
Spring
School 2024

Petr Chmel, Barbora Dohnalová (eds.)

Preface

Spring school on Combinatorics has been a traditional meeting organized for more than 40 years
for faculty and students participating in the Combinatorial Seminar at Faculty of Mathematics and
Physics of the Charles University. It is internationally known and regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been
the case for several years, this Spring School is supported by Computer Science Institute (IÚUK)
of Charles University, the Department of Applied Mathematics (KAM) and by some of our grants
(SVV, UNCE, Progres). This year we are glad we can also acknowledge generous support by the
RSJ Foundation.
The Spring Schools are entirely organized and arranged by our students. The topics of talks are
selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science
Institute (IÚUK) of Charles University as well as from other participating institutions. In contrast,
the talks themselves are almost exclusively given by students, both undergraduate and graduate.
This leads to a unique atmosphere of the meeting, which helps the students in further studies and
their scientific orientation.
This year the Spring School is organized in Vysoká Lípa (in Bohemian Switzerland in northern
Bohemia) with a great variety of possibilities for outdoor activities.

Robert Šámal, Pavel Veselý
Petr Chmel, Barbora Dohnalová

KAMKAM

2

Contents

Cooperative Game Theory: Introduction to Cooperative Game Theory (Martin Černý) . . . 5
Cooperative Game Theory: Applications of cooperative games in machine learning (Júlia

Križanová) . 7
Cooperative Game Theory: Learnability of Cooperative Games (Filip Úradník) 8
Cooperative Game Theory: Stochastic cooperative games (David Ryzák) 12
Cooperative Game Theory: Set-valued Solutions for Cooperative Game with Integer Side

Payments (Richard Mužík) . 14
Cooperative Game Theory: Cooperative games with skills in Open Anonymous Environments

(Petr Vincena) . 15
Twin-Width: Introduction to Twin-Width (Jakub Balabán) 17
Twin-Width: Twin-width of Planar Graphs is at most 8, and some Related Bounds (Jan

Jedelský) . 20
Zero Knowledge: Introduction to Zero-Knowledge and zk-SNARKs (Petr Chmel) 22
Zero Knowledge: The KZG polynomial commitment scheme (Dominik Stejskal) 25
Zero Knowledge: The PlonK protocol (Benjamin Bencik) . 26
Zero Knowledge: Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs

(Martin Pastyřík) . 27
Zero Knowledge: Algebraic Cryptanalysis of Poseidon (Kristýna Mašková) 30
Old and new approaches to counting distinct elements (Adam Beneš) 31
An Improved Lower Bound on the Number of Pseudoline Arrangements (Fernando Cortés

Kühnast) . 33
An Alternate Proof of Near-Optimal Light Spanners (Barbora Dohnalová) 35
Antipaths in oriented graphs (Karolina Drabik) . 37
A note on the Gyárfás-Sumner conjecture (Filip Filipkowski) 39
Monochromatic Boxes of Unit Volume (Antonina Frąckowiak) 41
Simple Set Sketching (Vojtěch Gadurek) . 43
On the length of directed paths in digraphs (Karolína Hylasová) 45
A Book Proof of the Middle Levels Theorem (Igor Januszkiewicz) 48
Another proof of Seymour’s 6-flow theorem (Volodymyr Kuznietsov) 50
Geometry of interval linear systems (Cyril Kotecký) . 51
Vertex degrees close to the average degree (Sofiia Kotsiubynska) 55
C10 has positive Turán density in the hypercube (Václav Lepič) 56
Optimal resizable arrays (Matúš Matok) . 57
Characterization of graphs with k edge-disjoint spanning trees and its vertex analogue (David

Mikšaník) . 59

Minimum-cost paths for electric cars (Jędrzej Olkowski) . 61
Maximizing the Spread of Influence through a Social Network (Lluís Sabater Rojas) 63
Masked superstrings framework for representing k-mer sets (Ondřej Sladký) 65
Detecting an Odd Hole (Diana Švecová) . 67
Counting Perfect Matchings, Permanent, Real Stability and Beyond (Hadi Zamani) 70
Global rigidity of random graphs in R (Patrik Zavoral) . 71

4

Series Talks

Martin Černý
cerny@kam.mff.cuni.cz

Introduction to Cooperative Game Theory
as part of series Cooperative Game Theory

Introduction
Cooperative game theory, as introduced by von Neumann and Morgenstern in order to model the
strength and power of coalitions, has been largely developed in the last fifty years. Applications of
cooperative games are numerous, mainly in economics (fair division of a benefit/cost, bankruptcy
problems, etc.), social choice (voting games), but also more recently in artificial intelligence and
machine learning.

Cooperative games
Definition 1 (Cooperative game) A cooperative game is an ordered pair (N, v), where N is the
set of players and v : 2N → R is its characteristic function. Further, v(∅) = 0.
What distinguishes cooperative games from other game-theoretical models is the absence of player
actions. These are hidden behind the values of coalitions; the value v(S) might be interpreted as
the best joint utility of the players in S if they decide to act according to their best strategies.
The notion of bigger coalition is a better coalition can be captured by different properties of coop-
erative games. The following classes of games reflect this notion and form a hierarchy.
Definition 2 (Classes of games) A cooperative game (N, v) is

1. monotone if it satisfies v(S) ≤ v(T), S ⊆ T ⊆ N ;

2. superadditive if v(S) + v(T) ≤ v(T ∪ S), S, T ⊆ N, S ∩ T = ∅;

3. convex if v(S) + v(T) ≤ v(T ∪ S) + v(T ∩ S), S, T ⊆ N .

