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Preface

Spring school on Combinatorics has been a traditional meeting organized for more than 40 years
for faculty and students participating in the Combinatorial Seminar at Faculty of Mathematics and
Physics of the Charles University. It is internationally known and regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been
the case for several years, this Spring School is supported by Computer Science Institute (IÚUK)
of Charles University, the Department of Applied Mathematics (KAM) and by some of our grants
(SVV, UNCE, Progres). This year we are glad we can also acknowledge generous support by the
RSJ Foundation.
The Spring Schools are entirely organized and arranged by our students. The topics of talks are
selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science
Institute (IÚUK) of Charles University as well as from other participating institutions. In contrast,
the talks themselves are almost exclusively given by students, both undergraduate and graduate.
This leads to a unique atmosphere of the meeting, which helps the students in further studies and
their scientific orientation.
This year the Spring School is organized in Pastviny (in Orlické mountains in northeastern Bohemia)
with a great variety of possibilities for outdoor activities.

Robert Šámal, Pavel Veselý
Petr Chmel, Barbora Dohnalová, Júlia Križanová

KAMKAM
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Series Talks

Martin Černý
cerny@kam.mff.cuni.cz

It’s Bonus Time: Who Deserves What in Your Startup?
A Cooperative Game Theory Approach.

as part of series Cooperative game theory

Introduction
Startups today often try to stand out not just with their ideas, but also in how they organize
their work and reward their employees. Many adopt unconventional rules, team structures, or
even alternative ways of distributing pay. But when compensation doesn’t feel fair, it can lead to
frustration and lower motivation. In this talk, we’ll take a closer look at how cooperative game
theory can help us think about this problem. Specifically, we’ll explore what tools and concepts
it offers for designing fair payment schemes in startups—so that team members feel that their
contributions are properly recognized and rewarded.

Cooperative Games: Where We Begin
We denote our set of employees as N = {1, 2, . . . , n}. To design fair compensation, we consider
what value each group of employees can generate by cooperating. This leads us to the classical
notion of a cooperative game, as introduced by von Neumann and Morgenstern in [3].
Definition 1 (Cooperative Game) A cooperative game is a pair (N, v) where:

• N is a finite set of players,
• v : 2N → R is a characteristic function with v(∅) = 0,
• v(S) represents the worth of coalition S ⊆ N .

In the world of cooperative games, when the goal is to fairly divide the value of the grand coalition
v(N) among individual players, the most recognized solution concept is the Shapley value [4].
Definition 2 (Shapley Value) For a game (N, v), the Shapley value φi(v) of player i ∈ N is:

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n! · [v(S ∪ {i})− v(S)] .

Generalized Games: When Things Get More Complicated
So far, we have assumed that any group of employees (players) can freely cooperate and that the
value of their cooperation is always known. Unfortunately, real-world situations are rarely that
simpleMore realistic settings where additional constraints or uncertainties come into play.
1. Restricted Cooperation. In many settings, not all players can cooperate freely—perhaps due
to communication limits, hierarchy, or practical constraints. Myerson [2] was the first to formalize
this idea by modeling cooperation possibilities using a graph: two players can cooperate if there is
a direct link between them, and larger groups can cooperate if they form a connected component.
This leads to the concept of games on graphs and the associated Myerson value.
Definition 3 (Game on a Graph) A game on a graph is a triple (N, v, G) where:
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• N is a finite set of players,
• G = (N, E) is an undirected graph defining feasible communication,
• v : F → R is a characteristic function defined on

F = {S ⊆ N | G[S] is connected}.
Definition 4 (Myerson Value) Let (N, v, G) be a game on a graph. For any coalition S ⊆ N ,
let C(S) denote the set of connected components of the induced subgraph G[S]. Define the extended
characteristic function vG : 2N → R by

vG(S) =
∑

C∈C(S)
v(C).

The Myerson value of player i ∈ N is then given by

φM
i (v, G) =

∑
S⊆N\{i}

|S|!(n− |S| − 1)!
n! [vG(S ∪ {i})− vG(S)] .

2. Incomplete Information about Coalition Values. Sometimes, we simply don’t know what
certain groups of players would achieve together. This may happen if players are newly hired and
haven’t yet interacted, or if the company assigns tasks to fixed project teams, and we only observe
the value produced by those specific teams. In such cases, we face an incomplete game—a setting
where only some coalition values are known.
Definition 5 (Incomplete Game) An incomplete cooperative game is a triple (N, v,K) where:

• N is a finite set of players,
• K ⊆ 2N is a set of known coalitions
• v : K → R is a partial characteristic function.

When coalition values are partially unknown, we may still want to assign fair payoffs based on
what we know. For this, we use a refined solution concept that extends the Shapley value to
such uncertain settings. One such approach is the UD (Uniform-dividend) value [1], which aims to
preserve fairness even under ambiguity.
Definition 6 (UD-value) Given an incomplete game (N,K, v), the uniform-dividend value is

ΦKi (v) =
∑

S⊆N
i∈S

δKv (S)
|S|

,

where the values δKv (S) are uniquely determined by:∑
T⊆S δKv (T ) = v(S) for all S ∈ K, δKv (S) = δKv (T ) if cK(S) = cK(T ).

Bibliography
[1] Martin Černý. A New Value for Cooperative Games on Intersection-Closed Systems. arXiv preprint

arXiv:2501.05169 [cs.GT], 2025. https://doi.org/10.48550/arXiv.2501.05169

[2] Roger B. Myerson. Graphs and Cooperation in Games. Mathematics of Operations Research, 2(3):225–229, 1977.

[3] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, 1944.

[4] Lloyd S. Shapley. A Value for n-Person Games. In Contributions to the Theory of Games II (H. W. Kuhn and
A. W. Tucker, eds.), Annals of Mathematics Studies, vol. 28, pp. 307–317, Princeton University Press, 1953.
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Richard Mužík
richard@imuzik.cz

Integer cooperative game theory
as part of series Cooperative game theory

Introduction
In this talk, we explore cooperative game theory in the context of integer-valued utilities and
outcomes. Motivated by the realism of indivisible resources, we examine how integer constraints
impact both game properties and solution concepts. We introduce and study two new classes of
games—c-bounded and c-tight—and analyze their connections to established concepts like convexity
and superadditivity. Additionally, we propose several new integer-valued analogues of the Shapley
value and compare their properties with the classical version. The talk also includes an investigation
of the nucleolus in the integer setting, highlighting key differences from the traditional, real-valued
approach.
Definition 1 The integer cooperative game is a pair (N, vI), where N is a finite set of players and
vI : 2N → Z is a characteristic function. Furthermore, vI(∅) = 0.
Definition 2 For integer cooperative game GI ∈ Gn

I , the following sets are defined:

• Integer imputation set: IZ(GI) = I(GI) ∩ Zn,

• Integer dual imputation set: I⋆
Z(GI) = I⋆(GI) ∩ Zn.

Definition 3 Let c ∈ N0. A cooperative game (N, v) is c-tight if it holds that
∀S ⊆ N : 0 ≤ v(S) ≤ c ∧ v(N) = c.

Definition 4 Let c ∈ N0. A cooperative game (N, v) is c-bounded if it holds that
∀S ⊆ N : 0 ≤ v(S) ≤ c.

Theorem 5 Let c, n, k ∈ N and k ≤ n. The number of c-tight integer k-games is given by((
n
k

)
− 1 + c

c

)
.

Definition 6 For an integer cooperative game GI ∈ Gn
I , the Floor Shapley value ⌊φ⌋(GI) is given

by ⌊φ⌋(GI) = ⌊φ(GI)⌋ .

Definition 7 For an integer cooperative game GI = (N, vI) ∈ Gn
I , the Efficient Floor Shapley value

φE(GI) is defined as follows:

1. Compute the Floor Shapley value ⌊φ⌋(GI) and the Shapley value φ(GI).

2. Compute the weights wi = φi(GI)− ⌊φ⌋i(GI) for all i ∈ N .

3. Sort the weights in descending order such that if multiple players have the same weight, then
their ordering is uniformly random.

4. Each player receives his Floor Shapley value. Additionally, the top k players, where k =
vI(N)−∑i∈N ⌊φ⌋i(vI) = w(N), receive one extra unit.
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Definition 8 For an integer cooperative game GI ∈ Gn
I , the Probabilistic Efficient Floor Shapley

value φE(v) is defined as follows:

1. Compute the Floor Shapley value ⌊φ⌋(GI) and the Shapley value φ(GI).

2. Compute the remainders p̃i = φi(GI)− ⌊φ⌋i(GI) for all i ∈ N .

3. Compute the probabilities pi = p̃i∑
j∈N

p̃j
for all i ∈ N .

4. Each player receives his Floor Shapley value and additionally, each unit of the remainder with
probability pi, i.e., each unit of p̃(N) = ∑

j∈N p̃j is given to player i with probability pi.

Theorem 9 The Probabilistic Efficient Floor Shapley value φE satisfies the following properties for
all integer games (N, vI), (N, wI) ∈ Gn

I :

1. The expected value is the same as the Shapley value:
E[φE(vI)] = φ(vI),

2. Axiom of efficiency: ∑
i∈N

φE
i (vI) = vI(N),

3. Axiom of expected symmetry:
∀i, j ∈ N(∀S ⊆ N \ {i, j} : vI(S ∪ i) = vI(S ∪ j))⇒ E[φE

i (vI)] = E[φE
j (vI)],

4. Axiom of null player:
∀i ∈ N(∀S ⊆ N : vI(S) = vI(S ∪ i)) =⇒ φE

i (vI) = 0,

5. Axiom of expected additivity:
E[φE(vI + wI)] = E[φE(vI)] + E[φE(wI)].

Definition 10 Let || • || be a vector norm. The Closest Lattice Shapley (CLS) value of integer
cooperative game GI ∈ Gn

I is given by φW(GI) = minx∈WZ(GI) ||φ(GI)− x||.
Proposition 11 The CLS value:

• exists for all integer games GI ∈ Gn
I ,

• is not unique in general,

• depends on the choice of the norm,

• is different from the Efficient Floor Shapley value.

Definition 12 For an integer cooperative game GI ∈ Gn
I , the integer nucleolus ηZ(GI) is defined

as
ηZ(GI) = {x ∈ IZ(GI) | ∀y ∈ IZ(GI) : ΘZ(x) ⪯lex ΘZ(y)} .

