ, d ∈ N
with d ≤ λ, such that A makes less than 2d sequential queries to H we have:

Pr

[
DLM.VH,H′(χ, Td, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AH,H′(χ)

]
≤ O(q2)2−Ω(λ) ,

where Td = 2d+1 − 1.

Corollary 6.1 (Sequential Hardness). Let d = d(λ) ≤ λ be a depth parameter. For every oracle
aided adversary AH,H′ = {AH,H′

λ }λ∈N of depth 2d and size 2o(λ), we have for every λ ∈ N:

Pr

[
DLM.VH,H′(χ, Td, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AH,H′(χ)

]
≤ 2−Ω(λ) ,

where Td = 2d+1 − 1.

Single Oracle. The DLM construction is described in terms of two random oracles H,H′ (which
is done mostly to simplify the analysis). From hereon, it will be simpler to think of a single
random oracle O : {0, 1}∗ → {0, 1}. The algorithms DLM.PO,DLM.VO simulate oracle calls to
H,H′ in the above construction by setting an appropriate prefix for every output bit in H and H′.
The security reduction incurs a multiplicative polynomial loss in efficiency and a multiplicative
logarithmic loss in depth (both in terms of λ).

Indeed, consider an adversary A attempting to break the scheme with O. In order reduce
this adversary to A′ attacking the scheme using H,H′ we modify the oracle gates to O in A by
examining the prefix and simulating the output of the associate output bit in H or H′. In this
reduction, comparing the prefix, incurs a logarithmic loss in depth and polynomial loss in size of
the new adversary A′. We conclude this in the following corollary.

Corollary 6.2 (Single Oracle Sequential Hardness). Let d = d(λ) ≤ λ be a depth parameter. For
every oracle aided adversary AO = {AOλ }λ∈N of depth o(2d/ log λ) and size 2o(λ), we have for
every λ ∈ N:

Pr

[
DLM.VO(χ, Td, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) ,

where Td = 2d+1 − 1.

By considering d = λ, we derive the following corollary:

Corollary 6.3 (Exponential Hardness). For every oracle aided adversary AO = {AOλ }λ∈N of size
2o(λ) and λ ∈ N:

Pr

[
DLM.VO(χ, Tλ, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) ,

where Tλ = 2λ+1 − 1.

27

6.3 Hard instances.
In this section, we consider the problem ROd , where instances are strings χ and a witness for χ is a
corresponding proof of sequential work in the modified DLM scheme for time Td = 2d+1 − 1. We
show that ROd lies in PLSO.

In the following, a depth parameter d(λ) is a polynomial-time computable function. We require
this for the efficiency of the reduction.

Definition 6.4. Let d = d(λ) ≤ λ be a depth parameter. The search problem ROd is defined as
follows:

ROd =
{

(χ, π)
∣∣ DLM.VO(χ, Td(|χ|), π) = ACC

}
,

where Td = 2d+1 − 1.

Note that ROd is in TFNPO. It is in FNPO by the efficiency of DLM. It is total by the com-
pleteness of DLM, since for every χ, there exists a proof π that passes verification – the honestly
generated proof.

6.3.1 The Reduction to Local Search

Fix a depth parameter d = d(λ) ≤ λ. We construct a polynomial-time search reduction (fd, gd)
from ROd to LSO.

Instance Translation: Let χ ∈ {0, 1}λ be an instance for the problem ROd . We construct an
LSO instance fd(χ) = (SO,FO) in the following. Intuitively, we embed the computation of the
modified DLM PoSW in an LSO instance such that local maximums correspond to valid proofs for
time Td = 2d+1 − 1. Concretely, every node will be of a fixed polynomial length ` = `(λ) ≥ λ.
Every vertex is of the form (t, π) ∈ {0, 1}` where t is parsed as an integer in [Td] and π as a proof
of the modified DLM scheme padded to length ` if needed. The size ` is determined by the size of
valid proofs which is polynomial by the efficiency of modified DLM.

Let π1 be a valid proof for time t = 1 in the modified DLM scheme. For the node (t, π), if
the proof π is verified with respect to time t, the node will be given value t and be connected to
(t + 1, π′) where π′ is the proof the prover generates given π. If π is rejected, it is given value −1
and is connected to (1, π1). A formal definition of the circuits is given bellow.

Successor Circuit SO(t, π)
Hardwired: The instance χ.
Algorithm:
1. If DLM.VO(χ, t, π) = REJ, output (1, π1).

2. If t = Td, output (t, π).

3. Compute π′ = DLM.PO(χ, t, π) and output (t+ 1, π′).

28

Value Circuit FO(t, π)
Hardwired: The instance χ.
Algorithm:
1. If DLM.VO(χ, t, π) = REJ, output −1.

2. Else, output t.

Witness Translation: The function gd(t, π) outputs π.

Efficiency. By the efficiency of the modified DLM scheme and the efficiency of the depth pa-
rameter d(λ), the instance translation fd is done in poly(λ) time. The witness translation gd is
also done in poly(λ) time since the length of nodes ` is of size poly(λ). This further implies
that SO,FO are of size poly(λ). Since the input length ` is at least λ we have that SO,FO are
polynomial-size circuits.

6.3.2 Security Analysis

In the following claim we rely on the incremental completeness proven in Section 6.2.2.

Claim 6.1. Let d = d(λ) ≤ λ be a depth parameter. Fix λ ∈ N and χ ∈ {0, 1}λ. Let w = (t, π)
be a local maximum of (SO,FO) = fd(χ). We have DLM.VO(χ, t, π) = ACC and t = Td.

Proof. We have DLM.VO(χ, t, π) = ACC as otherwise w is given value −1 and his successor is
(1, π1) of value 1. If t < Td then w is given value t and is connected to (t + 1, π′) for π′ =
DLM.PO(χ, t, π). By incremental completeness Proposition 6.1, we have that DLM.VO(χ, t +
1, π′) = ACC. Therefore, the value of (t + 1, π′) is t + 1, and w is not a local maximum. We are
left with t = Td. This concludes the claim.

Theorem 6.2 (Hard Problems in PLSO). For every depth parameter d = d(λ) ≤ λ, the search
problem ROd lies in PLSO.

Proof. The class PLSO consists of all TFNPO search problems that are polynomial-time reducible
to LSO. The search problem ROd ∈ TFNPO and by Claim 6.1, the tuple (fd, gd) is a valid
polynomial-time reduction to PLSO. Indeed, for every string χ, we have that all witnesses w′ for
the instance (SO,FO) = fd(χ) are mapped under gd tow = π such that DLM.VO(χ, Td, π) = ACC
– a valid witness to ROd . Hence ROd ∈ PLSO.

Corollary 6.4 (Exponential Hardness in PLSO). There exists search problems in PLSO that are
average-case exponentially hard.