When the coalition of all players N cooperates, an important problem is how to allocate v(N)
between the players. Allocation x ∈ Rn is called payoff vectors. For simplicity, let x(S) = ∑

i∈S xi.
Solution concepts are formally subsets of payoff vectors following different goals. The following
solution concepts captures the notion of stability.
Definition 3 (Core) The core C(v) of a cooperative game (N, v) is defined as

C(v) = {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for every S ⊆ N}.

The next one-point solution concept satisfies several properties, which make it considered a fair
allocation.
Definition 4 (Shapley value) The Shapley value ϕ : Γn → Rn is defined as

ϕi(v) =
∑

S⊆N\i

s!(n− s− 1)!
n! (v(S ∪ i)− v(S)).

5

Bibliography

[1] Hans Peters, Game Theory: A Multi-Leveled Approach. Springer-Verlag Berlin AND Heidelberg Gmbh & Co.
KG, 2015, ISBN 9783662469491.

6

Júlia Križanová
julia.krizannova@gmail.com

Presented paper by L. H. B. Olsen, I. K. Glad1, M. Jullum, Kjersti Aas
Applications of cooperative games in machine learning

as part of series Cooperative Game Theory
(https://link.springer.com/article/10.1007/s10618-024-01016-z)

Introduction
Shapley values originated in cooperative game theory but are extensively used today as a model-
agnostic explanation framework to explain predictions made by complex machine learning models
in the industry and academia. There are several algorithmic approaches for computing different
versions of Shapley value explanations.
Here, we consider Shapley values incorporating feature dependencies, referred to as conditional
Shapley values, for predictive models fitted to tabular data. Estimating precise conditional Shapley
values is difficult as they require the estimation of non-trivial conditional expectations. In this
article, we develop new methods, extend earlier proposed approaches, and systematize the new
refined and existing methods into different method classes for comparison and evaluation.

Terms and definitions
Shapley values assigned to each player j, for j = 1...M uniquely satisfy following properties:
Fact 1 (Efficiency) Their payoff sum corresponds to the value of the grand coalition M over the
empty set ∅, i.e. ∑M

j=1 ϕj = v(M)− v(∅).
Fact 2 (Symmetry) Two equally contributing players j, k, i.e. v(S ⋃{j}) = v(S ⋃{k}) for all S,
receive equal payouts ϕj = ϕk.
Fact 3 (Dummy) A non-contributing player j, i.e. v(S) = v(S ⋃{j}) for all S, receives ϕj = 0.
Fact 4 (Linearity) A linear combination of n games {v1, ..., vn}, that is v(S) = ∑n

k=1 ckvk(S), has
Shapley values given by ϕj(v) = ∑n

k=1 ckϕj(vk).

Shapley showed that the values which satisfy the axioms above are given by

ϕj =
∑

S∈P(M)\{j}

|S|!(M − |S| − 1)!
M ! (v(S

⋃
{j})− v(S)),

where |S| is the number of players in coalition S and P(M) is the power set of M .

7

Filip Úradník
uradnik@kam.mff.cuni.cz

Learnability of Cooperative Games
as part of series Cooperative Game Theory

Introduction
Many problems, ranging from cost sharing to AI explainability, are modelled using cooperative
game theory. The goal is to decide if cooperation is rational in a given situation and how the profit
should be divided. However, the applications are limited to only selected cases with relatively low
number of players. This is because to distribute the profit, values of all sub-coalitions of players is
required — this being exponential in the number of players n. Incomplete cooperative game theory
offers a way to describe the game using only selected coalition values. Additional structure of the
game can be leveraged to obtain more information about the missing values.
However, the lack of full information can be used by each player in order to bargain with the others
about his payoff. This in turn makes it difficult to agree on the profit distribution. A central
principal may want to limit such exploitation by gathering more information about the game,
i.e. obtaining values of coalitions which were previously unknown. The principal wants to choose
such coalitions that, after their values are revealed, the strategic behaviour is limited as much as
possible. This “coalition revealing strategy” offers insights into which coalitions are most important
for a given class of games.

Background
Definition 1 (Cooperative game) A cooperative game is an ordered pair (N, v) where N =
{1, . . . n} is the set of players and v : 2N → R is the characteristic function of the cooperative game.
Further, v(∅) = 0.
We will refer to a subset of players S ⊆ N as a coalition. Coalitions of size 1 are called singletons
and N is the grand coalition. Further, we denote the set of all games on the set N = {1, . . . , n} as
Γn.
Definition 2 The game (N, v) is said to be

• monotone ≡ (∀S ⊆ T ⊆ N)(v(S) ≤ v(T)),

• super-additive ≡ (∀S, T ⊆ N : S ∩ T = ∅)(v(S) + v(T) ≤ v(S ∪ T)),

• convex ≡ (∀S, T ⊆ N)(v(S) + v(T) ≤ v(S ∩ T) + v(S ∪ T)).

The classes of monotone, super-additive, and convex games with n players are denoted Mn, Sn and
Cn, respectively.
One of the goals of cooperative game theory is to find a way to distribute the payoff of the grand
coalition to the players. This is done using so-called payoff vectors x ∈ Rn, where xi represents the
payoff of player i. We say that a payoff vector is

• efficient ≡ x(N) := ∑
i∈N xi = v(N),

• individually rational ≡ (∀i)(xi ≥ v(i)).

8

More generally, we will talk about solution concepts, is a function S : Γn → 2Rn , that assigns each
game a payoff vector, or a set of payoff vectors, with given properties. One of the most studied
solution concepts is the Shapley value.
Definition 3 (Shapley value) Let (N, v) be a cooperative game. The Shapley value of player i is

ϕi(v) :=
∑

S⊆N\{i}

s! (n− s− 1)!
n! (v(S ∪ {i})− v(S)) ,

where s := |S|.