Theorem 13 For an integer cooperative game GI ∈ Gn
I , it holds

IZ(GI) ̸= ∅ =⇒ ηZ(GI) ̸= ∅.
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Theorem 14 For an integer cooperative game GI ∈ Gn
I , it holds

ηZ(GI) ̸= ∅ ⇐⇒ η(GI) ̸= ∅.
Theorem 15 For an integer cooperative game GI ∈ Gn

I the nucleolus is not necessarily a single
point solution concept.
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David Ryzák
david.ryzak99@gmail.com

Fair shares in discrete fair division
as part of series Cooperative game theory

Introduction
What if a group of people wants to fairly divide a set of indivisible resources or objects? Discrete
fair division studies such questions and in such settings, standard fairness notions like the maximin
share (MMS) or envy-freeness (EF) are often considered. However, these concepts do not always
guarantee the existence of a feasible allocation, even when players have additive valuations so they
might be too strong in some cases.
Moreover, if players are allowed to choose which fairness concept to apply, they may have conflicting
preferences, leading to disagreements.
To address this issue, we introduce the concept of a fair share: a fairness notion that is both feasible
and universally acceptable.
Definition 1 (Fair division instance) Let N = {1, . . . , n} be a set of n players and M a finite
set of indivisible goods. Each player i ∈ N has a valuation function vi : 2M → R≥0, which is
assumed to be additive, i.e., vi(S) = ∑

g∈S vi({g}) for any S ⊆M .
Definition 2 (Feasible Fairness Concept) A fairness concept F is said to be feasible for a class
of valuation functions C if for every instance with:

• a set N = {1, . . . , n} of agents,

• a set M of indivisible goods, and

• a valuation profile (v1, . . . , vn),

there exists an allocation (A1, . . . , An) such that the allocation satisfies the fairness concept F with
respect to the valuations (v1, . . . , vn).
Definition 3 (Proportional Share (PROP)) An allocation (A1, . . . , An), where each Ai ⊆ M
and Ai ∩ Aj = ∅ for i ̸= j, satisfies proportionality if for every player i ∈ N ,

vi(Ai) ≥
vi(M)

n
.

Definition 4 (Envy-Freeness (EF)) An allocation is envy-free if no player prefers another player’s
bundle to their own. That is, for every pair i, j ∈ N ,

vi(Ai) ≥ vi(Aj).
Definition 5 (Maximin Share (MMS)) The maximin share of player i is defined as the maxi-
mum value player i can guarantee themselves by partitioning the goods into n bundles and receiving
the least valuable one (according to their own valuation). Formally,

MMSi = max
{P1,...,Pn}∈Πn(M)

min
j=1,...,n

vi(Pj),

where Πn(M) denotes the set of all n-partitions of M . An allocation satisfies the MMS condition if
vi(Ai) ≥ MMSi for all i ∈ N.
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Definition 6 (Share function) A share function (or simply share) s for a class of valuations C
is a function that outputs a real number s(v, n) when given an additive valuation function v ∈ C over
a set of items M , and the number of agents n. The function must satisfy the following properties:

• Realizability: For every v and every n, it holds that
s(v, n) ≤ max

S⊆M
v(S).

• Name Independence: Renaming the items does not change the value of the share.

Given a share function s, a bundle S ⊆M is acceptable for an agent with valuation v if it satisfies:
v(S) ≥ s(v, n).

Definition 7 (Self-Maximizing Share) A share function s is self-maximizing if for every set M
of items and number of agents n, for every true additive valuation v and every reported additive
valuation v, it holds that

ŝv(v) = ŝ(v, n) ≥ ŝv(v′),
Definition 8 (ρ-dominating share) Let ρ > 0. A share function s′ ρ-dominates (or simply
dominates if ρ = 1) another share function s if

s′(v, n) ≥ ρ · s(v, n)
for every additive valuation v. We say that s′ is ρ-dominating if it ρ-dominates every feasible share
function s for additive valuations.

Bibliography

[1] Moshe Babaioff, Uriel Feige. Fair Shares: Feasibility, Domination and Incentives EC ’22: Proceedings of the
23rd ACM Conference on Economics and Computation

[2] Moshe Babaioff, Uriel Feige. Share-Based Fairness for Arbitrary Entitlements
https://arxiv.org/abs/2405.14575

[3] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing approximate maximin
shares J. ACM, 65(2):8:1–8:27, 2018.

10



David Sychrovský
sychrovsky@kam.mff.cuni.cz

Presented paper by Sychrovský et al.
Approximating Nash Equilibria in General-Sum Games via
Meta-Learning as part of series Cooperative game theory

(https://arxiv.org/abs/2504.18868)

Introduction
Nash equilibrium is perhaps the best-known solution concept in game theory. Such a solution
assigns a strategy to each player which offers no incentive to unilaterally deviate. While a Nash
equilibrium is guaranteed to always exist, the problem of finding one in general-sum games is
PPAD-complete, generally considered intractable. Regret minimization is an efficient framework
for approximating Nash equilibria in two-player zero-sum games. However, in general-sum games,
such algorithms are only guaranteed to converge to a coarse-correlated equilibrium (CCE), a solution
concept where players can correlate their strategies. In this work, we use meta-learning to minimize
the correlations in strategies produced by a regret minimizer. This encourages the regret minimizer
to find strategies that are closer to a Nash equilibrium. The meta-learned regret minimizer is still
guaranteed to converge to a CCE, but we give a bound on the distance to Nash equilibrium in
terms of our meta-loss. We evaluate our approach in general-sum imperfect information games.
Our algorithms provide significantly better approximations of Nash equilibria than state-of-the-art
regret minimization techniques.

Bibliography

[1] David Sychrovský and Christopher Solinas and Revan MacQueen and Kevin Wang and James R. Wright and
Nathan R. Sturtevant and Michael Bowling, Approximating Nash Equilibria in General-Sum Games via Meta-
Learning, In: arXiv preprint, 2025, URL: https://arxiv.org/abs/2504.18868

11

https://arxiv.org/abs/2504.18868


Anna Havelková
anna.havelka@seznam.cz

Who Can Join the Team? Hierarchy in Restricted Cooperation Games
as part of series Cooperative game theory

Introduction
Cooperation in groups is rarely unconstrained. In organizations, projects, and decision-making
bodies, certain players may only act once others have approved or participated. Such settings
require generalizing traditional cooperative games to account for restrictions in coalition formation.
This talk explores how to assign fair values to players in cooperative games where not all coalitions
are feasible. Specifically, we focus on games with permission structures and antimatroids.

From Classical to Structured Games
In a transferable utility (TU) cooperative game (N, v), any subset of players S ⊆ N is allowed to
form a coalition, and the function v assigns a value to each such coalition.
In structured settings, not all coalitions are feasible. The feasibility of S may depend on whether
certain players precede others (e.g., hierarchically). To formalize this, we define the set of feasibility
structure Φ ⊆ 2N .
Definition 1 (Feasibility Structure) Let N be a finite set. A subset Φ ⊆ 2N is a feasibility
structure if it satisfies:

• ∅ ∈ Φ,
• For each S ∈ Φ, if T ⊆ S, then T ∈ Φ (downward closed).

Antimatroid Feasibility
Definition 2 (Antimatroid) A collection Φ ⊆ 2N is an antimatroid if:

• ∅ ∈ Φ,
• S, T ∈ Φ⇒ S ∪ T ∈ Φ,
• S ∈ Φ, S ̸= ∅ ⇒ ∃i ∈ S : S \ {i} ∈ Φ,
• ∀i ∈ N,∃S ∈ Φ such that i ∈ S.

These properties reflect settings where coalitions are built up incrementally with non-circular de-
pendencies. Antimatroids are especially useful in contexts where there are multiple valid paths to
achieving authorization.

Restricted Games and the Shapley Value
Let v : Φ→ R be a characteristic function defined only on feasible coalitions. We define a restricted
game vr for every S ⊆ N by:

vr(S) = v(S∗),
where

S∗

is the largest feasible subset of S.

12



Definition 3 (Permission-Based Shapley Value) The Shapley value with restricted feasibility
is given by:

φΦ
i (v) = φi(vr),

where φi is the classical Shapley value applied to the restricted game.

Axioms and Uniqueness
The value φΦ satisfies:

• Efficiency: ∑i∈N φΦ
i (v) = vr(N),

• Dummy Player: If v(S ∪ {i}) = v(S) whenever S ∪ {i} ∈ Φ, then φΦ
i (v) = 0,

• Fairness: Structure-respecting versions of symmetry and monotonicity.

Theorem 4 (Uniqueness) The value φΦ is the unique function satisfying linearity, efficiency,
dummy player, and structure monotonicity on antimatroid feasibility domains.

Applications

• Strategic Project Teams: Where some members must prepare groundwork before others
join.

• Knowledge Hierarchies: Access granted only after prerequisite understanding.
• Voting Blocks: Where influence depends on layered approval structures.

Bibliography

[1] Q. Vandendriessche et al. Games with a permission structure – A survey on generalizations and applications.
Annals of Operations Research, 2017.
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Adam Beneš
ad.benes@gmail.com

Presented paper by Oded Regev and Noah Stephens-Davidowitz
A simple proof of a reverse Minkowski theorem for integral lattices

(https://arxiv.org/pdf/2306.03697)

Introduction
A lattice L ⊂ Rn is the set of integer linear combinations of some linearly independent basis vectors.
For any integral lattice L ⊂ Rn (that is, a lattice L such that the inner product ⟨y1, y2⟩ is an integer
for all y1, y2 ∈ L) and positive k ∈ Z it holds, that N=k(L) := | {y ∈ L : ∥y∥2 = k} | ≤ 2

(
n+2k−2

2k−1

)
.

This is an opposite bound to Minkowski theorem. It is not hard to see that N≤1(L) ≤ 2n + 1.
However it is not true that N≤k(L) ≤ N≤k(Zn).