Proof. By Theorem 6.2, for every depth parameter d = d(λ) ≤ λ, the search problem ROd is in
PLSO. By Corollary 6.3, for d = λ the search problem ROλ is exponentially average-case hard.

This implies that LSO is sub-exponentially hard due to the polynomial blowup the reduction
incurs. We formulate it in the following corollary. In the following, n stands for the size of the LSO

instance (SO,FO) and λ stands for the security parameter that is given as input to the sampler.

29

Corollary 6.5. There exists an efficient sampler HARD of LSO instances and a constant δ > 0 such
that for every oracle aided adversary AO = {AOn }n∈N of size at most 2n

δ
and for every λ ∈ N:

Pr

[
FO(SO(w)) ≤ FO(w)

∣∣∣∣ (SO,FO)← HARD(1λ)
w ← A(SO,FO)

]
≤ 2−Ω(λ) ,

where O : {0, 1}∗ → {0, 1} is a random oracle.

Proof. The algorithm HARD(1λ) samples χ← {0, 1}λ and outputs fλ(χ). Let δ > 0 be a constant
to be chosen later. Let A = AO = {AOn }n∈N be an adversary of size at most 2n

δ that succeeds
in finding a local maximum for (SO,FO) ← HARD(1λ) with probability ε(λ). We construct
an oracle aided adversary A′ = A′O = {A′Oλ }λ∈N that attempts breaking the soundness of the
modified DLM scheme as follows:

A′(χ):

1. Compute (SO,FO) = fλ(χ).

2. Simulate w′ ← AO(SO,FO)

3. Compute w = gλ(w
′) and output w.

By the correctness of the reduction (fλ, gλ), the adversary A′ succeeds with probability at least
ε(λ). Let p(λ) be a polynomial bound on the runtime of fλ, gλ. If we choose δ such that p(λ)δ =
o(λ), the size of A′ is at most poly(λ) + 2p(λ)δ = 2o(λ). Therefore, we can apply the soundness of
the DLM scheme (Corollary 6.3). Thus

ε(λ) ≤ Pr

[
DLM.VO(χ, T, π) = ACC

∣∣∣∣ χ← {0, 1}λ
π ← A′(χ)

]
≤ 2−Ω(λ) .

This concludes the proof.

6.4 Depth Robust Instances
In this section, we deduce the existence of depth-robust, moderately hard, search problems in
PLSO. That is, search problems with instances that can be solved in polynomial time yet also
require high sequential time.

Proposition 6.2 (Depth Robust Problems in PLSO). Fix any constant ε > 0. For any large enough
constant α, consider ROd for d(λ) = α log2 λ a depth parameter. The following properties hold for
λ > 1:

• Moderately Hard: The search problem ROd can be solved in time λ(1+ε)α.

• Depth Robust: If A is an adversary of depth λ(1−ε)α and size 2o(λ) then:

Pr

[
(χ, π) ∈ ROd

∣∣∣∣ χ← {0, 1}λ
π ← AO(χ)

]
≤ 2−Ω(λ) .

Proof. Fix ε > 0 throughout the proof. We start by proving that ROd is moderately hard.

30

Moderately Hard: Fix λ > 1 and let χ ∈ {0, 1}λ be an instance of ROd . We have Td =
2α log2 λ+1 − 1 ≤ 2λα ≤ λα+1. By efficiency of DLM, the run-time of DLM.PO is at most λc for
some fixed constant c, independent of ε and α. The proof π1 for time t = 1 can also be generated
in poly(λ) time. We assume w.l.o.g that it can be generated in time λc. By completeness of DLM,
generating π1 and applying the prover Td − 1 times on it, results in a valid proof for time t = Td.
This is a valid witness for the instance χ in ROd . The run-time of the above algorithm is at most

Td · λc ≤ λα+1 · λc ≤ λ(1+ε)α ,

where the last inequality holds for large enough α, concretely α > (c+ 1)/ε.

Depth Robust: For every α > 1, we have Td = 2α log2 λ+1 − 1 ≥ λα. Hence, λ(1−ε)α =
o(Td/ logα). By direct application of single oracle sequential hardness Corollary 6.2, the claim
follows.

References
[ABPW16] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in

smoothed polynomial time. CoRR, abs/1610.04807, 2016.

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equilibria. Un-
published, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, pages 440–456, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for snarks and proof-carrying data. In Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, pages 111–120, New
York, NY, USA, 2013. ACM.

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. SIAM J. Comput., 45(5):1910–1952, 2016.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, May 2012.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In Victor Shoup, editor, Advances in Cryp-
tology – CRYPTO 2005, pages 258–275, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

31

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 474–482, 2017.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 709–721, 2018.

[BKM18] Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Nash equilibrium in smoothed
polynomial time for network coordination games, 09 2018.

[BO06] Buresh-Oppenheim. On the tfnp complexity of factoring. Unpublished, 2006.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 1480–1498, Oct 2015.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of
obfuscated pseudorandom functions. In Proceedings, Part I, of the 13th International
Conference on Theory of Cryptography - Volume 9562, TCC 2016-A, pages 389–415,
Berlin, Heidelberg, 2016. Springer-Verlag.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player nash equilibria. J. ACM, 56(3):14:1–14:57, May 2009.

[CHK+19a] Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Ppad-hardness via iterated squaring modulo a com-
posite. Cryptology ePrint Archive, Report 2019/667, 2019. https://eprint.
iacr.org/2019/667.

[CHK+19b] Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking
fiat-shamir. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, pages 1103–1114, New York, NY, USA, 2019. ACM.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, pages 451–467, Cham, 2018. Springer International Publishing.

[DGP09] Constantinos Daskalakis, Paul Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a nash equilibrium. SIAM J. Comput., 39:195–259, 02 2009.

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of se-
quential work. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, pages 292–323, Cham, 2019. Springer International Publishing.

32

https://eprint.iacr.org/2019/667
https://eprint.iacr.org/2019/667

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In
Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’11, pages 790–804, Philadelphia, PA, USA, 2011. Society for Indus-
trial and Applied Mathematics.

[EFKP19] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
verifiable delay functions. Cryptology ePrint Archive, Report 2019/619, 2019.
https://eprint.iacr.org/2019/619.

[FPT04] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure
nash equilibria. In Proceedings of the Thirty-sixth Annual ACM Symposium on The-
ory of Computing, STOC ’04, pages 604–612, New York, NY, USA, 2004. ACM.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GP18] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity
theory of total functions. J. Comput. Syst. Sci., 94:167–192, 2018.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryp-
tographic hardness of finding a nash equilibrium. In Advances in Cryptology –
CRYPTO 2016, pages 579–604, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the Forty-third Annual ACM Symposium
on Theory of Computing, STOC ’11, pages 99–108, New York, NY, USA, 2011.
ACM.