Incomplete Cooperative Games
Definition 4 (Incomplete game) An incomplete game is a cooperative game, in which we do
not know the values of v for all coalitions. Formally, it is a tuple (N,K, v), where

• N = {1, . . . , n} is the set of players,

• K ⊆ 2N is the set of coalitions with a known value, ∅ ∈ K,

• v : 2N → R is the characteristic function, v(∅) = 0.

Further, we usually want for at least the so-called minimal information to be present, which is
K0 := {∅, N} ∪ {{i} | i ∈ N}. An incomplete game is said to include minimal information ≡
K0 ⊆ K. We say that (N, v) is the underlying full game of (N,K, v).
Definition 5 (Sn-extension) A game (N, w) ∈ Sn is a Sn-extension of the incomplete game
(N,K, v) ≡ ∀S ∈ K : v(S) = w(S).
The class of all Sn-extensions of (N,K, v) is denoted by Sn(K, v). If Sn(K, v) is non-empty, then
we say that (N,K, v) is Sn-extensible.
As a reminder, Sn is the class of all super-additive games on n players. The extensions can be
defined for a general class C, but in this talk, we will only discuss Sn-extensions.

Principal’s Problems
From now, we will assume that the underlying game (N, v) ∈ Sn. Each player in the game can
leverage the lack of knowledge of v to increase his profit as much as possible.
Definition 6 (Utopian game) A player i’s utopian game is (N, vi), where

vi = arg max
v∈Sn(K,v)

ϕi(v) .

The utopian game represents the “dream game” of the player (the one where they receive the most
money, of course). We call the difference between the “collective optimism“ of the players, and
reality, the utopian gap.
Definition 7 (Utopian gap) The utopian gap in (N,K, v) is

G(N,v)(K) :=
∑
i∈N

ϕi(vi)− v(N) .

We imagine the utopian gap is the function the principal is trying to minimize. However, she has
a fixed budget of τ coalitions she can reveal, not more. We establish two approaches, an online
approach and an offline approach.

9

Definition 8 (Offline Principal’s Problem) Let F be a known distribution of super-additive
cooperative games. The optimal solution of the Offline Principal’s Problem is to find S ⊆ 22N \K,
where

S = arg min
S⊆22N \K,|S|≤τ

E
v∼F

[
G(N,v)(K ∪ S)

]
.

Definition 9 (Online Principal’s Problem) Let F be a known distribution of super-additive
cooperative games. The optimal solution of the Online Principal’s Problem is to find a policy
π : (2N × R) × N → ∆2N \K, which receives the already revealed coalitions, along with their values,
and the remaining budget τ , and returns a distribution on the rest of the coalitions, such that it
minimizes the following quantity

E
v∼F
G(N,v)(KF) ,

where KF is K with τ extra coalitions revealed in sequence according to π.

PPO
Let us also give a brief introduction into the realm of Reinforcement learning, in the scope required
for the talk. The general setup is as follows:
We have an agent, and an environment. There is a set of states S, with a specified starting state
s0. The agent has a set of actions A, and using these actions, interacts with the environment. The
environment itself is represented by two black box functions: the transition function τ : S×A → ∆S ,
specifying how the state the agent is in changes, and the reward function r : S × A → R. The
agent’s aim is to maximize the cumulative reward Es∼τ

∑T
t=0 r(st, at).

The agent is usually formalised as a policy, which is a function π : S → ∆A, which for a given state
s gives a distribution on which actions to take next. If the agent is represented by a neural network
(or networks), the policy is usually parametrized by θ, which represents the specific weights of the
neural network.
Definition 10 (Return) Let r(a, s) be the reward gained by taking action a in state s. Then for
a sequence s0, a0, s1, . . . sT the return is

RT =
T∑

t=1
r(at, st).

Definition 11 (q-value) Let π : S → ∆|A| be the policy and τ : S × A → ∆S be the transition
function. Then

v(s) := Ea∼π

[
T∑

t=1
r(at, st)

]
,

q(a, s) := Ea∼π

r(a, s) +
∑
s′∈S

τs′(s, a)v(s′)
 .

Definition 12 (PPO) The PPO algorithm minimizes the following two losses

Lπ(θ|φ) := −Et∼T (π)

[(Rt − v(st|φ)) π(at|θ)
π(at|θ0)

]1+ε

1−ε

 ,

Lv(φ|θ) := Et∼T (π)
[
(Rt − v(st|φ))2

]
,

along a trajectory t ∼ T sampled under policy π.

10

0 5 10 15 20 25

Steps

0

2

4

6

8

10

12
U

to
pi

an
G

ap
factory(5)

Offline Greedy
Offline Optimal
Oracle Greedy
Oracle Optimal
PPO
Random

0 5 10 15 20 25

Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
to

pi
an

G
ap

supermodular(5)
Offline Greedy
Offline Optimal
Oracle Greedy
Oracle Optimal
PPO
Random

4 5 6 7 8 9

Number of Players

10−2

10−1

100

N
or

m
al

iz
ed

U
to

pi
an

G
ap

supermodular(n), Reveal Size n− 1

Largest Coalitions
Random

Figure 1: Plots from figures 1 and 3 of [1].

PPO has two parts, the actor and the critic. The critic tries to approximate the value of an action
in a state (φ in the above definition). The actor (represented by θ) tries to approximate the best
action, based on the current approximations via φ.

Bibliography

[1] Filip Úradník, David Sychrovský, Jakub Černý, and Martin Černý. 2024. Reducing Optimism Bias in Incom-
plete Cooperative Games. In Proc. of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024).

11

David Ryzák
david.ryzak99@gmail.com

Stochastic cooperative games
as part of series Cooperative Game Theory

Introduction
Stochastic cooperative games, in this talk viewed as cooperative games with a stochastic charac-
teristic function, are generalization of the classical model of von Neumann and Morgenstern. Since
the stochastic model makes less assumptions about the characteristic function (values of coalitions
are random variables) than the classical model we need to add some other information to be able
to define solution concepts or in general to solve a cooperative game. One way to approach decision
problems where randomness is present is to assume preferences of players to be defined over the set
of outcomes. In this talk we assume all the players to be risk averse, i.e., second order stochastic
dominance is used. We study so called SSD-dominating core. Especially, uniform distribution of
characteristic function is assumed.