Definitions
Definition 1 Integral lattice L ⊂ Rd is a lattice that has inner product ⟨y1, y2⟩ integer for all
y1, y2 ∈ L.
Definition 2 N≤k(L) : |{y ∈ L : ∥y∥2 ≤ k}|
Definition 3 N=k(L) : |{y ∈ L : ∥y∥2 = k}|

Theorems
Observation 4 Given lattice L ⊂ Rn it holds that,

N≤1(L) ≤ N≤1(Zn) = 2n + 1
Theorem 5 Given integral lattice L ⊂ Rn,

N≤k(L) ≤ 2
(

n + 2k − 1
2k − 1

)
− 1

Theorem 6 Given integral lattice L ⊂ Rn,

N=k(L) ≤ 2
(

n + 2k − 2
2k − 1

)
Theorem 7 Given integral lattice L ⊂ Rn,

N≤k(L) ≤ 2k(k − 1)! · nk + o(nk)
Theorem 8 Given integral lattice L ⊂ Rn and constant C > 0,

∑
y∈L

exp(−2 log(2n)∥y∥2) ≤ 1 + C

n
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Theorem 9 Given integral lattice L ⊂ Rn,

N≤2(L) ≤ f(n) + 1

Where f(n) =


126 if n = 7
240 + 2(n− 8)2 if 8 ≤ n ≤ 11
2n2 otherwise

Theorem 10 Given integral lattice L ⊂ Rn with det(L) ≤ 1 and k > 0,

N≤k(L) ≥ 2−n · vol(
√

kBn
2 )

Theorem 11 Given integral lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices L′ ⊆ L and k > 0
and constant C > 0,

N≤k(L) ≤ 2 exp(C · k · log2(2n))
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Petr Chmel
chmel@iuuk.mff.cuni.cz

Catalytic Space: Using Your Family Pictures for Computation

Motivation
Definition 1 (STCONN)
Input: Directed graph G and two of its vertices s, t.
Output: Decide whether there is a path from s to t in G.
Theorem 2 (Savitch, [1]) STCONN can be solved in space O(log2 n) (and the algorithm uses
nΘ(log n) time). As a corollary, NSPACE(s(n)) ⊆ DSPACE(s(n)2).

Catalytic computation
Definition 3 (Catalytic computation, CSPACE, [3]) Let s, w : N → N be non-decreasing
functions. A language L is decided by a catalytic Turing machine M in space s(n) using cat-
alytic space w(n) if on every input x of length n and arbitrary string a of length w(n) written on the
auxiliary tape the machine halts with a on its auxiliary tape, during its computation M uses (acce-
ses) at most s(n) tape cells on its work tape and w(n) cells initially containing a on its auxiliary
tape, and M correctly outputs whether x ∈ L.
We define CSPACE(s(n), w(n)) to be the set of all languages decidable by a catalytic machine in
space s(n) with catalytic space w(n). As a shortcut, we define CSPACE(s(n)) = CSPACE(s(n), 2O(s(n))).
We define catalytic log-space to be the class CL = CSPACE(O(log(n))).
Theorem 4 (Compress-or-random, [5], attributed to Bruno Loff) BPL ⊆ CL, where BPL
is the class of all languages recognizable in logspace using randomized Turing machines with proba-
bility of correctly answering at least 2/3.
In fact, the previous theorem can be made even stronger by an argument of Pyne [7]: BPL can be
decided by catalytic Turing machines in time n using space log(n) and catalytic space log2(n).
Theorem 5 (Register program arguments, [3]) TC1 ⊆ CL, where TC1 is a class of log-depth
dircuits with unbounded fan-in g=ℓ gates for every ℓ, which output 1 iff the number of 1-inputs is
exactly ℓ.
Theorem 6 (Lower bound via average catalytic tape, [3]) CL ⊆ ZPP, where ZPP is the
class of probabilistic Turing machines running in polynomial time in expectation and never erring.

Influence
Definition 7 (Tree evaluation problem, [2])
Input: A complete d-ary tree of height h such that each leaf is labeled with a b-bit string and each
internal node v is labeled with a function fv : {0, 1}d·b → {0, 1}b.
Output: The value of the function at the root, where in each node, we compute its value using its
function and the values of its children.
Theorem 8 (TEP in almost log-space, [6]) Tree Evaluation can be computed in O(log n ·
log log n) space (in terms of d, h, b, it is O(d · b + h · log(d · b))).
Theorem 9 (Simulating time in square-root space, [8]) For multi-tape Turing machines and
every function t(n) ≥ n, TIME[t(n)] ⊆ SPACE[

√
t(n) log t(n)].
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Chromatic homology of graphs

Abstract
The chromatic symmetric function of a graph, defined by Stanley, is a remarkable combinatorial
invariant which refines the chromatic polynomial. Recently, Sazdanovic and Yip catogorified this
invariant by defining a new homological theory, called the chromatic symmetric homology of a graph
G. This construction is obtained by assigning a graded representation of the symmetric group to
every subgraph of G with the same vertices as G. Ciliberti and Moci proved that if graph G is
non-planar, then its chromatic symmetric homology in bidegree (1, 0) contains Z2-torsion. In this
talk, it will be explained what the chromatic symmetrc homology is.

Definitions
We will denote Ci as a i-th chain group and Hi the i-th homology group.
Definition 1 (Spanning subgraph)
Let G be a simple graph. A spanning subgraph H ≤ G is a graph such that V (H) = V (G) and
E(H) ⊂ E(G). A size of H, denozed as |H|, is a number of edges in H. Let B(G) be a poset of all
spanning subgraphs of G ordered by reverse inclusion.
Definition 2
Let H ⊂ G be a spanning subgraph with connected components B1, . . . , Br with number of vertices
in each component b1, . . . , br respectively. Then the module associated to it in q-degree zero is the
permutation module:

MH = IndSn
B1×···×Br

(S(b1) ⊗ · · · ⊗ S(br)),
where Sn is a permutation group on n elements and S(i) is a Specht module related to partition (i).
We define a chain module Ci(G) as a direct sum of all MH with i edges.
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Introduction
The Cantor-Kronecker game is played as follows: Kronecker has a private list of binary vectors
v1, . . . , vm, each of length n. Cantor’s goal is to produce a new vector which is not included among
v1, . . . , vm.
Cantor can only use queries in the form “What is the i-th bit of vector j?” and Kronecker must
answer truthfully. Cantor’s goal is to minimize the number of queries needed to produce the new
vector. (Or to find out that such vector does not exist.)
There are two versions of the game:

• Oblivious: Cantor has to decide all the queries in advance.

• Adaptive: Cantor can decide the next query based on Kronecker’s previous answers.

Puzzle
When m = n, Cantor’s strategy is simple: use diagonalization. His vector’s i-th bit will be 1 minus
the i-th bit of the i-th Kronecker’s vector, so it will difer from each vector in at least one bit.
Keep this idea in mind, and consider the case m = n + 1. How can Cantor find the vector in the
adaptive version using n + 2 queries? What about the oblivious version and n + 4 queries?

Results
Below is the number of queries Cantor needs to produce a new vector (or to decide that there is
none):

Version # of Queries
m ≤ n m
n < m < 2n, adaptive 2m− n

n < m < 2n, oblivious m
(
log⌈m

n
⌉ ±O

(
log log⌈m

n
⌉
))

2n ≤ m m · n
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Introduction
Given a graph G we denote τ(G) the number of spanning trees of G. In this talk we will be interested
how large is the range, when evaluated on n vertex graph. It is well known, that τ(G) ≤ nn−2 for
every G but if G is planar that turns out to significantly bound τ(G) ≤ 5.29n [1]. Therefore it is
natural to consider this problem over certain families of graphs. To introduce some notation let
G be a family of graphs, for which will denote T (G) := {τ(G) | G ∈ G}. We will be particularly
interested in size of T (G) for Gall

n and Gplanar
n as families of all graphs and all planar graphs on n

vertices respectively. Our main theorem is the following lower bound.
Theorem 1 |T (Gall

n )| ≥ |T (Gplanar
n )| ≥ 1.49n, for large enough n.

Proof overview

Definition 2 We say that a vector
[

t
u

]
is n-planar-feasible if there exists a planar graph G on up

to n vertices and an edge e ∈ E(G) such that t = τ(G \ e) and u = τ(G− e), where G \ e and G− e
are graphs obtained from G by contracting / deleting e.
Lemma 3 If there are at least N distinct n-planar-feasible vectors, then |T (Gplanar

n )| ≥
√

N.

Lemma 4 If n-planar-feasible vector
[

t
u

]
is multiplied by one of the following matrices, we obtain

n + 1-planar-feasible vector

A :=
(

1 1
0 1

)
B :=

(
2 0
1 2

)
C :=

(
2 1
1 1

)
D :=

(
1 0
1 1

)
.

Further results
Theorem 5 For any fixed integer k ≥ 3 there are at least 2Ω(n) different values of τ(G) among
k-regular connected graphs G on n vertices, provided that kn is even.
Theorem 6 Let N be sufficiently large. For any coprime a, b, there exists t ≤ O(log N) and
i1, . . . , it ∈ {1, 2} such that [

a
b

]
≡ Ai1DAi2D . . . AitD

[
1
0

]
mod N.

In particular, there exists a O(log N)-planar-feasible vector
[
x
y

]
such that x ≡ a mod N and y ≡

b mod N .
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Definition 7 We say that an n-vertex graph is a c-expander if any subset U on up to n/2 vertices
has its external neighborhood N(U) of size at least c|U |.
Definition 8 Given a group G and a subset of its elements S, the Cayley digraph of G generated
by S, denoted Cay(G, S), is the graph whose vertex-set is G and where an edge from a to b exists if
and only if a−1b ∈ S.
Proposition 9 (Selberg’s Theorem)[2] There exists c > 0 so that for any large enough N , the
Cayley graph Cay(SL2(ZN), S ∪ S−1), with S = {AD, A2D}, is a c-expander, moreover Cay(G, S)
is a c

2|S|-out-expander.
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Introduction
The bidirectional Dijkstra Algorithm works by running two simultaneous Dijkstra searches: from
the source s forward and from the target t backward, alternating edge relaxations and stopping as
soon as the sum of their current best distances meets or exceeds the best s–t path found so far. We
can prove that this simple variant is instance-optimal in the adjacency-list model:

• Weighted graphs: No correct algorithm can explore asymptotically fewer edges on any
input than our bidirectional implementation, up to a constant factor.

• Unweighted graphs: Bidirectional BFS is optimal up to a factor of ∆ (the maximum
degree), and this ∆-factor is the best possible.