[HNY17] Pavel Hubácek, Moni Naor, and Eylon Yogev. The Journey from NP to TFNP Hard-
ness. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Com-
puter Science Conference (ITCS 2017), volume 67 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 60:1–60:21, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[HY16] Pavel Hubek and Eylon Yogev. Hardness of Continuous Local Search: Query Com-
plexity and Cryptographic Lower Bounds, pages 1352–1371. ACM, 2016.

[IM98] Hisao Ishibuchi and Tadahiko Murata. A multi-objective genetic local search algo-
rithm and its application to flowshop scheduling. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 28(3):392–403, Aug
1998.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512 – 530, 2001.

33

https://eprint.iacr.org/2019/619

[Jer12] Emil Jerábek. Integer factoring and modular square roots. CoRR, abs/1207.5220,
2012.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is
local search? Journal of Computer and System Sciences, 37(1):79 – 100, 1988.

[KNY17a] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box com-
plexity of search problems: Ramsey and graph property testing. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 622–632,
Oct 2017.

[KNY17b] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complex-
ity of search problems: Ramsey and graph property testing. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 622–632, 2017.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 1115–1124, New York, NY, USA, 2019. ACM.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computa-
tions: The power of no-signaling proofs. In In Proceedings of the 46th annual ACM
symposium on Theory of computing (STOC), pages 485–494. ACM, January 2014.

[LFKN90] Carsten Lund, Lance Fortnow, H Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems, 11 1990.

[LK73] S. Lin and Brain W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res., 21(2):498–516, April 1973.

[Mer79] Ralph Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stanford
University, Department of Electrical Engineering, June 1979.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science, ITCS ’13, pages 373–388, New York, NY, USA, 2013. ACM.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence the-
orems and computational complexity. Theoretical Computer Science, 81(2):317 –
324, 1991.

[Nas00] John C. Nash. The (dantzig) simplex method for linear programming. Computing in
Science Engineering, 2(1):29–31, Jan 2000.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other in-
efficient proofs of existence. Journal of Computer and System Sciences, 48(3):498 –
532, 1994.

34

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive,
Report 2018/627, 2018. https://eprint.iacr.org/2018/627.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. In Yael Kalai and Leonid Reyzin, ed-
itors, Theory of Cryptography, pages 283–315, Cham, 2017. Springer International
Publishing.

[RSS17] Alon Rosen, Gil Segev, and Ido Shahaf. Can ppad hardness be based on standard
cryptographic assumptions? In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography, pages 747–776, Cham, 2017. Springer International Publishing.

[RSW00] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-
release crypto. Technical Report MIT/LCS/TR-684, MIT, February 2000.

[SY91] Alejandro Schaffer and Mihalis Yannakakis. Simple local search problems that are
hard to solve. SIAM J. Comput., 20:56–87, 02 1991.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness
with connections to cryptography. CoRR, abs/1808.06407, 2018.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, pages 1–18,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

A IVC under KPY Assumption
In this section, we present the IVC scheme derived from the bootstrapping theorem by Kalai et
al. [KPY19]. Soundness of the scheme is established assuming the KPY assumption (See ap-
pendix A.6). The analysis done in this section for IVC is very similar to the analysis in [KPY19]
for delegation schemes. The main theorem we prove is Theorem A.1.

Remark A.1. For ease of notation, in the following section we assume w.l.o.g λ > 1.

Theorem A.1 (IVC from KPY Assumption). Fix any constants c, ε > 0. Let α be a large enough
constant and let M be a Turing machine of run-time T (λ) ≤ cλα, configuration size S(λ) ≤ cλ
and description size |M | ≤ c log2 α. Under the KPY assumption, there exists an IVC scheme with
incremental completeness for M having efficiency TIVC = λεα.

A roadmap to this section. In appendix A.1, we recall the definition of quasi-arguments, the
main ingredient in the IVC construction. In appendix A.2 we define GIVC, a generalization of IVC
suitable for the recursive construction. Next, in appendix A.3 we give the recursive construction
of GIVC. We proceed in appendix A.4.3 and appendix A.5 to analyze the GIVC construction and
show it implies Theorem A.1. In appendix A.6 we recall the KPY assumption.

35

https://eprint.iacr.org/2018/627

A.1 Quasi-Arguments
In this subsection we define quasi-arguments – non-interactive NP proof system with no-signaling
extraction property. The definition given is a slightly altered version of the original by Kalai et
al. [KPY19]. Namely, we don’t consider adversaries that pass auxiliary information along with
the attempted proof. Nonetheless, this weaker definition suffices for our needs and simplifies the
construction.

Convention. Let σ : I ⊆ [M]→ {0, 1} be a partial assignment for an M -variate 3CNF formula
ϕ. We say σ locally satisfies ϕ if every clause in ϕ that only contains variables in I is satisfied by
σ. We denote by JϕKσ the bit indicating whether or not σ satisfies ϕ.

Definition A.1 (Publicly Verifiable Quasi-Arguments for NP). A publicly verifiable non-interactive
quasi-argument for NP consists of three algorithms QA = (QA.G,QA.P,QA.P):

• QA.G(λ, ϕ, n,K) is a randomized algorithm that given a security parameter λ, an M -
variate 3CNF formula ϕ, input length n and a locality parameter K, outputs a prover key
pk and a verifier key vk.

• QA.P(pk, σ) is a deterministic algorithm that given a prover key pk and an assignment σ :
[M]→ {0, 1}, outputs a proof π.

• QA.V(vk, y, π) is a deterministic algorithm that given a verifier key vk, an input y ∈ {0, 1}n
and an arbitrary proof π, outputs ACC or REJ.

We make the following requirements:

1. Completeness: For every λ,K, n,M ∈ N such that K,n ≤ M ≤ 2λ, an M -variate 3CNF
formula ϕ and an assignment σ : [M]→ {0, 1} satisfying ϕ:

Pr

[
QA.V(vk, y, π) = ACC

∣∣∣∣ (pk, vk)← QA.G(λ, ϕ, n,K)
π ← QA.P(pk, σ)

]
= 1 ,

where y ∈ {0, 1}n such that ∀i ∈ [n] : yi = σ(i).

2. Efficiency: In the completeness experiment above:

• The running time of QA.G is bounded by poly(λ, |ϕ|) and the verifier key size is at most
n · poly(λ,K).

• The running time of QA.P is bounded by poly(λ, |ϕ|) and the proof size is at most
poly(λ,K).

• The running time of QA.V is bounded by n · poly(λ,K).

3. No-Signaling Extraction: Let M = M(λ), n = n(λ), K = K(λ) be polynomials. There
exists a PPT oracle machine E , called the no-signaling extractor, such that for anyM -variate
formula ϕ = ϕλ and efficient adversary A we have the following:

36

(a) Correct Distribution: For every efficient distinguisher D there exists a negligible func-
tion µ such that for every λ ∈ N:∣∣∣∣∣∣∣∣Pr

D(y) = 1

∣∣∣∣∣∣∣∣
(pk, vk)← QA.G(λ, ϕ, n,K)
(y, π)← A(pk, vk)
if QA.V(vk, y, π) = REJ :
set y = ⊥

− Pr
(y,σ)←EA(ϕ,∅)

[D(y) = 1]

∣∣∣∣∣∣∣∣ ≤ µ(λ) .