Stochastic cooperative games
Definition 1 (Stochastic cooperative game) Stochastic cooperative game is a pair (N, v), where
N = {1, 2, . . . , n} is a set of players and for any S ⊆ N, v(S) : (Ω,F , P) −→ R is a random variable
on a probability space (Ω,F , P).
Definition 2 (Random payoff of a player under allocation type (d, r+)) Let (N, v) be a stochas-
tic cooperative game. Payoff xi of a player in a coalition S in (N, v) under allocation type (d, r) is
defined as:

xi = di + ri(v(S)− E[v(S)])
Definition 3 (Feasible random payoff) Let (N, v) be a stochastic cooperative game. Feasible
payoff for a coalition S ⊆ N is a random payoff (d, r+) ∈ R2n satisfying:

• d(S) = E[v(S)],

• r(S) = 1,

• ri ≥ 0, ∀i ∈ S.

Definition 4 (Second order stochastic dominance) Let X, Y be a random variables. A vari-
able X stochastically dominates Y if for all concave nondecreasing utilitity function u it holds

E[u(X)] ≥ E[u(Y)].
Definition 5 (SSD- dominating core) Let (N, v) be a stochastic cooperative game. SSD-dominating
core is set of feasible random payoffs for the grand coalition N for which it holds that x(S) ⪰SSD

v(S) ∀S ⊆ N and x(N) has the same distribution as v(N). SSD-dominating core is denoted by
DCSSD(v)
Theorem 6 (Nonemptiness of SSD core under uniform distribution) Let (N, v) be a stochas-
tic cooperative game. Suppose ∀S ⊆ N, v(S) has uniform distribution U [aS, bS], where parameters
aS, bS ∈ R are known. Let (N, a) and (N, µ) be a cooperative games with characteristic functions

12

defined as a(S) = aS and µ(S) = E[v(S)] respectively. Then the following implications hold:
(N, a) is a convex game & C(µ) ̸= ∅ =⇒ DCSSD(v) ̸= ∅,
DCSSD(v) ̸= ∅ =⇒ C(µ) ̸= ∅ & C(a) ̸= ∅.

13

Richard Mužík
richard@imuzik.cz

Presented paper by Alexandra B. Zinchenko
Set-valued Solutions for Cooperative Game with Integer Side Payments

as part of series Cooperative Game Theory
(https://m-hikari.com/ams/ams-2014/ams-9-12-2014/zinchenkoAMS9-12-2014.pdf)

Introduction
The design of a cooperative game requires the assumptions of transferable utility and side payments.
However, the utility can consist of indivisible units (e.g., one stock of something). This paper studies
cooperative games with side payments and integer outcomes, demonstrating the effects of integer
requirements. J. von Neumann and O. Morgenstern pointed out that such a modification of the
utility concept ’would make our theory more realistic,’ but ’it is clear that definite difficulties must
be overcome in order to carry out this program.’
Definition 1 (Discrete game) A discrete game is a game GD = (N, v), where v(S) ∈ Z and
x(S) ∈ Z for all S ⊆ N . A set of all n player discrete games is denoted by GN

D .
Definition 2 (Dual game) Dual game to G = (N, v) is G∗ = (N, v∗), where v∗(S) = v(N) −
v(N \ S) for S ⊆ N .
Definition 3 (Imputation set) Imputation set of G = (N, v) is I(G) = {x ∈ X(G)|∀S ⊆ N :
x(S) ≥ v(S)}, where X(G) = {x ∈ R|x(N) = v(N)}.
Definition 4 (Core of a game) Core of G = (N, v) is C(G) = {x ∈ X(G) | x(S) ≥ v(S), ∀S ⊆ N}.
Definition 5 (D-core of a game) D-core of G = (N, v) is DC(G) = I(G)\dom(I(G)). dom(I(G))
are all dominated imputations. I.e. dom(I(G)) = {x ∈ I(G)|∃y ∈ I(G) : (∀i ∈ 1 . . . n : yi ≥
xi) ∧ (∃j ∈ 1 . . . n : yj > xj)}.
Lemma 6 Let GD ∈ GN

D , x ∈ I(GD), y ∈ I(GD) such that x ̸= y. Then there exists nonzero
δ ∈ ZN , such that x = y + δ and δ(N) = 0.
Lemma 7 Let GD ∈ GN

D , x ∈ I(GD), y ∈ I(GD) such that y ≻S x via some coalition ∅ ̸= S ⊆ N .
Then x(S) ≤ v(S)− |S| and 2 ≤ |S| ≤ |N | − 1.
Theorem 8 Let GD ∈ GN

D . Then C(GD) = DC(GD) ⇐⇒ C(GD) = I(GD).
Theorem 9 Let GD ∈ GN

D . Fix k ∈ N , H ⊆ N \ k and let Ω′ = {S ∈ Ω | S ̸= {i} for i ∈
H and S ̸= N \ i for i ∈ (N \H)\k}, where Ω = 2N \{N, ∅}. If the following condition holds, then
C(GD) ̸= ∅: v(S) ≤ ∑i∈S∩H v(i) +∑

i∈S\H v⋆(i), S ∈ Ω′, k /∈ S

v(S) ≤ v(N)−∑i∈H\S v(i)−∑i∈(N\H)\S v⋆(i), S ∈ Ω′, k ∈ S

Definition 10 (Stable set) The stable set NM(G) of game G = (N, v) is defined by conditions:
NM(G) ∩ dom(NM(G)) = ∅ (internal stability)

I(G) \NM(G) ⊂ dom(NM(G)) (external stability)
The family of all stable sets of G is denoted by NM(G).
Theorem 11 Let GD ∈ GN

D be a convex game. Then NM(GD) = {DC(GD)}.
Theorem 12 Let GD ∈ (G)N

D . Then C(GD) ∈ NM(GD) ⇐⇒ C(GD) = I(GD).