Theorems
Here you can find all the theorems that will be proved, for making it easier to follow the talk.
Theorem 1 Let G be a directed weighted graph with strictly positive edge weights, and let s, t ∈
V (G). Suppose the only allowed query is to take a seen vertex u and ask for its next out-neighbor
(in adversarial order) and the weight of that edge. If we run Dijkstra’s algorithm from s and abort
as soon as we close a vertex v with d̂(s, v) = d̂(s, t), then:

1. It correctly computes the s-t distance.

2. No correct deterministic algorithm can perform fewer queries on G.

Theorem 2 In the adjacency-list query model on weighted multigraphs (directed or undirected) with
positive weights, the following bidirectional algorithm is instance-optimal under query complexity,
up to a constant factor:

• Alternate one edge relaxation in a forward Dijkstra from s and one in a backward Dijkstra
from t.

• Maintain the best meeting-edge length µ and stop as soon as the current frontiers satisfy
d̂(s, us) + d̂(ut, t) ≥ µ.

That is, on every input (G, s, t), no correct algorithm can in expectation query fewer edges by more
than a constant factor.
Theorem 3 In the adjacency-list model on unweighted graphs, the bidirectional BFS algorithm
described above is instance-optimal up to a factor of O(∆), where ∆ is the maximum degree of
G. In particular, its query (and time) complexity on any instance is within an O(∆)-factor of any
correct algorithm.
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Theorem 4 Let W be any set of allowed positive edge-weights with ν = min W > 0, and restrict
inputs to graphs of maximum degree ∆. Then no algorithm can be instance-optimal (under query or
time complexity) up to a factor of o(∆). Equivalently, the O(∆) gap in Theorem 3 is asymptotically
tight.
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Introduction
Consider the following problem: we are given a ground set X, a partial order P over X, and a
comparison oracle OL that defines a linear extension L of P . A query to OL takes two distinct
elements x, x′ ∈ X and returns whether x <L x′. The task is to reconstruct the full linear order L
using the minimum number of oracle queries.
This problem, proposed by Fredman in 1976, generalizes the standard sorting problem. Fredman
also proved that any algorithm must make at least O(log e(P )) queries in the worst case, where
e(P ) is the number of linear extensions of P .
Over the years, various algorithms have been developed to tackle this. The authors of the presented
paper propose a new algorithm that uses linear space, runs in O(n + m + log e(PG)) time, and
requires only O(log e(PG)) queries to the oracle.
As input, the algorithm takes a directed acyclic graph (DAG) with vertex set X = (x1, . . . , xn).
This DAG defines a partial order PG where xi ≺ xj if and only if there exists a directed path from
xi to xj in G.

Algorithm

Algorithm 1 Sort(directed acyclic graph G over a ground set X, Oracle OL) time
1: π ← a longest directed path in G ▷ O(n + m)
2: Tπ ← a level-linked (2-4)-tree over π ▷ O(n)
3: H ← G− π ▷ O(n + m)
4: Compute for each vertex in H its in-degree in H ▷ O(n + m)
5: S ← sources in H ▷ O(n)
6: while S ̸= ∅ do
7: Remove an arbitrary vertex xi from S ▷ O(1)
8: pi ← a dummy vertex, which is prepended before the head of π ▷ O(1)
9: for all in-neighbors u of xi in G do

10: pi ← Compare(pi, u) ▷ O(1)
11: Remove xi from H and add any new sources in H to S ▷ O(d∗(xi))
12: qi ← Search(xi, pi, OL) ▷ O(1 + log di)
13: FingerInsert(qi, xi) ▷ O(1) amortised
14: end while
15: return the leaves of Tπ in order ▷ O(n)

We use a data structure to store the path π that supports the following operations:
FingerInsert(qi, xi). Given vertices xi ̸∈ π and qi ∈ π, insert xi into π succeeding qi in O(1) time.
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Search(xi, pi, OL). Given a vertex xi ̸∈ π and a vertex pi ∈ π with pi <L xi. Return the farthest
vertex qi along π where qi <L xi. Let di denote the number of vertices on the subpath from pi to qi

along π. We want to use O(1 + log di) time and queries to OL.
Compare(p, q). Given p, q ∈ π, return q if it succeeds p in π in O(1) time (return p otherwise).

The above algorithm runs in O(n + m + k +
k∑

i=1
log di) time and uses O(k +

k∑
i=1

log di) queries, where
di is the length of the subpath from pi to qi in π (di = 1 if pi = qi).
Now we use the following lemmas to show that the number of queries to the oracle is optimal that
is

k∑
i=1

(1 + log di) = k +
k∑

i=1
log di ∈ O(log e(PG)).

Lemma 1 Let G be a directed acyclic graph, PG be its induced partial order and π be a longest
directed path in G. If π has n− k vertices then log e(PG) ≥ k.
Definition 2 Let π∗ be the directed path that Algorithm 1 outputs. For any i ∈ [n] denote by π∗(xi)
the index of xi in π∗. We create an embedding E of X by placing xi at position π∗(xi).
We create as set R of n open intervals Ri = (ai, bi) ⊆ [0, n] as follows:

• If i > k then (ai, bi) := (π∗(xi)− 1, π∗(xi)).

• Else, (ai, bi) := (π∗(pi), π∗(xi)).

Lemma 3 Given distinct xi, xj ∈ X, if there exists a directed path from xi to xj in G then the
intervals Ri = (ai, bi) and Rj = (aj, bj) are disjoint with bi ≤ aj.
Lemma 4 Let R = (R1, . . . Rn) be a set of n open intervals in [0, n] and let each interval have at
least unit size. Let PR be its induced partial order. Then:

n∑
i=1

log(|Ri|) ∈ O(log e(PR)).

With these lemmas we can prove the main theorem:
Theorem 5 Given a directed acyclic graph G over X, inducing a partial order PG, and an oracle
OL whose queries specify a linear order L that extends PG, there exists an algorithm that uses linear
space, O(n + m + log e(PG)) time and O(log e(PG)) oracle queries to output the sorted order of X.

25



Vojtěch Gaďurek
dlaza@kam.mff.cuni.cz

Presented paper by William Kuszmaul
A Simple and Combinatorial Approach to Proving Chernoff Bounds and

Their Generalizations
(https://epubs.siam.org/doi/abs/10.1137/1.9781611978315.6)

Introduction
Chernoff bound and its variants are quite useful, especially, when using probabilistic method or
analyzing randomized algorithms. However its most common statement and analysis may be hard
to understand and see intuition, why it should work. The results are worse but only in constant.

Goals
Definition 1 Be X = ∑

i∈[n] Xi, where Xi are bern. d. variables with p ≤ 1/2 and mean µ = pn.
Theorem 2 (Chernoff Bound) For k ∈ [

√
n]:

small-deviation
P (X ≥ k

√
n) ≤ 2−Θ(k2)

large-deviation
P (X ≥ k

√
n) ≤ Θ(k)−Θ(k)

Preliminiaries
Generally, it may be beneficial to have some basic understanding of probability.
Theorem 3 (Chebychev) Be X random variable with non-zero variance σ2 and mean 0, then:

P (X > kσ) ≤ 1
k2

for k > 0

Weaker bounds
Lemma 4 (Extended Chebychev) For k ≥ 1:

(max
j

∑
i∈[j]

Xi > k
√

n) ≤ 2
k2

Lemma 5 (Poor man’s Chernoff Bound) For all k ≥ 1:
P (X ≥ k

√
n) ≤ 2−Ω(k)

Usefull Lemmas
Lemma 6 (Sum of Geometric Random Variables) Let Yi for i ∈ [n] be independent real-
valued random variables and let p ∈ (0, 1). Suppose each Yi satisfies for all non-negative integers
j:

P (Yi ≤ j) ≥ pj.
Then the sum Y = ∑

i Yi satisfies:
P [Y ≤ 2n] ≥ 4n
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Goals if time left
Theorem 7 (Adaptive Version of Bennett’s Inequality) Let n ∈ N and v ∈ R+. Suppose
that Alice selects D1,D2, . . . ,Dn where each Di is a probability distribution over [−∞, 1] with mean
0 and with some variance vi. Alice selects D1,D2, . . . one at a time, and once a given Di is selected,
a random variable Xi is drawn from the distribution Di. Alice gets to select the Dis (and thus also
the vis) adaptively, basing Di on the outcomes of X1, . . . , Xi−1. The only constraint on Alice is that∑n

i=1 vi ≤ v. Define X = ∑n
i=1 Xi. Then, for k ∈ [1,

√
v], we have that

• (the small-deviation case)
Pr[X ≥ k

√
v] ≤ 2−Ω(k2).

• And for r ≥ 1, we have
(the large-deviation case)

Pr[X ≥ rv] ≤ O(1/r)Ω(rv).

Corollary 8 (Chernoff Bound for Non-Identical Real-Valued Coin Flips) Let X1, . . . , Xn ∈
[0, 1] be independent random variables with means p1, . . . , pn. Let µ = ∑

i pi and let X = ∑
Xi.

Then, for any integer k ≤ √µ,

Pr[X ≥ µ + k
√

µ] ≤ 2−Ω(k2). (5.16)

And for any r ≥ 1,
Pr[X ≥ µ + rµ] ≤ O(1/r)Ω(rµ).

Proof. Each Xi has variance E[X2]− p2
i ≤ E[X] ≤ pi. So the result follows from Theorem 5.1. □
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Introduction
Let G = (V, E) be a connected nontrivial graph. A set of edges M ⊆ E is a perfect matching if
every vertex is incident with exactly one edge of M . A graph is matching covered if every edge
belongs to a perfect matching. A cut is the set of edges with exactly one point in S for some S ⊆ V.
A cut is odd if |S| is odd. We say that a graph is an r-graph if every vertex has degree r and all
odd cuts have size at least r. Seymour showed that an r-graph is always matching covered [2].
One of the central results in this area is due to Lovász, who got a characterization for the lattice
L = {∑αiAi : αi ∈ Z} generated by the incidence vectors of perfect matchings Ai of a matching
covered graph G using dual lattice theory [1]. From this characterization it follows that for an r-
graph, the vector 2 ·1 belongs to L. Hence, the vector of all-ones 1 can be obtained as a half-integral
combination of the perfect matchings of G. In this paper, the author strengten this result as follows.
Given an r-graph G with n vertices and m edges, we want to study the set of solutions to Ax = 1,
where A is a {0, 1} incidence matrix with rows corresponding to the edges of G and columns
corresponding to the perfect matchings in G. We consider graphs with no loops, but parallel edges
are allowed, and we refer to a vector x satisfying Ax = 1 as a partitioning of the edges of G into
perfect matchings.
Theorem 1 (Main theorem) Let G be an r-graph with m edges and n vertices and let A be its
edge to perfect matching incident matrix. Then there is a solution x∗ to Ax = 1 satisfying the
following conditions:

1. all non-integral entries of x∗ are equal to +1/2;

2. x∗ has at most m− n + 1 non-zero entries;

3. all non-zero entries of x∗ correspond to linearly independent set of perfect matchings of G;

4. the total number of +1/2’s in x∗ is at most 6p, where p is the number of Petersen bricks of
G.