(b) Local Consistency: There exists a negligible function µ such that for every λ ∈ N and
set I ⊆ [M] of size at most K:

Pr
(y,σ)←EA(ϕ,I)

[
y = ⊥ or

∀i ∈ I ∩ [n] : yi = σ(i)
JϕKσ = 1

]
≥ 1− µ(κ) ,

where JϕKσ is the bit indicating if σ satisfies ϕ.

(c) No-signaling: For every efficient distinguisher D there exists a negligible function µ
such that for every λ ∈ N and sets I ′ ⊆ I ⊆ [M] of size at most K:∣∣∣∣ Pr

(y,σ)←EA(ϕ,I)
[D(y, σ

∣∣
I′

) = 1]− Pr
(y,σ′)←EA(ϕ,I′)

[D(y, σ′) = 1]

∣∣∣∣ ≤ µ(λ) ,

where σ
∣∣
I′

is the restriction of σ to the domain I ′.

We recall the following theorem from [KPY19].

Theorem A.2 (Quasi-Arguments under KPY Assumption, [KPY19]). Assuming the KPY assump-
tion, there exists publicly verifiable quasi-arguments for NP.

A.2 GIVC with Incremental Completeness
In this section we define generalized incremental verifiable computation (GIVC) schemes with in-
cremental completeness. The generalization of incremental verifible computation scheme is more
suitable for the recursive construction given below. It is a generalization in a couple of ways. First,
the proofs in GIVC attest that for a pair of configurations C,C ′ and a natural number t, we have
that C ′ is the result of applying Mx for t times starting with C. This is unlike the case of IVC,
where the configuration C is fixed to be M0

x , the first configuration of the computation. Second,
the public parameters are split to a verifier key and a prover key. This turns to be important for the
efficiency of the recursive construction.

Conventions. Let M be a Turing machine. Let S = S(λ) be the configuration size of M for
inputs of length λ. Let x be a string and denote by Mx : {0, 1}S → {0, 1}S the transition function
of M for input x. Recursively, for every i ∈ N denote M (i)

x = Mx ◦M (i−1)
x and M (1)

x = Mx.
Define

UM :=

(x, i, C, C ′)

∣∣∣∣∣∣∣∣
x ∈ {0, 1}∗
i ∈ N
C,C ′ ∈ {0, 1}S(|x|)

M
(i)
x (C) = C ′

 .

37

Definition A.2 (GIVC with Incremental Completeness). Let T = T (λ) be a time parameter. A
Generalized Incremental Verifiable Computation (GIVC) scheme for M , with incremental com-
pleteness, consists of three algorithms GIVC = (GIVC.G,GIVC.P,GIVC.V):

• GIVC.G(x) is a randomized algorithm that given x ∈ {0, 1}λ, outputs a prover key pk and a
verifier key vk.

• GIVC.P(pk, t, C, C ′, π) is a deterministic algorithm that given a prover key pk, a natural
number t, arbitrary configurations C,C ′ and arbitrary proof π, outputs a proof π′.

• GIVC.V(vk, t, C, C ′, π) is a deterministic algorithm that given a verifier key vk, a natural
number t, arbitrary configurations C,C ′ and arbitrary proof π, outputs ACC or REJ.

We make the following requirements:

1. Incremental Completeness:

(a) For every (x, t, C, C ′) ∈ UM such that t < T and candidate proof π ∈ {0, 1}∗:

Pr

[
GIVC.V(vk, t, C, C ′, π) = ACC =⇒
GIVC.V(vk, t+ 1, C,Mx(C

′), π′) = ACC

∣∣∣∣ (pk, vk)← GIVC.G(x)
π′ = GIVC.P(pk, t, C, C ′, π)

]
= 1 ,

where Mx is the transition circuit of M with input x.

(b) For every security parameter λ ∈ N, input x ∈ {0, 1}λ and configuration C ∈ {0, 1}S:

Pr [GIVC.V(vk, 0, C, C, ε) | (pk, vk)← GIVC.G(x)] = 1 ,

where ε is the empty proof.

2. Soundness: For every efficient adversary A, there exists a negligible function µ such that
for every λ ∈ N and x ∈ {0, 1}λ:

Pr

[
(x, t, C, C ′) 6∈ UM
GIVC.V(vk, t, C, C ′, π∗) = ACC

∣∣∣∣ (pk, vk)← GIVC.G(x)
(t, C, C ′, π∗)← A(x, pk, vk)

]
≤ µ(λ) .

3. Efficiency: The efficiency of the GIVC, denoted by TGIVC(λ), is the maximal worst-case run-
time among GIVC.G,GIVC.P,GIVC.V for input having security parameter λ. We require
TGIVC(λ) ≤ p(λ) for a fixed polynomial p.

In the following we define the notion of final verifier efficiency for a generalized incremental
computation scheme. Putting it simply, if T (λ) is the time parameter for a GIVC, the final verifier
efficiency is the run-time of the verifier when the time paramter is set to the final time t = T (λ).
The efficiency for the final time may very well be much smaller than the efficiency of the verifier
for an arbitrary time smaller than T (λ). Jumping forward, in the recursive construction we are able
to minimize the final verifier efficiency that in turn let us construct an efficient GIVC for arbitrary
time.

Definition A.3 (Final Verifier Efficiency). Let GIVC = (GIVC.G,GIVC.P,GIVC.V) be a general-
ized incremental verifiable computation scheme with incremental completeness having time pa-
rameter T (λ). The final verifier efficiency of GIVC is the worst-case run-time of GIVC.V for input
having security parameter λ and time parameter set to T (λ).

38

Notation. Let C,C ′ be configurations, t time, π proof and vk verifier key of GIVC. Let us denote
the following:

C
π−−→
t,vk

C ′ ⇐⇒ GIVC.V(vk, t, C, C ′, π) = ACC

A.3 Recursive GIVC Construction
Let M be a Turing machine with configuration size S(λ) ≤ cλ for a constant c. Let T = T (λ) and
B = B(λ) be polynomials. Let GIVC = (GIVC.G,GIVC.P,GIVC.V) be a generalized incremental
verifiable computation scheme with incremental completeness for M having time parameter T .
Assume without loss of generality that verification in GIVC for t = 0 is perfectly sound. Let L(λ)
be a bound on the final verifier efficiency of GIVC that is an efficiently computable function. Let
QA = (QA.G,QA.P,QA.V) be publicly verifiable quasi-arguments for NP.