14

Petr Vincena
vincena.petr@gmail.com

Cooperative games with skills in Open Anonymous Environments
as part of series Cooperative Game Theory

Introduction
Traditional models of cooperative game theory consider agents as entities without more subtle
differentiation. Agent as a whole brings some value to already existing coalition and this value is
represented in the characteristic function. Instead, we can see agents not as "magical" units but as
entities with some sets of skills and these skills they bring to the coalitions. This model allows us
to represent more fine-grained picture of reality.
In open anonymous environments (such as internet), it is very easy for agents to collude (and create
a bigger, non-existing agent) which has both their capabilities, separate themselves (and create
smaller agents) or hide some of their skills in order to increase their profits. Traditional solution
concepts are vulnerable to these 3 ways of manipulation and new concepts based on traditional ones
are proposed.

Basic definitions
Definition 1 (Skills and agents) Let T be the set of all possible skills. Each agent t has a subset
of skills St ⊆ T . We assume that the skills are unique: ∀t ̸= u, St ∩ Su = ∅.
Definition 2 (Characteristic function over skills) A characteristic function v : 2T → R as-
signs a value to each set of skills.
Definition 3 (Hiding skills) If agent i has a set of skills Si, for any S ′

i ⊆ Si, it can declare that
it has only S ′

i.
Definition 4 (False names or separation) Agent i can use multiple identifiers and declare that
each identifier has a subset of skills Si. Since we assume each skill is unique, two different identifiers
cannot declare they have the same skill. Thus, a false-name manipulation by agent i corresponds
to a partition of Si into multiple identifiers. (If the manipulation is combined with a skill-hiding
manipulation, only a subset of Si is partitioned.)
Definition 5 (Collusion) Multiple agents can collude and pretend to be a single agent. They can
declare the skills of this agent to be the union of their skills (or a subset of this union, in case we
combine the manipulation with a skillhiding manipulation).
Definition 6 (Solution concept - Shapley value) The Shapley value represents the idea that
when you take all possible permutations of gradually joining the coalition, the mean of your contri-
bution in all of these permutations should be your payback.
Formally, give an ordering o of the set of agents W in the coalition, let X(o, i) be the set of agents
in W that appear before i in ordering o. Then the Shapley value for agent i is defined as

Sh(W, i) = 1
|W |!

∑
o

(w(X(o, i) ∪ {i})− w(X(o, i)))

Definition 7 (Solution concept - core) The core represents all possible paybacks with the prop-
erty that no subgroup of agents have an intention to leave the coalition and create a separate coalition.

15

Formally, for a set of agents W in the coalition and payback function w, the payback p is coalitionaly
rational if:

∀C ⊆ W :
∑
i∈C

pi ≥ w(C)
.
The core is then set of all such paybacks.

16

Jakub Balabán
balaban.jakub@gmail.com

Introduction to Twin-Width as part of series Twin-Width

Introduction
Twin-width is a graph parameter introduced in 2020 [1], which has attracted a lot of attention
since then. Let us start with an informal description of twin-width (formal definition follows). Two
vertices u, v in a graph are called twins if they have the same neighborhood (it does not matter
whether uv is an edge). To show that the twin-width of a graph is small, we must show how the
graph can be reduced to a single vertex by successively merging pairs of vertices that are “almost”
twins. If the two merged vertices are twins, then the merging is equivalent to deleting one of them.
Otherwise, there is a vertex which is adjacent to only one of them: this discrepancy is recorded via
a so-called red edge. To show that the twin-width is at most k, we must avoid creating a vertex
incident to more than k red edges. The following figure shows that the twin-width of the graph on
the left is at most 2.

A

C

E

B

D

F

A

C

B

D

EF

AB

C D

EF

AB

CD

EF

AB

CDEF

ABCDEF

Formal definition
Definition 1 (Trigraph, contraction) A trigraph G is a clique with the edge-set partitioned into
three sets B(G), R(G), and W (G): black, red, and white1 edges. Let G−u, v be the trigraph obtained
from G by removing vertices u and v. A contraction of distinct vertices u, v ∈ V (G) is the operation
which produces a new trigraph G′ defined as follows:

• V (G′) = V (G− u, v) ⊔ {w};

• B(G′) = B(G− u, v) ∪ {wx | ux, vx ∈ B(G)};

• W (G′) = W (G− u, v) ∪ {wx | ux, vx ∈ W (G)};

• R(G′) contains all remaining edges of G′.

Definition 2 (Contraction sequence, Twin-width) A sequence (G1, G2, . . . , Gn) of trigraphs
is a contraction sequence of G1 if each Gi+1 for i ≥ 1 is obtained from Gi by contracting two
vertices, and Gn contains a single vertex. The width of a contraction sequence C is the maximum
red degree over all vertices in all trigraphs in C (the red degree of u is the number of red edges
incident to u). The twin-width of G, denoted tww(G), is the minimum width of any contraction
sequence of G.

1In the literature, white edges are usually called non-edges (white lines cannot be seen on paper), and a trigraph
is defined as a graph with red and black edges.

17

An undirected simple graph G can be viewed as a trigraph G′ such that V (G′) = V (G), B(G′) =
E(G), R(G′) = ∅, and W (G′) are the non-edges of G. Hence, we can talk about the twin-width of
graphs.
Why should we care about twin-width, though? In the paper introducing twin-width [1], it was
proven that if a contraction sequence of G of width d is provided, then any first-order (FO) formula2

φ can be evaluated in FPT time, i.e., in time f(|φ|, d) · |G| for some computable function f . There
are also more “practical” applications: for example, graphs of small twin-width can be compressed
to size linear in the number of vertices (which allows BFS or DFS search in linear time) [5].