Tight cut decomposition
Definition 2 A tight cut is an odd cut C such that every perfect matching intersects C in exactly
one edge. A cut is trivial if one of its shores is a single vertex. Otherwise, a cut is non-trivial.
All trivial cuts of G are tight, but in general there could be other non-trivial tight cuts.
Lemma 3 In a matching-covered graph G with Ax = 1 feasible, all tight cuts have the same size.
In particular, G is regular.
Definition 4 If a graph G has no non-trivial tight cuts and G is bipartite, then it is a brace. If G
is not bipartite, then it is a brace.
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Existence of tight cuts motivates the so called tight cut decomposition process on an r-graph G:

1. Find a tight cut C of G, say its shores are U1 and U2.

2. Consider two C-contractions of G: let G1 = (V \ U1 ∪ {u1}, E[U2] ∪ C) and G2 = (V \ U2 ∪
{u2}, E[U1] ∪ C), i.e. we obtain Gi from G by mapping a shore of C into a single vertex ui

and deleting any loops.

3. Consider each G1 and G2 separately, go back to Step 1.

The process stops when all current graphs in the decomposition are either a brick or a brace. There
are several useful properties of such decomposition.
Proposition 5 Let G = (V, E) be a matching covered graph and let C be a tight cut of G. Suppose
Gi = (Vi, Ei), i = 1, 2 are two C-contractions of G. Then

i. for any perfect matching M of G, the set M ∩ Ei is a perfect matching of Gi, for i = 1, 2;

ii. conversely, for any perfect matchings M1, M2 of G1, G2, respectively, such that |M1 ∩M2| =
{e} ∈ C, the set M1 ∪M2 is a perfect matching of G;

iii. both G1 and G2 are matching covered;

iv. if G is an r-graph, then so are G1 and G2.

We can use the tight cut decomposition to construct solutions to Ax = 1 with the desired properties.
Consider the graphs G1 and G2 obtained from G by contracting one shore of C and let E1, E2 be
the edge sets of G1, G2, respectively. Furthermore, let A1 and A2 be the edge to perfect matching
incidence matrices for G1 and G2, respectively. Given y, t statisfying A1y = 1 and A2t = 1, we will
construct a vector x satisfying Ax = 1.
Fix an edge e ∈ C and let {M e

i }i∈Ie be the set of perfect matchings of G1 using e, and let {N e
j }j∈Je

be the set of perfect matchings of G2 using e. All of these matchings do not use any other edges of
C. Clearly, M e

i ∪ N e
j =: Ke

ij is a perfect matching in G for all indices i, j. Defining xe
ij := ye

i te
j we

get that x is a partitioning of G, i.e. Ax = 1, which is equivalent to∑
e∈C

∑
i∈Ie,j∈Je

xKe
ij

Ke
ij = 1.

Main theorem
The paper gives us a different way of combining two solutions for tight cut contractions, which is
a crucial ingredient of the main result. First step is to prove a weaker version of Theorem 3 which
would give us an algorithm that we will later analyze in more details.
Lemma 6 There is a solution x∗ to Ax = 1 with all entries being either integral, or equal to +1/2.
The algorithm of combining two solutions obtained from the proof of Lemma 6 preserves several
important properties:
Theorem 7 Suppose the method from Lemma 6 receives as input partitionings y, t of the two C-
contractions of G and returns a partitioning x∗ of G. Then, the following properties hold:

i. the support size of x∗ satisfies |supp(x∗)| ≤ |supp(y)|+ |supp(t)|;
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ii. the largest entry of x∗ satisfies ∥x∗∥∞ ≤ max(∥y∥∞, ∥t∥∞);

iii. if y, t have all entries in Z∪ {+1/2}, then so does x∗ and the total number of +1/2’s in x∗ is
at most number of +1/2’s in y and t combined;

iv. if both y and t only use linearly independent perfect matchings, then so does x∗.

To complete the proof of Lemma 6 we will talk separately about the base cases - braces, Petersen
bricks, and non-Petersen bricks:
Lemma 8 Let G be an r-graph and a brace, let A be its edge to perfect matching incidence matrix.
Then there is a solution x∗ to Ax = 1 satisfying the following conditions:

1. all entries of x∗ are in {0, 1};

2. |supp(x∗)| = r;

3. all perfect matchings used in x∗ are disjoint, and thus linearly independent.

Lemma 9 Let G be an r-graph whose underlying simple graph is a Petersen graph. Let A be its
edge to perfect matching incidence matrix. Then there is a solution x∗ to Ax = 1 satisfying the
following conditions:

1. all entries of x∗ are in {0, 1/2, 1};

2. |supp(x∗)| ≤ m−n+1 where m and n are the numbers of edges and vertices in G, respectively;

3. x∗ has at most 6 entries equal to +1/2;

4. all perfect matchings used in x∗ are linearly independent.

Lemma 10 Let G be an r-graph and a non-Petersen brick. Let A be its edge to perfect matching
incidence matrix. Then there is a solution x∗ to Ax = 1 satisfying the following conditions:

1. all entries of x∗ are in Z;

2. |supp(x∗)| ≤ m−n+1 where m and n are the numbers of edges and vertices in G, respectively;

3. all perfect matchings used in x∗ are linearly independent;

4. ∥x∗∥∞ ≤ 2m−n+1.
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Introduction
Given graph G with maximum degree ∆ its easy to show that it can be colored using ∆ + 1
colors in linear time. In 2019 Assadi, Chen and Khanna proved the pallete sparsification theorem,
which states that in every graph G with maximum degree ∆ randomly sampling O(log n) colors
from {1, . . . , ∆ + 1} for every vertex independently and uniformly allows, with high probabilty, for
finding (∆ + 1) vertex coloring in G while coloring each vertex using color from its sampled colors.
This leads to sublinear algorithms for (∆ + 1) coloring.
This paper shows a weaker version of the theorem which bounds only average amount of sampled
colors of each vertex. This leads to a much simpler proof and simpler, but similarly fast algorithms
stemming from it.

Preliminaries
Definition 1 Hypergeometric random variable with parameters N, K, M is a discrete random
variable defined like this: we have N elements, K of them are "good" and we sample M elements
uniformly at random without replacement and count the numbe of good samples.
Fact 2 Let X be a hypergeometric random variable with parameters N, K, M , and therefore expected
value E[X] = M K

N
. Then for any t ≥ 0 holds

Pr(X ≤ E[X]− t) ≤ e

(
− t2

2E[X]

)
Main result

Theorem 3 Let G = (V, E) be any n−vertex graph with maximum degree ∆. Sample a random
permutation π : V → [n] uniformly and define

l(v) := min
(

∆ + 1,
40n ln n

π(v)

)
for every v ∈ V as the size of the list of colors to be sampled for vertex v. Then

• Deterministically ∑v∈V l(v) = O(n log2(n)), and for any fixed u ̸= v ∈ V

E[l(v)] = O(log2(n)) and E[l(u) · l(v)] = O(log4(n))

• If we sample a list L(v) of l(v) colors from {0, . . . , ∆ + 1} uniformly and independently for
each vertex, then with high probability (over the randomness of l and sampled lists) the greedy
algorithm that iterates over vertices in the increasing order of l(v) finds a proper list-coloring
of G from the lists {L(v)|v ∈ V }
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The notation deg<
π (v) means the amount of neighbors u of v such that π(u) < π(v), therefore they

are processed later in the greedy algorithm.
Lemma 4 For all v ∈ V with π(v) > 40n ln n

∆+1 and deg(v) ≥ 3∆
4

Pr

(
deg<

π (v) <
∆ · π(v)

4n

)
≤ n−2.5

Algorithmic use
Definition 5 Let G = (V, E) be any graph with maximum degree ∆ and L := {L(v)|v ∈ V } be
a set of sampled colors for each vertex according to the previous distribution. Conflict graph
GL = (V, EL) is a subgraph of G consisting of all edges (u, v) ∈ E such that L(u) and L(v) intersect
(have some color in common).
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Introduction
Understanding the inherent limitations of data structures is a central problem in theoretical com-
puter science. A particularly important goal is to determine the trade-offs between the space used
by a data structure and the time it takes to answer queries. For non-adaptive static data struc-
tures, this trade-off has been extensively studied using the cell sampling technique introduced by
Siegel [1], which yields the best known lower bounds to date.
For an explicit problem, Siegel’s original bound is s ≥ Ω̃(n · (m

n
) 1

t ). This paper develops a deter-
ministic variant of cell sampling to prove new and stronger bounds for the problem.
These results are derived via a novel combinatorial argument: showing that every dense enough
hypergraph contains a small subset of vertices that spans many edges. This allows for a deterministic
construction that improves over the probabilistic guarantees of earlier techniques.

Theorems
Theorem 1 Fix a finite field F and a parameter m = poly(n).

1. There exists an explicit problem with n inputs and m queries such that every non-adaptive
static data structure solving it with query time t = 2 requires space

s ≥ m− Õ
(

m

n

)
.

2. For every t ≥ 3, there exists an explicit problem with n inputs and m queries such that every
non-adaptive static data structure solving it with query time t requires space

s ≥ Ω
(

n ·
(

m

n

) 1
t−1
· 1

2t log(n) log(m)

)
.