In the following we construct GIVC′ = (GIVC′.G,GIVC′.P,GIVC′.V), a generalized incremental
verifiable computation scheme with incremental completeness for M having time parameter T ′ =
T ·B using GIVC and QA. We start by describing the 3CNF used by the quasi-argument.

Verification formula. Fix λ a security parameter and vk a verification key. Let ϕ be the 3CNF
formula corresponding to the computation of GIVC.V(vk, T, C, C ′, π) under Cook-Levin reduction.
Namely, the input to ϕ is a string of length ` = 2S + L parsed as (C,C ′, π) for configurations
C,C ′ and proof π padded to ` if needed. The witness to ϕ is a string of length polynomial in `.
For every input (C,C ′, π), there exists a witness w such that ϕ(C,C ′, π, w) = 1 if and only if
GIVC.V(vk, T, C, C ′, π) = ACC. Moreover, such witness w can be computed in time polynomial
in the running time of GIVC.V. Let K be the size of ϕ. There exists such a formula ϕ with
K = poly(L, S, λ) variables.

Let φ be the following formula over M = O(K ·B) variables:

φ(C0, CB, w = ({Ci}i∈[B−1], {πi}i∈[B], {wi}i∈[B])) :=
B∧
i=1

ϕ(Ci−1, Ci, πi, wi) .

Where the witness w to φ is parsed to w = ({Ci}i∈[B−1], {πi}i∈[B], {wi}i∈[B]). Let n = 2S be the
number of input variables for φ.

We are now ready to give the algorithm description of GIVC′. In the following φ, n,K are as
defined in the verification formula paragraph.

GIVC′.G(x)

Input: x ∈ {0, 1}λ.
Algorithm:
1. Sample (pk, vk)← GIVC.G(x).

2. Construct the formula φ using vk.

3. Sample (qpk, qvk)← QA.G(λ, φ, n,K).

4. Output pk′ = (x, pk, vk, qpk) and vk′ = (x, vk, qvk).

39

GIVC′.P(pk′, t, C, C ′, π)
Input:
1. Prover key pk′ = (x, pk, vk, qpk).

2. Time t ∈ [0, T ′ − 1] written as t = qT + r for r < T .

3. Configurations C,C ′ ∈ {0, 1}S .

4. Candidate proof π ∈ {0, 1}∗.
Algorithm:
1. Parse π = (C0, π1, . . . , πB, CB).

2. Compute for every i ∈ [B]:

C ′i :=

{
Mx(C

′) i ≥ q + 1

Ci otherwise
and π′i :=


ε i > q + 1

GIVC.P(pk, r, Ci−1, Ci, πi) i = q + 1

πi otherwise
.

3. If t < T ′ − 1, output π′ = (C ′0, π
′
1, . . . , π

′
B, C

′
B).

4. Else t = T ′ − 1, compute an assignment σ for φ using (π′i)
B
i=1, (C

′
i)
B
i=0 and vk. Output

π′ = QA.P(qpk, σ).

GIVC′.V(vk′, t, C, C ′, π)
Input:
1. Verifier key vk′ = (x, vk, qvk).

2. Time t ∈ [0, T ′] written as t = qT + r for r < T .

3. Configurations C,C ′ ∈ {0, 1}S .

4. Candidate proof π ∈ {0, 1}∗.
Algorithm:
1. If t = T ′, output the result of QA.V(qvk, (C,C ′), π).

2. Otherwise t < T ′, parse π = (C0, π1, . . . , πB, CB).

3. Verify the following:

C = C0
π1−−→
T,vk

. . .
πq−−→
T,vk

Cq
πq+1−−→
r,vk

Cq+1
πq+2−−→
0,vk

. . .
πB−−→
0,vk

CB = C ′ .

If pass output ACC, otherwise output REJ.

Parsing The Empty Proof. In the above, when parsing the empty proof π = ε as the vector
(C0, π1, . . . , πB, CB) we parse it as (C, ε, C, ε, . . . , ε, C) where C is the first configuration given
as input. Using this parsing, the empty proof pass as valid for t = 0 and C = C ′, as required by
incremental completeness.

40

Bound Final Verifier Size. Proofs for time t = T ′ are verified using QA.V which has efficiency
n · poly(λ,K). We modify the above verifier in the case t = T ′ to reject if the candidate proof π is
of size larger than the efficiency of QA.V. Doing so allow us to bound the final verifier efficiency
of GIVC′ in Claim A.1.

A.4 Analysis
In this section we analyze the construction given in appendix A.3

A.4.1 Recursive Step Efficiency

We assume w.l.o.g that T ′ ≤ 2S where recall S is the configuration size of M . Let L = L(λ) be
a bound on the final verifier efficiency of GIVC. Let TGIVC,TGIVC′ be the efficiency of GIVC and
GIVC′ respectively. By the construction and by the efficiency guarantee of QA we have

TGIVC′ ≤ TGIVC + poly(B,L, S, λ, |M |) ,

where the polynomial is independent of M,T and B. Next, in the following claim, we derive a
recursive bound on final verifier efficiency.

Claim A.1 (Recursive Efficiency). Let L(λ) be a bound on the final verifier efficiency of GIVC.
Then

L′ ≤ poly(L, S, λ) ,

is a bound on the final verifier efficiency of GIVC′. The polynomial is independent of M,T and B.

Proof sketch. We have that locality parameter K = poly(L, S, λ). It follows by the efficiency
guarantee of the quasi-arguments that L′ = poly(n,K, λ) bounds the final verifier efficiency of
GIVC′. Hence, L′ = poly(n,K, λ) = poly(L, S, λ).

A.4.2 Incremental Completeness

Fix a tuple (x, t, C, C ′) ∈ UM such that t < T ′ − 1, a proof π ∈ {0, 1}∗ and keys (pk′, vk′) ∈
Supp(GIVC′.G(x)). Parse π = (C0, π1, . . . , πB, CB), pk′ = (x, pk, vk, qpk) and vk′ = (x, vk, qvk).
Assume GIVC′.V(vk′, t, C, C ′, π) = ACC. We prove GIVC′.V(vk′, t + 1, C, C ′, π′) = ACC where
π′ = GIVC′.P(pk′, t, C, C ′, π).

Start with the case π 6= ε. Since π pass verification, for t = qT + r where r < T we have:

C = C0
π1−−→
T,vk

. . .
πq−−→
T,vk

Cq
πq+1−−→
r,vk

Cq+1
πq+2−−→
0,vk

. . .
πB−−→
0,vk

CB = C ′ . (1)

By our assumption that verification for time 0 in GIVC is of perfect soundness we have:

Cq+1 = · · · = CB = C ′ .

By incremental completeness of GIVC:

Cq
π′q+1−−−→
r+1,vk

Mx(Cq+1) and Mx(Cq+1)
ε−−→

0,vk
Mx(Cq+1) ,

41

where π′q+1 = GIVC.P(pk, r, C ′q, C
′
q+1, πq+1). Therefore:

C = C0 =
π1−−→
T,vk

. . .
πq−−→
T,vk

Cq
π′q+1−−−→
r+1,vk

Mx(Cq+1)
ε−−→

0,vk
. . .