Basic properties
Observation 3 The twin-width of a graph equals the twin-width of its complement.
Observation 4 The twin-width of a disconnected graph is the maximum twin-width over all its
connected components.
Observation 5 If H is an induced subtrigraph of G, then tww(H) ≤ tww(G). Moreover, replacing
a red edge with a black or white edge does not increase twin-width.
Observation 6 Cliques, edgeless graphs, and stars have twin-width 0, paths have twin-width at
most 1, and trees have twin-width at most 2.
Proof For paths, it suffices to start contracting from one end of the path. For trees, fix an arbi-
trary root and repeat the following. If there are two leaves with the same parent, contract them.
Otherwise, contract the deepest leaf with its parent. □

Observation 7 Graphs of twin-width 0 are exactly cographs, i.e., graphs that can be recursively
built from single vertices by disjoint union and complementation.

Computing twin-width
Observation 8 The twin-width of an n-vertex graph G can be computed in time 2O(n·log n).
Proof Try all possible contraction sequences of G. □

Theorem 9 ([3]) Graphs of twin-width 1 (and 0) can be recognized in polynomial time.
Theorem 10 ([4]) Recognizing graphs of twin-width at most 4 is NP-complete.
Hence, an interesting open question is whether graphs of twin-width 2 and 3 can be efficiently
recognized.

Other results
Theorem 11 ([1]) Let G′ be a trigraph obtained from a trigraph G by adding one vertex v and
linking it with black edges to an arbitrary subset X ⊆ V (G). Then tww(G′) ≤ 2(tww(G) + 1).
Theorem 12 ([1]) Any two-dimensional grid graph has twin-width at most 4. More generally, a
d-dimensional grid graph has twin width at most 3d− 2.
The following two theorems are related: informally, one says that subdividing edges many times
makes twin-width small, and the other one says that subdividing edges few times makes twin-width
large.

2This means that we are only allowed to quantify over vertices, not over sets of vertices. An example of an FO
formula is: ∃u∀v : u = v ∨ E(u, v). It says that there is a vertex adjacent to all other vertices.

18

Theorem 13 ([4]) If G is a graph obtained from an n-vertex graph by subdividing each edge at
least 2⌈log n⌉ − 1 times, then tww(G) ≤ 4.
Theorem 14 ([2]) If d ≥ 0 and G is a graph obtained from the clique Kn by subdividing each edge
k-times for 1 ≤ k < logd+1(n− 1)− 1, then tww(G) > d.

Bibliography

[1] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO Model
Checking. FOCS 2020, J. ACM 2022.

[2] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small
classes. SODA 2021.

[3] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and
Polynomial Kernels. Algorithmica 2022.

[4] Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is NP-Complete. ICALP
2022.

[5] Max Bannach, Florian Andreas Marwitz, and Till Tantau. Faster Graph Algorithms Through DAG Compression.
STACS 2024.

19

Jan Jedelský
xjedelsk@fi.muni.cz

Presented paper by Petr Hliněný and Jan Jedelský
Twin-width of Planar Graphs is at most 8, and some Related Bounds

as part of series Twin-Width
(http://dx.doi.org/10.4230/LIPIcs.ICALP.2023.75)

Introduction
Twin-width is a graph parameter introduced by Bonnet et al. [1]. Informally speaking, it measures
“similarity to cographs”.
A graph is a cograph if it can be reduced to a single vertex by iterative identification of twins.
We obtain twin-width by allowing identifications of near twins, while keeping track of the resulting
“errors” by coloring edges red. We defer its formal definition for later.
A graph is planar if it can be drawn onto a plane without any crossed edges. In 2022, there has
been a stream of upper bounds on twin-width of planar graph. So far, the best published upper
bound is 8. Additionally, Kráľ and Lamaison [3] have found a planar graph of twin-width exactly
7.
In this talk, we show that twin-width of planar graphs is at most 8.

Outline of the presentation
We begin by showing that twin-width of planar graphs is at most 12. Then, we improve the upper
bound to 9 by replacing arbitrary BFS tree with left-aligned BFS tree [2]. Finally, we improve the
upper bound to 8 by avoiding contractions across “horizontal separators” during the contraction
sequence.

Definition of twin-width
Definition 1 (Trigraph) Let G be a (simple) graph and let c be its 2-edge-coloring (using colors
red and black). Then, we say that H := (G, c) is a trigraph.
Red degree of a vertex v ∈ V (H) := V (G) is the number of red edges incident to v. We say that H
is a d-trigraph, if its maximum red degree is at most d.
We denote by NH(v) the set of neighbors of v in G. We denote by NR

H(v) ⊆ NH(v) the set of red
neighbor of v, that is, the set of vertices adjacent to v by a red edge.
We can also see graphs as a special case of trigraphs where all the edges are black.
Definition 2 (Contraction) Let G and H be trigraphs, and let {u, v} = V (G)\V (H) and {w} =
V (H) \ V (G) be vertices.
We say that H is created by a contraction of u and v in G if the following holds:

• NG(u) ∪NG(v) \ {u, v} = NH(w),

• NR
G (u) ∪NR

G (v) ∪ (NG(u)△NG(v)) = NR
H(w), where △ denotes symmetric difference, and

• for every x ∈ V (G) \ {u, v} = V (H) \ {w}, it holds that NG(x) \ {u, v} = NH(x) \ {w} and
NR

G (x) \ {u, v} = NR
H(x) \ {w}

20

Definition 3 (Contraction sequence) Let G be a (tri)graph, let k ∈ N0 be an integer, and let
G = Gn, Gn−1, . . . , G1 = K1 be a sequence of k-trigraphs starting with G and ending with a single
vertex graph.
Assume that, for all i = 1, 2, . . . , n− 1, it holds that Gi is created by a contraction from Gi+1.
Then, we say that Gn, Gn−1, . . . , G1 is a k-contraction sequence for G.
Definition 4 (Twin-width) Let G be a (tri)graph. Twin-width of G is the smallest k ∈ N0 such
that there is a k-contraction sequence G = Gn, Gn−1, . . . , G1 = K1 for G.