Theorem 2 Let G = (V, E) be a multigraph with |V | = s ≥ 2 vertices and |E| = m ≥ s(1 + ε)
edges for some ε = ε(s) ∈ (0, 1]. Then there exists a set of vertices S ⊆ V of size

|S| ≤ 8 log(s) ·
⌈1

ε

⌉
spanning at least |S|+ 1 edges.
Let t ≥ 3 be an integer, and let G = (V, E) be a t-hypergraph with |V | = s ≥ 2 vertices and |E| = m
hyperedges. Let k ∈ N be a parameter such that 2t+2 log(s) ≤ k ≤ s. If

m ≥ 3s

(
2t+3 · s · log(s)

k

)t−2

,

then there exists a subset S ⊆ V of size |S| ≤ k that spans at least

|S|+ k

2t+1 log(s)
hyperedges.
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Introduction
A subset of vertices S is called a dominating set of G if every vertex in V (G)\S is adjacent to some
vertex in S. Let D(G) denote the family of all dominating sets of G. Recently Beaton and Brown
[1] introduced the average order of a dominating set of G, denoted avd(G), which is given by

avd(G) =
∑

S∈D(G) |S|
|D(G)| .

They also showed that the complete graph Kn uniquely minimizes the average order of a dominating
set among all graphs on n vertices. And it is trivial that the empty graph K̄n with avd(K̄n) = n
has the largest average order of a dominating set among graphs on n vertices. But what if we do
not allow isolated vertices? Which graphs have the largest average order of a dominating set among
all graphs of order n without isolated vertices? In [1] Beaton and Brown showed that avd(G) ≤ 3

4n
for every graph G of order n without isolated vertices. However, the factor 3

4 in the upper bound is
not the best possible...
Conjecture 1 [1] If G is a graph of order n with no isolated vertices, then avd(G) ≤ 2n

3 .
This Conjecture was verified for all graphs up to nine vertices, all graphs with minimum degree at
least 4, and all quasiregularizable graphs. Beaton and Brown [1] also proved that

avd(G) >
n− 1 + 2n−2(n + 1)

2n−1 + 1 = avd(K1,n−1)

for every tree graph G of order n with G ̸≇ K1,n−1 and hence the star K1,n−1 is the unique extremal
graph with the minimum average order of a dominating set. However, the problem of determining
extremal graphs that maximize this parameter among trees remained as an open problem. In this
paper, we solve this problem by proving the following.
Theorem 2 If G is a tree of order n ≥ 2, then avd(G) ≤ 2n

3 . Moreover, the equality holds if and
only if every non-leaf vertex of G is a support vertex with one or two leaf neighbors.
We actually prove Conjecture 1 for forests (see Theorem 7), which immediately implies Theorem 2.

Main result
The domination number γ(G) of a graph G is the cardinality of a minimum dominating set of G.
Let dk(G) be the number of dominating sets of G with cardinality k. The domination polynomial
of G, denoted by DG(x), is given by

DG(x) =
|V (G)|∑

k=γ(G)
dk(G)xk
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and it is easy to see that
avd(G) = D′G(1)

DG(1) .

By the notation NG(v) we mean the open neighborhood of the vertex v in G, i.e. all neighbors of
v in G, the closed neighborhood is NG[v] = NG(v)∪ {v}. An edge containing a leaf vertex is called
a pendant edge and LG(v) denote the set of all leaf neighbors of a vertex u in G. We say that u is
a support vertex of G if u is adjacent to a leaf vertex v of G, and u is called the support of v in G.
A graph G/u be the graph obtained from G by deleting the vertex u and adding edges between all
pairs of nonadjacent neighbors of u. Given a graph G with a specified vertex u ∈ V (G), we write
G(u,k) to denote the graph obtained by gluing G and Kk+1 at the vertex u. That is, G(u,k) = Kk+1∪G
and Kk+1 ∩G = {u}.
To prove the main result (see Theorem 7) we need to be familiar with the following lemmas.
Lemma 3 [2] Let u and v be two vertices of G such that NG[v] ⊆ NG[u]. Then
DG(x) = xDG/u(x) + DG\u(x) + xDG\NG[u](x).
Lemma 4 Let G be a graph of order n and w be a support vertex of G with LG(w) = {v1, . . . , vt}
for some integer t ≥ 1. Let also H = G \ LG[w]. Suppose that every vertex u in NG(w) \ LG(w) is
a support vertex in G, and 3D′H(1) ≤ 2(n− t− 1)DH(1). Then 3D′G(1) ≤ 2nDG(1) with equality if
and only if t ∈ {1, 2} and 3D′H(1) = 2(n− t− 1)DH(1).
Lemma 5 Let G be a graph and u ∈ V (G). Then, for every integer k ≥ 1,
DG(u,k)(x) = (x + 1)k−1[DG(u,1)(x) + DG\u(x)]−DG\u(x).
Lemma 6 Let T be a tree with |V (T )| ≥ 3 and u be a vertex of T . Suppose that u is not a support
vertex of T and u has at most one neighbor in T which is not a support vertex in T . Let G1 be the
graph obtained from T by attaching a new leaf vertex v at u. Then

1. DG1(1) ≤ DT (1) + 3DT\u(1),

2. DG1(1) ≤ 5DT\u(1) and

3. DT (1) ≤ 3DT\u(1).

Now we are ready to prove the main result.
Theorem 7 Let G be a forest on n vertices with no isolated vertices. Then avd(G) ≤ 2n

3 and,
moreover, equality holds if and only if every non-leaf vertex of G is a suppport vertex with one or
two leaf neighbors.
Every graph G without isolated vertices contains a spanning forest F without isolated vertices and
F can be obtained from G by a succession of non-pendant edge removals. Hence, one can ask...
Question 8 In every graph G (which is not a disjoint union of stars or empty graphs) does there
exist a non-pendant edge e of G such that avd(G) < avd(G \ e)?
Observe that an affirmative answer to Question 8 would yield a proof of Conjecture 1 in general
since our Theorem 7 and the remark above.
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Introduction
The rigorous protection of individual privacy in data analysis has given rise to differential privacy
(DP), a mathematical framework that bounds the influence any single record can have on query
outputs. Despite its strong stability guarantees and widespread adoption in various domains, the
the DP mechanisms remain vulnerable to reconstruction attacks. By aggregating noisy answers
over multiple queries, an adversary can recover detailed approximations of the original dataset,
thus undermining privacy at scale.
In this talk, we revisit the fundamental question of formally defining what constitutes a reconstruc-
tion attack by “sandwiching” the notion of reconstruction resistance between two complementary
questions: (i) Under what conditions can one guarantee that a mechanism is immune to reconstruc-
tion attacks? (ii) Under what circumstances does a given attack clearly indicate that a system is
not protected?
To address these questions, we introduce Narcissus Resiliency, a self-referential definitional paradigm
that not only subsumes differential privacy but also captures classical security notions, such as
one-way functions, entropy measures, and encryption schemes, as special cases. Furthermore, we
establish a formal link to Kolmogorov complexity, providing a metric to assess the fidelity of re-
constructed data and identifying the threshold beyond which a DP guarantee can no longer ensure
protection.

Definitions and Theorems
Definition 1 ((ε, δ)-Differential Privacy) Let X be a data universe and Y an output space. A
randomized algorithm M : X n −→ Y is said to satisfy (ε, δ) -differential privacy if for every pair
of neighboring datasets X, X ′ ∈ X n that differ in one entry, and for all events S ⊆ Y:

Pr
[
M(X) ∈ S

]
≤ eε Pr

[
M(X ′) ∈ S

]
+ δ.

Definition 2 ((ε, τ, D)-R-reconstruction-robust) Let X be a data domain, let D be a distribu-
tion over datasets containing elements from X , and let R : X ∗ × {0, 1}∗ → {0, 1}. Algorithm M
is (ε, τ, D)-R-reconstruction-robust if for all attackers A it holds that

Pr
S←D

y←M(S)
z←A(y)

[
R
(
S, z

)
= 1 ∧ Pr

T←D

[
R(T, z) = 1

]
≤ τ

]
≤ ε.

Definition 3 (Narcissus-resiliency) Let X be a data domain, let F be a family of distributions
over datasets containing elements from X , and let R : X ∗ × {0, 1}∗ → {0, 1}. Algorithm M is
(ε, δ,F)-R-Narcissus-resilient if for all D ∈ F and for all atackers A, it holds that

Pr
S←D

y←M(S)
z←A(y)

[
R
(
S, z

)
= 1

]
≤ eε Pr

S←D
T←D

y←M(S)
z←A(y)

[
R
(
T, z

)
= 1

]
+ δ.
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Definition 4 (KL-Complexity) Let L be a programming language (e.g., Python). The KL-
complexity of a string x, denoted by KL(x), is the length of the shortest L-program that outputs
x and halts. Similarly, given a set of strings X, we denote by KL(X) the length of the shortest
L-program that outputs an element in X and halts.
Definition 5 (Extraction definition, informal) Let R be an extraction relation and L a pro-
gramming language. We say that a string x is (R,L)-extractable from a string y iff there exists an
L-program A such that the following holds:

1. A(y) outputs z such that R(x, z) = 1, and

2. KL
(
{ z : R(x, z) = 1}

)
≫ |A|.

We measure the quality of the extraction by 1 − |A|

KL

(
{ z:R(x,z)=1}

) .

Definition 6 (Resilience to Membership Inference) Let M : X n → Y be an algorithm oper-
ating on an n-point dataset, and let D be a distribution over X . We say M is (δ, D)-MI-secure if
for every adversary A, ∣∣∣∣ Pr

S←Dn

y←M(S)
z←D

b←A(y,z)

[ b = 1 ] − Pr
S←Dn

y←M(S)
z∈RS

b←A(y,z)

[ b = 1 ]
∣∣∣∣ ≤ δ.

Definition 7 Define RMI to be a (randomized) binary function taking two arguments: a dataset
Z ∈ X n and a (possibly randomized) function f : X → {0, 1}. Given Z and f , to compute
RMI(Z, f), sample a point z ∈ Z and return f(z).
Theorem 8 Let M : X n → Y be an algorithm and let D be a distribution over X . Then M is
(δ,D)-MI-secure if and only if it is

(
0, δ, {Dn}

)
-RMI-Narcissus-resilient.

Definition 9 (Extraction quality relation) Fix a parameter q ≤ 1 controlling the desired qual-
ity of extraction. We define the relation Rext which takes a dataset S and a pair (y, A), where y is
an outcome of M and A is a program, and returns 1 if and only if both of the following hold:

1. R
(
S, A(y)

)
= 1.