ε−−→
0,vk

Mx(Cq+1) = Mx(C
′) .

By construction, this implies that π′ pass verification. For the case π = ε, note that by the way the
empty proof is parsed, (1) holds and hence the same argument proves π′ is accepted.

For t = T ′ − 1, by the above argument, the assignment σ computed by GIVC′.P satisfies φ. By
perfect completeness of QA the proof π′ is accepting. This concludes incremental completeness of
GIVC′. .

A.4.3 Security Analysis

In the security reductions given in this section, it will be more convenient to consider randomized
(non-uniform) adversaries. Although we model adversaries as deterministic circuits, this is without
loss of generality. Indeed, by hard-wiring the random coins that maximize the success probability
of the randomized adversary, we can construct a deterministic (non-uniform) adversary with no
worse success probability.

Let A′ be an efficient adversary that attempts to break the soundness of GIVC′. The following
claim is due to the soundness of GIVC.

Claim A.2. There exists a negligible function µ such that for every λ ∈ N and x ∈ {0, 1}λ we
have:

Pr

 t < T ′

(x, t, C, C ′) 6∈ UM
GIVC.V(vk′, t, C, C ′, π∗) = ACC

∣∣∣∣∣∣ (pk′, vk′)← GIVC′.G(x)
(t, C, C ′, π∗)← A′(x, pk′, vk′)

 ≤ µ(λ) .

Proof of claim. Let us denote the above probability by ε(x). Consider an adversaryA that attempts
to break GIVC as follows. On input (x, pk, vk) proceed to generate pk′, vk′ as GIVC′.G would after
sampling from GIVC.G. Simulate (t, C, C ′, π∗) ← A(x, pk, vk). Assume π∗ pass verification,
t < T ′ and (x, t, C, C ′) 6∈ UM . Parse π∗ = (C0, π

∗
1, . . . , π

∗
B, CB). Write t = qT + r for r < T . We

then have that:

C = C0

π∗1−−−−→
t1=T,vk

. . .
π∗q−−−−→

tq=T,vk
Cq

π∗q+1−−−−−→
tq+1=r,vk

Cq+1

π∗q+2−−−−−→
tq+2=0,vk

. . .
π∗B−−−−→

tB=0,vk
CB = C ′ .

Since (x, t, C, C ′) 6∈ UM , there must exists i ∈ [B] such that (x, ti, Ci, Ci+1) 6∈ UM . This index
can be found in polynomial time since T ′ = poly(λ). The adversary A finds the first such index i
and outputs (ti, Ci, Ci+1, π

∗
i).

Note, the distribution of the generated pk′, vk′ byA is the same those sampled from GIVC′.G(x).
Therefore, the success probability of A is at least ε(x). By the soundness of GIVC, since A is
efficient, there exists a negligible function µ, such that the success probability of A is at most
µ(λ). Hence ε(x) ≤ µ(λ). This concludes the proof of the claim.

The next claim deals with the case t = T ′. The analysis is essentially the same as in the
bootstrapping theorem by Kalai et al. replacing delegation schemes with GIVC schemes (can be
viewed as a more expressive delegation scheme). See Section 2.2.2 in [KPY19] for high-level
overview of the analysis. For the sake of completeness, we give the slightly modified version of
the analysis by Kalai et al. in what follows.

42

Claim A.3. There exists a negligible function µ such that for every λ ∈ N and x ∈ {0, 1}λ we
have:

Pr

 t = T ′

(x, t, C, C ′) 6∈ UM
GIVC.V(vk′, t, C, C ′, π∗) = ACC

∣∣∣∣∣∣ (pk′, vk′)← GIVC′.G(x)
(t, C, C ′, π∗)← A′(x, pk′, vk′)

 ≤ µ(λ) .

Proof of claim. Assume toward contradiction that there exists a polynomial p such that for in-
finitely many λ ∈ N there exists x ∈ {0, 1}λ such that

Pr

 t = T ′

(x, t, C, C ′) 6∈ UM
GIVC.V(vk′, t, C, C ′, π∗) = ACC

∣∣∣∣∣∣ (pk′, vk′)← GIVC′.G(x)
(t, C, C ′, π∗)← A′(x, pk′, vk′)

 ≥ 1

p(λ)
. (2)

Fix such λ and x. A random tape r of GIVC.G(x) is said to be bad if, when fixing r, the probability
in (2) is at least 1/2p(λ). By averaging, a 1/2p(λ) fraction of r’s are bad. Fix such bad r and let
(pk, vk) be the keys defined by r. Consider the following adversary for QA:
AQA(qpk, qvk):

1. Use (qpk, qvk) and (pk, vk) to obtain (pk′, vk′).

2. Simulate (t, C, C ′, π)← A′(x, pk′, vk′).

3. Let y = (C,C ′) and output (y, π).

Obtaining (pk′, vk′) is done the same way as by GIVC′.G. Let E be the no-signaling extractor for
the quasi-arguments. By the correct distribution property, we have for every efficient distinguisher
D and λ:

∣∣∣∣∣∣∣∣∣∣
Pr

D(y) = 1

∣∣∣∣∣∣∣∣
(qpk, qvk)← QA.G(λ, φ, n,K)
(y, π)← AQA(qpk, qvk)
if QA.V(qvk, y, π) = REJ :
set y = ⊥


−Pr

[
D(y) = 1

∣∣ (y, σ)← EAQA(φ, ∅)
]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) . (3)

If y 6= ⊥ it is parsed as (C,C ′). Given C, we denote for every j ∈ [0, B] the configuration
Cj = M

(T ·j)
x (C) that follows T · j steps after C.

Let CHEAT be the event that y 6= ⊥ and parsed to (C,C ′) such that C ′ 6= CB. By (2) and (3)
we have:

Pr
(y,σ)←EAQA (φ,∅)

[CHEAT] ≥ 1

poly(λ)
. (4)

For j ∈ [B] let Ij ⊆ [M] be the set of variables in φ describing Cj−1, Cj, πj, wj . Note that by
definition |Ij| = K. For j ∈ [B] let Expj be the experiment where sampling (y, σ)← EAQA(φ, Ij).

By the no-signaling property and (4), it follows that for every j ∈ [B]:

Pr
Expj

[CHEAT] ≥ 1

poly(λ)
. (5)

43

Since CHEAT implies that y 6= ⊥, by applying the local consistency property, for every j ∈ [B]
we have:

Pr
Expj

[
CHEAT =⇒ ∀i ∈ Ij ∩ [n] : yi = σ(i)

JφKσ = 1

]
≥ 1− negl(λ) .