Bibliography

[1] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO Model
Checking. Journal of the ACM, Volume 69, Issue 1, Article No.: 3pp 1–46.

[2] Petr Hliněný. Twin-width of Planar Graphs is at most 9, and at most 6 when Bipartite Planar.
https://arxiv.org/abs/2205.05378

[3] Daniel Kral, and Ander Lamaison. Planar graph with twin-width seven. European Journal of Combinatorics, In
Press.

21

Petr Chmel
chmel@iuuk.mff.cuni.cz

Introduction to Zero-Knowledge and zk-SNARKs
as part of series Zero Knowledge

Zero Knowledge
Definition 1 (Interactive proof system) For a function f : {0, 1}n → R, where R is a finite
set, a k-message interactive proof system for f is a pair of algorithms (V ,P), where V (the verifier)
is a probabilistic algorithm running in time poly(n), and a prescribed (“honest”) deterministic al-
gorithm P (the prover) that satisfy the following. Both V ,P are given a common input x ∈ {0, 1}n,
and the prover then provides a value y claimed to be the value of f(x). The prover and verifier then
exchange a sequence of messages m1, . . . , mk. The algorithm send their messages in alternating
order, and in order to produce the message mi, the currently sending algorithm run on the the input
(x, m1, . . . , mi−1).
The sequence of messages (m1, . . . , mk), along with the claimed answer y is called the transcript.
In the end, the verifier V outputs a single bit b, where b = 1 indicates that the verifier accepts the
claim y = f(x), and b = 0 indicates that the verifier rejects the claim. We use out(V , x, r,P) to
denote the result of the protocol (whether the verifier accepts or rejects) for the verifier V with its
internal randomness r, and the prover P with the common input x.
We then say that the interactive proof system is valid, if it satisfies the two following conditions:

1. (Completeness) For every x ∈ {0, 1}n, Prr[out(V , x, r,P)] ≥ 2/3.

2. (Soundness) For every x ∈ {0, 1}n and every deterministic prover strategy P ′, if P ′ sends a
value y ̸= f(x) at the start of the protocol, then Prr[out(V , x, r,P)] ≤ 1/3.

Definition 2 (Interactive argument system) An interactive proof system (V ,P) is a valid in-
teractive argument system, if it satisfies the same completeness condition as a valid interactive
proof system, but the soundess condition is required to only hold for prover strategies running in
polynomial time.
We can also create these interactive proofs for languages, where the interaction is the same as in the
function version, and the output of the verifier indicates whether the public input is in the language
or not. Completeness then amounts to requiring that every string in the language is accepted with
high probability, and every string not in the language is rejected with high probability.
Our goal with defining zero-knowledge is to capture the property that a correct proof does not tell
us anything about a potential witness. We do this by saying that we can generate a distribution
that is difficult to distinguish from the distribution of the actual transcripts.
Definition 3 (Zero-knowledge) A proof or argument system with prescribed prover P and pre-
scribed verifier V for a language L is said to be zero-knowledge if for any probabilistic polynomial
time verifier strategy V̂, there exists a probabilistic polynomial time algorithm S (which can depend
on V̂), called the simulator, such that for all x ∈ L, the distribution of the output S(x) of the sim-
ulator is “indistinguishable” from ViewV̂(P , V̂). Here, ViewV̂(P , V̂) denotes the distribution over
transcripts generated by the interaction of prover strategy P and verifier strategy V̂ within the proof
or argument system.

22

We can interpret “indistinguishable” in multiple ways. We could require the two distributions to
be

• identical, this would yield a perfect zero-knowlege system.

• statistically close, this would yield a statistical zero-knowledge system.

• computationally indistinguishable: all polynomial-time algorithms should not distinguish be-
tween the two distributions except with negligible probability. This would yield a computa-
tional zero-knowledge system.

We can also weaken the assumption in zero-knowledge so that the efficient simulator exists only
for the prescribed verifier. This is still interesting, and we then say the systems with the weaker
assumption are honest-verifier zero-knowledge.

Discrete logarithm and Schnorr’s protocol
Definition 4 (Negligible function) A function f : N→ R+

0 is negligible, if for every polynomial
p there exists an N such that ∀n > N : f(n) < 1

p(n) .

Definition 5 (DLOG experiment) The discrete-logarithm experiment DLogA,G(n):

1. G(1n) generates a group (G, q, g), where q = ord(G), ⟨g⟩ = G.

2. Choose a uniformly random h ∈ G.

3. A is given G, q, g, h, and outputs x ∈ Zq.

4. Return 1 if gx = h.

Definition 6 (DLOG assumption) We say that the discrete logarithm problem is hard relative
to G if all PPT A have Pr[DLogA,G(n) = 1] ≤ negl(n).
Protocol 7 (Schnorr’s protocol) Let G be a multiplicative cyclic group of prime order q with a
generator g. The public input is h = gw, where only the prover knows a private witness w.
The prover picks a uniformly random r from Zq and sends a← gr to the verifier.
The verifier responds with a uniformly random element e from Zq.
The prover sends the value z ← (we + r) mod q.
The verifier finally checks that a · he = gz.
Theorem 8 Schnorr’s protocol is perfect honest-verifier zero-knowledge. Moreover, if the prover
follows the protocol, then the verifier will accept with probability 1, and if, after sending the first
message a, the prover can answer correctly to more than one challenge e, then the prover must know
a witness.
Fiat-Shamir transformation. If we have an interactive protocol where all verifier’s responses
are uniformly random elements, we can transform the protocol into a non-interactive version in the
presence of a hash function H as a random oracle that both the prover and verifier have access to.
The prover then runs as usual and pretends to run the interactive protocol. A message mi that
should be generated by the verifier in the interactive protocol is then instead generated as the result
of H(x, m1, . . . , mi−1). In the end, the prover sends a single message which consists of the transcript
of the simulated protocol. The verifier can then check as if it was running the interactive protocol,
except it also needs to verify that all the messages created by hashing were generated correctly.