2. |A|

KL

(
{ z:R(S,z)=1}

) ≤ 1− q.

Lemma 10 (Narcissus-resiliency prevents non-trivial extraction) LetM be an (ε, δ,F)–Rext-
Narcissus-resilient mechanism, and let B be an adversary that, on view y returned by M, outputs
an L-program A. Then for every distribution D ∈ F we have

Pr
S←D

y←M(S)
A←B(y)

[A is an (R,L)-extraction
evidence of S from y

]
≤ eε Pr

S←D
T←D

y←M(S)
A←B(y)

[A is an (R,L)-extraction
evidence of T from y

]
+ δ.
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Introduction
Stochastic matrices are a key tool in the fields of probability and statistics, used to model systems
with random behavior. In this work, we focus on interval stochastic matrices, which generalize
stochastic matrices by allowing entries to be real intervals instead of fixed probabilities. Inter-
val stochastic matrices are useful in situations where transition probabilities between states are
uncertain.
We aim to generalize properties of stochastic matrices to interval stochastic matrices, examining
transience, recurrence, irreducibility.

Preliminaries
Definition 1 A sequence of integer-valued random variables (Xn)n≥0 is a Markov chain with initial
distribution λ if for all n ∈ N ∪ {0} and i0, . . . , in+1 ∈ S, it holds that

P (X0 = i0) = λi0

P (Xn+1 = in+1 | X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1 | Xn = in),
where S is a countable set, called the state space, and its elements are called states.
If the state space of a Markov chain is finite, the transition probabilities between states can be
represented by a matrix (called the transition matrix). For a finite Markov chain with n states, we
denote the state space as N = {1, . . . , n}.
Definition 2 A matrix A ∈ Rn×n is called a stochastic matrix if the sum of each of its columns is
equal to one and Ai,j ∈ [0, 1] for any i, j ∈ N .
We denote the set of all stochastic matrices of size n as Sn×n (or simply S when the dimension is
clear from context). For a given Markov chain (Xn)n≥0 with transition matrix A, the entry Ai,j

represents the probability P (Xn+1 = i | Xn = j) (the probability of transitioning from state j to
state i).
Theorem 3 Let A be a stochastic matrix representing the transition probabilities of a Markov chain
(Xn)n≥0 with initial distribution λ. For any states i, j, it holds that:

P (Xn+m = j | Xm = i) = Aj,i
(n) =

∑
i1,...,in−1

Ai1,i . . . Aj,in−1 ,

P (Xn = j) = (A(n)λ)j.

For a given stochastic matrix A, we write i → j to denote that P (Xn = j | X0 = i) = (An)j,i > 0,
meaning state j is reachable from state i. If both i → j and j → i hold, we say that i and j
communicate, denoted as i↔ j. The relation ↔ defines an equivalence relation.
It is useful to view stochastic matrices as directed graphs. Specifically, a stochastic matrix A ∈ Sn×n

can be represented as a directed graph G = (N, E, w), where (i, j) ∈ E if and only if Aj,i > 0 and
the edge weight function is given by w(i, j) = Aj,i.
The set of all edges leading from a given state v is denoted as δ(v), meaning (v, u) ∈ δ(v) if and only
if Au,v > 0. When discussing edges in a matrix A ∈ S, we refer to pairs (i, j) such that Aj,i > 0,
and when referring to vertices, we mean the column indices of A (i.e., the states).
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The relation ↔ partitions the state space into equivalence classes. These classes correspond to sets
of states that communicate with each other. We introduce a key properties of these classes.
Definition 4 We say that a class of states C ⊆ N is closed in a stochastic matrix A if for every
state i ∈ C and j ∈ N , it holds that if i→ j, then j ∈ C.

Thus, for a closed class C, it holds that if we are in a state i ∈ C, it is not possible to reach any
state j /∈ C in the future.
Definition 5 We say that a stochastic matrix A ∈ Rn×n is irreducible if

∀i, j ∈ N : i→ j.

In other words, A ∈ Rn×n is irreducible if and only if N forms a closed class in A.
Definition 6 A stochastic matrix A ∈ Rn×n is irreducible if

∀i, j ∈ N : i→ j.

In other words, A ∈ Rn×n is irreducible if and only if N forms a closed class in A.
In practice, we can determine whether a stochastic matrix A is irreducible by finding its strongly
connected components (for example, using Tarjan’s algorithm). Each strongly connected component
corresponds to an equivalence class. A graph representing a stochastic matrix is strongly connected
if and only if the stochastic matrix is irreducible.
Definition 7 Let (Xn)n≥0 be a Markov chain. We define

Ti = inf{n ≥ 1 : Xn = i} = first visit time of state i.

The infimum of an empty set is defined as ∞. Let 1{Xn=i} be the indicator function that takes the
value 1 if Xn = i and 0 otherwise. Then we define:

Vi =
∞∑

n=0
1{Xn=i} = number of visits to state i,

fi = P (Ti <∞|X0 = i) = probability of returning to state i.
Definition 8 Given a Markov chain (Xn)n≥0, we say that a state i ∈ N is recurrent if

P (Vi =∞|X0 = i) = 1.

If the state is not recurrent, we say that it is transient.
Theorem 9 For any stochastic matrix A, the following hold:

• i is recurrent ⇔ ∑∞
n=0(An)ii =∞⇔ fi = 1

• i is transient ⇔ ∑∞
n=0(An)ii <∞⇔ fi < 1.

Thus, a state is recurrent if, after leaving it, we are certain that we will return to it at some point in
the future. On the other hand, transient states are those from which there is a nonzero probability of
escaping to a state from which return is impossible. Recurrence and transience are class properties,
meaning that a state in a class is recurrent if and only if the entire class is recurrent, and a state is
transient if and only if the entire class is transient.
Theorem 10 Let A ∈ Rn×n be a stochastic matrix. A class C ⊆ N is recurrent if and only if it is
closed in A.
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Definition 11 An interval stochastic matrix [A] with a lower matrix A ∈ Rn×n and an upper matrix
A ∈ Rn×n is an interval matrix where, for every i, j ∈ N , it holds that 0 ≤ Ai,j ≤ Ai,j ≤ 1, and at
the same time, it holds that [A] ∩ S ≠ ∅.
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Rigidity is the property of a structure that does not flex. Arising from mechanics, rigidity has been
studied in discrete geometry and combinatorics and has application in material science, engineering
and biological sciences. A d-dimensional framework is a pair (G, p), where G is a graph and p
is a map from V (G) to Rd. Two frameworks (G, p) and (G, q) are equivalent if ||p(u) − p(v)|| =
||q(u) − q(v) holds for every edge uv ∈ E(G) and are congruent if the same equality holds for
every u, v ∈ V (G). ||.|| denoted the Euclidean norm in Rd. A framework (G, p) is generic if the
coordinates of its point are algebraically independent over the rationals. The framework is rigid if
there exists an ε > 0 such that if (G, p) is equivalent to (G, q) and ||p(u) − q(u)|| < ε for every
u ∈ V (G), then (G, p) is congruent to (G, q). The generic rigidity can be considered as a property
of the underlying graph, hence a graph is called rigid in Rd if every/some generic realization of G
is rigid in Rd.
A d-dimensional framework (G, p) is globally rigid if every framework that is equivalent to (G, p) is
congruent to (G, p). It was proven that if there exists a generic framework (G, p) that is globally
rigid, then any other framework (G, q) in Rd will also be globally rigid. Following from this, we
define a graph G to be globally rigid in Rd if there exists a globally rigid generic framework (G, p)
in Rd. A graph G is redundantly rigid in Rd if G− e is rigid in Rd fir every edge e ∈ E(G).
We will study rigidity from spectral point of view. We describe the matrices and the eigenvalues of
our interest below. If G is an undirected simple graph with V (G) = {v1, v2, . . . , vn}, its adjacency
matrix is the n by n matrix A(G) with entries aij = 1 if there is an edge between vi and vj and
aij otherwise, for 1 ≤ i, j ≤ n. Let D(G) = (dij)1≤i,j≤n be the degree matrix of G, that is, the
n by n diagonal matrix with dii being the degree of vertex vi in G for 1 ≤ i ≤ n. The matrix
L(G) = D(G)−A(G) is called the Laplacian matrix of G. For 1 ≤ i ≤ n, we use µi(G) to denoted
the i-th smallest eigenvalue of L(G). It is not difficult to see that µ1(G) = 0. The second smallest
eigevalue of L(G), µ2(G), is known as the algebraic connectivity of G.
Theorem 1 Let G be a graph with minimum degree δ(G) ≥ 6k. If

µ2(G− Z) >
6k − 2k|Z| − 1
δ(G− Z) + 1 ,

for every Z ⊂ V (G) with |Z| ≤ 2m then G has at least k edge-disjoint spanning rigid subgraphs.
Corollary 2 Let G be a graph with minimum degree δ(G) ≥ 6k. If

µ2(G) > 2 + 2k − 1
δ − 1 ,

then G contains at least k edge-disjoint spanning rigid subgraphs.
Corollary 3 Let G be a graph with minimum degree δ(G) ≥ 6. If

µ2(G) > 2 + 1
δ + 1 ,

then G is rigid.
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Theorem 4 Let G be a graph with minimum degree δ(G) ≥ 6. If

µ2(G− Z) >
6− 2|Z|

δ(G− Z) + 1 ,

for every Z ⊂ V (G) with |Z| ≤ 2, then G is redundantly rigid.
Corollary 5 Let G be a graph with minimum degree δ(G) ≥ 6. If

µ2(G) > 2 + 2
δ + 1 ,

then G is globally rigid.
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Introduction
A graph G on n vertices is ε-far from satisfying a property P if one has to add or delete at least
εn2 edges to G to obtain a graph satisfying P . A hereditary class P of graphs is testable if for
every fixed ε > 0 there is a size mε such that the following holds. If G is ε-far from P then a set
X ⊆ V (G) sampled uniformly at random among all subsets of V (G) of size mε induces a graph
G[X] that is not in P with probability at least 1/2 . The property P is easily testable if moreover
mε is a polynomial function of ε−1. Otherwise, P is hard to test.
Definition 1 (Chordal Graphs) A graph G is chordal if it does not contain any induced cycle of
length at least four; i.e., any (≥ 4)-cycle in G has a chord (an edge between non-consecutive vertices
of the cycle).
Theorem 2 The class of chordal graph is testable with query complexity O(ε−37).
In particular, the class of chordal graph is easily testable.
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Introduction
How efficiently can we find an unknown graph using shortest path queries between its vertices?
This is a natural theoretical question from the standpoint of recovery of hidden information. This
question is related to discovering the topology of Internet networks, which is a crucial step for
building accurate network models and designing efficient algorithms for Internet applications.
There are graphs for which reconstruction requires Ω(n2) distance queries on general graphs[1]. So,
our focus here is on the bounded degree case.
Question 1 Is there any (randomized) algorithm to reconstruct a ∆-bounded degree graph G with
Õ(n)1 shortest path queries?
The following simple algorithm provides a partial answer to this question.