In the following, let Cj−1, Cj, πj, wj be the values assigned by σ to the variables in Ij . If σ locally
satisfies φ then ϕ(Cj−1, Cj, πj, wj) = 1 and hence GIVC.V(vk, T, Cj−1, Cj, π) = ACC:

Pr
Expi

[
CHEAT
GIVC.V(vk, T, Cj−1, Cj, πj) = REJ

]
≤ negl(λ) . (6)

Also, in Exp1, if σ is consistent with the input y = (C,C ′) then C0 = C = C0:

Pr
Exp1

[
CHEAT
C0 6= C0

]
≤ negl(λ) . (7)

Similarly, in ExpB, if σ is consistent with the input y = (C,C ′) then CB = C ′. Recall that in the
event of CHEAT we have C ′ 6= CB. Hence:

Pr
ExpB

[
CHEAT
CB = CB

]
≤ negl(λ) . (8)

By no-signaling, for every i ∈ [B − 1] we have:∣∣∣∣Pr
Expi

[
CHEAT
Ci = Ci

]
− Pr

Expi+1

[
CHEAT
Ci = Ci

]∣∣∣∣ ≤ negl(λ) . (9)

By combining (5) to (9) and the fact B is a polynomial, it follows there exists j ∈ [B] such that:

Pr
Expj


CHEAT
Cj−1 = Cj−1

Cj 6= Cj

GIVC.V(vk, T, Cj−1, Cj, πj) = ACC

 ≥ 1

poly(λ)
. (10)

Given this, we can construct an adversary A for GIVC as follows.
A(x, pk, vk)

1. Emulate (y, σ)← EAQA(φ, Ij).

2. Let Cj−1, Cj, πj be the values assigned by σ to the corresponding variables in φ.

3. Output (T,Cj−1, Cj, πj).

Recall x is the fixed string such that (2) holds. Since (10) holds for every set of keys sampled by
GIVC.G with a bad random tape r and since a 1/2p(λ) fraction of r’s are bad:

Pr

[
(x, T, C, C ′) 6∈ UM
GIVC.V(vk, t, C, C ′, π∗) = ACC

∣∣∣∣ (pk, vk)← GIVC.G(x)
(T,C,C ′, π∗)← A(x, pk, vk)

]
≥ 1

poly(λ)
.

A contradiction to the soundness of GIVC.

Together, Claim A.2 and Claim A.3 proves the soundness of GIVC′.

44

A.5 Efficient IVC
In this section, we prove Theorem A.1. Fix constants c, ε > 0. Let α be a large enough constant
to be chosen later. Let M be any Turing machine with run-time T ≤ cλα, configuration size
S ≤ cλ and description size |M | ≤ c logα. In the following, we construct a GIVC scheme with
incremental completeness for M with efficiency TGIVC(λ) ≤ λεα. This implies the existence of
an IVC scheme with incremental completeness for M with efficiency O(λεα). Indeed, we may
hardwire the first configuration C to be M0

x and take the public parameters pp to be the tuple
(vk, pk). It is not hard to check that by doing so, with appropriate syntax adjustments, we result
in an IVC scheme with incremental completeness for M with said efficiency. By taking α to be
larger and using the assumption λ > 1, we get the desired result (without the big O notation).

We proceed to construct the GIVC scheme.

Claim A.4 (Base Case). There exists a GIVC scheme with incremental completeness for M with
time parameter 1 of efficiency poly(S, λ, |M |).

Proof. The content of the proofs of the scheme is ignored, verification is by computing the next
configuration and comparing. Implementing Mx, the successor circuit of M with input x, can be
done in time poly(S, λ, |M |).

Let d be a constant to be chosen later. Let GIVC be the scheme resulted in applying the recursive
construction, for d times, with parameter B = T 1/d, starting with the base case scheme. By the
results in appendix A.4.1 we have

TGIVC(λ) ≤ d · TO(1/d) · (S|M |λ)2O(d)

= d · TO(1/d) · (c · log2 α · λ)2O(d)

,

The last equality is due to S ≤ cλ and |M | ≤ c log2 α. Let η be a constant guaranteed by the O
notation. Note that η is independent of M,T and B. We have

TGIVC(λ) ≤ d · T η/d · (c · log2 α · λ)2η·d ≤ d · (cλ)η·α/d · (c · log2 α · λ)2η·d ,

where the last inequality is for α > 1. Since logλ is an increasing function, it suffices to show that
by choice of d we have logλ TGIVC ≤ εα. For d = log2 α/2η we have:

logλ TGIVC/α ≤
logλ(log2(α)/2η)

α
+

2η2

logα
+

logλ(c · log2 α · λ)√
α

−−−→
α→∞

0 .

Proving that logλ TGIVC ≤ εα for large enough α. Note that we used the fact c and η are indepen-
dent of α and ε. This concludes the proof of Theorem A.1.

A.6 The KPY Assumption
The KPY assumption is over a group G of prime order p equipped with bilinear map.

Assumption A.1 (KPY Assumption). For every α(λ) = O(log λ), given the following matrix of
group elements: (

gs
jti
)
i∈[0,2]
j∈[0,α]

=

 gs
0

gs
1

. . . gs
α

gs
0t gs

1t . . . gs
αt

gs
0t2 gs

1t2 . . . gs
αt2

 ,

for random g ∈ G and s ∈ Zp, efficient adversaries fail to distinguish between the case t = s2α+2

and the case t is random independent element in Zp, except with negligible advantage.

45

B Hardness from a Computational Reduction
In this section we prove Proposition 4.1 and Proposition 4.2. Both propositions are meant to
show that a computational Karp reduction from an underlying hard search problem (in worst-
case/average-case) to LS, implies the hardness of LS (in worst-case/average-case, respectively).

B.1 Worst-Case Hardness
In this subsection we prove Proposition 4.1 establishing non-uniform worst-case hardness given a
computational Karp reduction. We use n to denote the size of LS instances and λ the size of R
instances.

Proposition 4.1. Let R be an FNP search problem having a computational Karp reduction to LS.
Assume there exists a adversary A = {An}n∈N of polynomial-size s(n) solving LS in the worst-
case. Then there exists an adversary A′ = {Aλ}λ∈N solving R in the worst-case. The size of A′
is

size(A′) = poly(s(TRed),TR, λ) ,

where TRed(λ) is the efficiency of the reduction and TR(λ) is the efficiency of the NP verification
R(x, y).

Proof. The proof relies on the non-uniform derandomization technique employed by Adleman’s
theorem proof (BPP ⊆ P/Poly). Let A = {An}n∈N be an efficient adversary of size s(n) solving
LS. Consider the following randomized circuit family attempting to solve R.

C(x; r):

1. Sample (S,F)← X (x).

2. Simulate w′ ← A(S,F).

3. Output w = W (w′).

Since A is an efficient adversary, we can apply the computational soundness of the reduction.
Therefore, there exists a negligible function µ such that for every λ ∈ N and x ∈ {0, 1}λ for which
Rx is non-empty:

Pr
r

[w 6∈ Rx | w = C(x; r)] ≤ µ(λ)

Consider the randomized circuit family C ′, that amplify the soundness error of C using repetition
with independent random coins. In the following we partition r = r1||r2|| . . . ||rλ.

C ′(x; r):

1. For i = 1, . . . , λ:

(a) Sample w ← C(x; ri)

(b) If R(x,w) = 1, output w.

2. Output ⊥

46

Since we use independent random coins in the above, we have for every λ ∈ N and x ∈ {0, 1}λ
for which Rx is non-empty:

Pr
r

[w 6∈ Rx | w = C ′(x, r)] ≤ µ(λ)λ <︸︷︷︸
for large λ

2−λ

By union bound, for large enough λ ∈ N, there exists random coin tosses rλ such that C ′(x; rλ) is
correct for every input x ∈ {0, 1}λ such that Rx is non empty. Indeed for large enough λ ∈ N:

Pr
r

[
∃x ∈ {0, 1}λ, Rx 6= ∅ s.t. C ′(x; r) 6∈ Rx

]
≤

∑
x∈{0,1}λ,Rx 6=∅

Pr
r

[C ′(x; r) 6∈ Rx] < 2λ · 2−λ = 1

Therefore, we can consider A′ that simulates C ′ with fixed coins being rλ. We have that for large
enough λ, the adversary A′ returns a correct witness w for every x that has witness. Since we can
verify if w is a witness for x, we can also handle inputs with no witness with the same asymptotic
efficiency. For small value λ we simply hard-wire A′ to answer correctly. We have that A′ solves
R for every input.

Efficiency Analysis. We have that s(n) = Ω(n) by trivial LS instances. The size of C is:

size(C) = O(TRed(λ) + s(TRed(λ))) = O(s(TRed(λ))) .

The circuit C ′ simulate C for λ times and every time applies the verification algorithm. Therefore
of size:

size(C ′) = O (λs(TRed(λ)) + λp(TR(λ)))) ,

for a fixed polynomial p (the polynomial p is due to Turing machine simulation). Hence, the size
of A′ is poly(s(TRed),TR, λ) for a fixed polynomial.

B.2 Average-Case Hardness
In this subsection we prove Proposition 4.2.

Proposition 4.2. If there exists hard-on-average FNP problem R, with a computationally sound
Karp reduction from R to LS, then LS is hard-on-average.

Proof of Proposition 4.2. Let D be an efficient sampler such that (R,D) is hard-on-average. In
the following, we construct an efficient sampler HARD of LS such that (LS,HARD) is hard-on-
average. Let (X ,W) be the computational sound Karp from R to LS guaranteed by the statement.
The sampler HARD(1λ) start by sampling x ← D(1λ) and output (S,F) ← X (x). It is efficient
by the efficiency of X and D.

Let A be an efficient adversary attempting to find a local maximum for (S,F) ← HARD(1λ)
with success probability ε(λ). That is

ε(λ) = Pr

[
F(S(w′)) ≤ F(w′)

∣∣∣∣ (S,F)← HARD(1λ)
w′ ← A(S,F)

]
.

47

Let us denote

p1(λ) = Pr

 F(S(w′)) ≤ F(w′)
w ∈ Rx

∣∣∣∣∣∣∣∣
x← D(1λ)
(S,F)← X (x)
w′ ← A(S,F)
w =W(w)



p2(λ) = Pr

 F(S(w′)) ≤ F(w′)
w 6∈ Rx

∣∣∣∣∣∣∣∣
x← D(1λ)
(S,F)← X (x)
w′ ← A(S,F)
w =W(w)


By law of total probability and the definition of HARD we have that:

ε(λ) = p1(λ) + p2(λ) .

We have that p1 is negligible since (R,D) is hard-on-average and p2 is negligible by the computa-
tional soundness of the reduction.

Claim B.1. p1(λ) ≤ negl(λ)

Proof of claim. Let A′ be an efficient adversary attempting to solve R for instances x ← D(1λ)
defined as follows.
A′(x):

1. Sample (S,F)← X (x).

2. Simulate w′ ← A(S,F).

3. Output w =W(w′).

Take note that the above is randomized while we model adversaries as deterministic circuits. In-
stead of sampling we hardwire intoA′ the random coins that maximize the success probability. We
now have by that (R,D) is hard-on-average:

p1(λ) = Pr

 F(S(w′)) ≤ F(w′)
w ∈ Rx

∣∣∣∣∣∣∣∣
x← D(1λ)
(S,F)← X (x)
w′ ← A(S,F)
w =W(w)


≤ Pr

[
w ∈ Rx

∣∣∣∣ x← D(1λ)
w ← A′(x)

]
≤ negl(λ) .

This concludes the proof of the claim.

Claim B.2. p2(λ) ≤ negl(λ)

Proof of claim. We have, by the computational soundness of the reduction, proven in Theorem 4.1,
that there exists a negligible function µ such that for every λ ∈ N and x ∈ {0, 1}λ with non-empty
Rx:

qx = Pr

 F(S(w′)) ≤ F(w′)
w 6∈ Rx

∣∣∣∣∣∣
(S,F)← X (x)
w′ ← A(S,F)
w =W(w)

 ≤ µ(λ) .

48

By averaging we get the result.

p2(λ) = Pr

 F(S(w′)) ≤ F(w′)
w 6∈ Rx

∣∣∣∣∣∣∣∣
x← D(1λ)
(S,F)← X (x)
w′ ← A(S,F)
w =W(w)

 = E [qx]
x←D(1λ)

≤ µ(λ) .

This concludes the proof of the claim.

We conclude that ε(λ) = p1(λ)+p2(λ) ≤ negl(λ). This concludes the proof of the proposition.

49

	Introduction
	Our Results

	Technical Overview
	Hardness via Incremental Computation
	Incremental Completeness
	Obtaining IVC with Incremental Completeness
	Unconditional Hardness in the Random Oracle Model
	More Related Work on Total Search Problems

	Preliminaries
	Standard Computational Conventions
	Search Problems
	Average-Case Hardness of Search Problem

	PLS Hardness from IVC
	IVC with Incremental Completeness
	Computationally Sound Karp Reduction
	The Hardness Reduction
	Security Analysis
	Applying the Reduction

	Instantiation under the KPY Assumption and ETH
	IVC From KPY Assumption
	Fixed Space Polynomial Hardness via ETH
	Putting Things Together

	Unconditional PLS Hardness in the ROM
	Graph Related Preliminaries
	Modified DLM
	Hard instances.
	Depth Robust Instances

	IVC under KPY Assumption
	Quasi-Arguments
	GIVC with Incremental Completeness
	Recursive GIVC Construction
	Analysis
	Efficient IVC
	The KPY Assumption

	Hardness from a Computational Reduction
	Worst-Case Hardness
	Average-Case Hardness