Algorithm 2 Simple(V, s)
1: S ← sample of s vertices selected uniformly and independently at random from V
2: for u ∈ S and v ∈ V do
3: Query δ(u, v)
4: end for
5: Ê ← set of vertex pairs {a, b} ⊆ V such that, for all u ∈ S, |δ(u, a)− δ(u, b)| ≤ 1
6: for {a, b} ∈ Ê do
7: Query δ(a, b)
8: end for return set of vertex pairs {a, b} ∈ Ê such that δ(a, b) = 1

Observation 2 E ⊆ Ê.

(a) Phase 1 (b) Phase 2

Random ∆-regular graphs
A random ∆-regular graph can be generated using the configuration model. In this model, each
of the n vertices is assigned ∆ stubs (half-edges), resulting in a total of ∆n stubs. These stubs are

1The notation Õ(f(n)) stands for O(f(n) · polylog(f(n))).

47



then paired uniformly at random to form ∆n
2 edges. The resulting multigraph may include self-loops

and multiple edges.
Theorem 3 Consider a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n. In
the distance query model, Simple (Algorithm 1) is a reconstruction algorithm using Õ(n) queries in
expectation. In addition, Simple can be parallelized using 2 rounds.
Lemma 4 The output of Simple (Algorithm 1) equals the edge set E. The number of distance
queries in Simple is n · s + |Ê|. In addition, Simple can be parallelized using 2 rounds.
Lemma 5 Let G be a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n. Let
S ⊆ V be a set of s vertices selected uniformly and independently at random from V . We have
EG,S[|Ê\E|] = o(1).
Lemma 4 and 5 give us Theorem 3.

Structural lemma
Definition 6 (Distinguishing)
For a vertex pair {a, b} ⊆ V , we say that a vertex u ∈ V distinguishes a and b, or equivalently that
u is a distinguisher of {a, b}, if |δ(u, a) − δ(u, b)| > 1. Let D(a, b) ⊆ V denote the set of vertices
u ∈ V distinguishing a and b.
Lemma 7 (Structural lemma)
Let ∆ = O(1) be such that ∆ ≥ 3. Let G′ be a multigraph corresponding to a uniformly random
configuration. Let {v, w} be a vertex pair in G′ such that δ(v, w) ≥ 2. With probability 1− o (n−2),
we have |D(v, w)| > 3n/ log n.
To prove Lemma 7, we need the following.
Definition 8 (Interesting vertices)
Let v, w be any non-adjacent pair of vertices. Do Breadth First Search (BFS) from v and w simul-
taneously.
An edge is exploring if one endpoint is explored for the first time.
A vertex x is v-interesting (resp. w-interesting) if all of the following:

• the shortest path from v (resp. w) to x is unique

• all edges on that path are exploring

• all edges incident to that path are exploring.

Ik(v) ⊆ V denote the set of w-interesting vertices x ∈ V such that δ(v, x) = k.

BFS: exploring edges are yellow.
Red vertices are interesting with respect to v and green vertices are interesting with respect to w
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Lemma 9 For any integer k ≥ 1, we have Ik(v) ∪ Ik(w) ⊆ D(v, w).
Lemma 10 Let ∆ = O(1) be such that ∆ ≥ 3. For positive integer k ≤

⌈
log∆−1(3n/ log n)

⌉
+ 2,

with probability 1− o (n−2), we have |Ik(v) ∪ Ik(w)| > (∆− 2− o(1))(∆− 1)k−1.
This holds because of the following lemma, which says there are relatively few inexploring edges
within a neighborhood of {v, w}.
Lemma 11 Let M = ⌈log log n⌉. We can construct two non-decreasing sequences {gi}1≤i≤M and
{Li}1≤i≤M , such that all of the following properties hold when n is large enough:

1. g1 = 3; and for any i ∈ [2, M ], gi = o
(
(∆− 1)Li−1/M

)
;

2. LM ≥
⌈
log∆−1(3n/ log n)

⌉
+ 2;

3. With probability 1−o (n−2), for all i ∈ [1, M ], strictly less than gi edges are inexploring among
the edges incident to vertices in U≤Li

(:= {x|min(δ(x, v), δ(x, w)) ≤ Li}).

Proving Lemma 5
Lemma 12 Let s = ω(log n) be an integer parameter. Let B be the set of vertex pairs {a, b} ⊆ V
such that δ(a, b) ≥ 2 and |D(a, b)| ≤ 3n · (log n)/s. We have ES[|Ê\E|] ≤ |B|+ o(1).
From (structural) Lemma 7 and 12 we can prove Lemma 5.

Metric dimension
Definition 13 (Resolving set)
A subset S ⊆ V of vertices in a graph is a resolving set if for any pair of distinct vertices v, w ∈ V ,
there exists a vertex u ∈ S such that δ(u, v) ̸= δ(u, w).
The metric dimension of a graph is the cardinality of the smallest resolving set.
Corollary 14 A random subset S of log2 n vertices is a resolving set for a random ∆-regular graph
with high probability (w.h.p.).
To prove it we use the following:
Lemma 15 Let G be a uniformly random ∆-regular graph with ∆ = O(1). With probability 1−o(1),
for any edge (a, b) of G there exists a vertex c ∈ V {a, b} that is adjacent to a but not to b.

∆-bounded graphs
Theorem 16 Consider a general graph of bounded degree ∆ = O(polylog n). Let s = n2/3. In the
distance query model, Simple (Algorithm 1) is a reconstruction algorithm using Õ

(
n5/3

)
queries in

expectation. In addition, Simple can be parallelized using 2 rounds.
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Introduction
In this talk, I present some structural and coloring properties of P5-free graphs under additional
restrictions. Here P5 denotes the path on 5 vertices. In particular we forbid the banner (a 4-cycle
with one pendant edge) and other small subgraphs. A graph G is perfect if χ(H) = ω(H) for
every induced subgraph H; by the Strong Perfect Graph Theorem [2], this means G has no induced
odd cycle of length ≥ 5 (nor its complement). We denote by ω(G) the clique number (size of a
largest clique) and by α(G) the independence number. In [1], Song and Xu defined notions of
perfect divisibility and 2-divisibility. The authors shown that (P5, banner)-free graphs are perfectly
divisible, (P5, C5, banner, hammer)-free graph G is ω

3
2 (G)-colorable, and for every P5-free graph G

with α(G) ≥ 3, G admits a 2-division if G is banner-free, and G is perfect if G is connected and
K1,3-free.

Definitions
We use the following definitions:

• P5: the path on 5 vertices;

• C5: the cycle on 5 vertices;

• hammer: the graph obtained from P5 = v1v2v3v4v5 by adding the chord v1v3;

• banner: the graph obtained from P5 = v1v2v3v4v5 by adding the chord v1v4;

• claw: the star K1,3 (one center with 3 leaves).

A graph is (P5, banner)-free if it contains no induced subgraph isomorphic to P5 or a banner.
Similarly we define (P5, C5, banner, hammer)-free, (P5, K1,3)-free, etc.
We also define certain decompositions of a graph G:

• A perfect division of G is a partition of V (G) into A and B such that G[A] is perfect and
ω(G[B]) < ω(G). We say G admits a perfect division if there exists a perfect division of
V (G).

• A 2-division of G is a partition V (G) into A and B such that max{ω(G[A]), ω(G[B])} < ω(G).
We say G admits a 2-division if E(G) = ∅ or there exists a 2-division of V (G).

• G is perfectly divisible (resp. 2-divisible) if every induced subgraph of G admits a perfect
(resp. 2-) division.

Main results
The following are the main theorems of Song and Xu (2024) [1].
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Theorem 1 Let G be a (P5, banner)-free graph. Then G is perfectly divisible. Moreover, if α(G) ≥ 3,
then G admits a 2-division.
Theorem 2 If G is a connected (P5, K1,3)-free graph with α(G) ≥ 3, then G is perfect.

Theorem 3 Every (P5, C5, banner, hammer)-free graph G is ω
3
2 (G)-colorable.

These extend earlier coloring and structural results for classes of P5-free graphs.

Proof ideas
Here are outlined the key ideas behind the proofs of these theorems:

• Theorem 1. The proof assumes a minimal counterexample and performs a case analysis based
on the existence of a 5-hole. If the graph contains such a cycle, its neighborhood is partitioned
and analyzed structurally. Using forbidden subgraph constraints (P5, banner), the authors
prove that either a homogeneous set exists (contradicting minimality), or a perfect division
can be constructed. When the independence number is at least 3, further case distinctions
and clique structure arguments yield a valid 2-division.

• Theorem 2. Let G be a connected (P5, K1,3)-free graph with α(G) ≥ 3. Assume G is
imperfect. Then G contains an odd antihole, and Ben Rebea’s Lemma implies the existence
of an induced C5. Since G is (P5, banner)-free, the neighborhood of this C5 is analyzed using
special partition. Any stable set of size 3 in G must then intersect one of the cliques in this
partition in at least two vertices, leading to a contradiction either via a P5 or an induced claw.
Thus, G must be perfect.

• Theorem 3. Suppose G is a minimal counterexample with clique number ω. Since G is
(P5, C5, banner, hammer)-free, one shows (using SPGT) that G must be perfect for n ≤ 7.
Otherwise G may have an antihole. The (P5, C5, banner, hammer)-free conditions are used
to control the neighborhood of the antihole. A detailed combinatorial argument shows that
either the graph contains a suitable clique cutset enabling recursive coloring, or the coloring
bound χ(G) ≤ ⌊3

2ω(G)⌋ holds directly via clique partitioning.
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