23

zk-SNARKs
Definition 9 (Non-interactive argument system) A non-interactive argument for a relation
R of statements and proofs is a quadruple of probabilistic algorithms (Gen, Prove, Verify, Sim),
where:

• (crs, td)← Gen(1n,R): the generator is given the security parameter n and a relation R and
outputs a common reference string crs, and a trapdoor td.

• π ← Prove(crs, u, w): the prover takes as input the crs, a statement u and a witness w, and
outputs an argument π.

• b ← Verify(crs, u, π): the verifier takes as input the crs, a statement u, and an argument π,
and outputs b = 1 if the argumetn was accepted, and b = 0 if it was rejected.

• π ← Sim(crs, td, u): the simulator takes as input the crs, the simulation trapdoor td, and a
statement u, and it produces an argument π.

We note that zk-SNARK stands for “zero-knowledge succinct non-interactive argument of knowl-
edge”.
Definition 10 (zk-SNARK) We say that a non-interactive argument (Gen, Prove, Verify, Sim) is
a zk-SNARK, if the following properties hold:

• Completeness: given a true statement for the relation, the prover should always convince the
verifier.

• Knowledge soundess: for every PPT adversary A playing as the prover, there exists an extrac-
tor algorithm EA running in polynomial time such that whenever A produces a valid argument,
then the extractor, when given full access to the state of the adversary, outputs a valid witness
except with negligible probability.

• Succinctness: if the verifier runs in polynomial time in n + |u|, where u is the statement and
n is the security parameter and the proof size is polynomial in n, we say that it is a pre-
processing SNARK. If, moreover, the common reference string is polynomial in λ, we say the
SNARK is fully succinct.

• Statistical zero knowledge: the distributions generated by the prover and the simulator are
statistically close.

Bibliography

[1] Anca Nitulescu, “zk-SNARKs: a gentle introduction”.
https://www.di.ens.fr/ nitulesc/files/Survey-SNARKs.pdf

[2] Justin Thaler, “Proofs, Arguments, and Zero-Knowledge”, draft version.
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

24

Dominik Stejskal
2dominik.stejskal2@gmail.com

The KZG polynomial commitment scheme
as part of series Zero Knowledge

Introduction
A polynomial commitment scheme is a cryptographic primitive. It allows one party — a prover —
to create a short commitment to a polynomial f . The commitment is then sent to another party
— a verifier — and used to verify claimed evaluations of f . In this talk I will introduce the KZG
polynomial commitment scheme [1] and prove some of its security properties — evaluation binding
and extractability, under suitable cryptographic assumptions. The talk will roughly follow sections
15.1-2 in Justin Thaler’s manuscript [2].

Bibliography

[1] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their
applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010.

[2] Justin Thaler (2022), “Proofs, Arguments, and Zero-Knowledge”, Foundations and Trends® in Privacy and
Security: Vol. 4: No. 2–4, pp 117-660.
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

25

Benjamin Bencik
bencikben@gmail.com

The PlonK protocol as part of series Zero Knowledge

Introduction
In this talk, I will describe the PlonK protocol, which enables to provide of arguments of knowledge
with small proof size, fast verification and one-time trusted setup. This construction will rely on
the polynomial commitment scheme KZG from the previous lecture.
Definition 1 (Arithmetic Circuit) An arithmetic circuit C(x, w) → Fp over the field Fp is a
directed acyclic graph. Every node in it with in-degree zero is called an input gate and is labeled by
either a variable or a field element in Fp . Every other gate is labeled by either + or × in the first
case it is a sum gate and in the second a product gate. The argument x ∈ Fr

p is a public statement
and w ∈ Fs

p is secret witness.
Definition 2 (Argument System) An argument system is a triple (Setup, Prove, V erify) where:

• Setup(C)→ public parameters pp

• Prove(pp, x, w)→ proof π

• V erify(pp, x, π)→ 0/1
Definition 3 (Completeness of an argument system) An argument system is complete with
respect to a negligible function ε(x) if

∀x, w : C(x, w) = 0 ⇐⇒ Pr[V erify(pp, x, Prove(pp, x, w)) = 1] = 1− ε(|C|)
Definition 4 (Knowledge soundness of an argument system) An argument system is knowl-
edge sound with respect to a negligible function ε(x) if

Pr[pp← Setup(C); π ← Prove(pp, x) : V erify(pp, x, π) = 1] < ε(|C|)
Definition 5 (Evaluation domain from root of unity) For field Fp and the n-th root of unity
ω ∈ Fp : ωn = 1 we define evaluation domain H as

H = {1, ω, ω2, ω3, . . . , ωn−1}
Definition 6 (Lagrange basis)

Li(x) =
1 x = ωi

0 otherwise
Lemma 7 Schwartz-Zippel Lemma: Let f(x1, x2, x3, . . . , xn) be a non-zero polynomial over Fp with
degree bound d and (r1, r2, r3, . . . , rn) are uniformly randomly and independently sampled from Fp.

Pr[f(r1, r2, r3, . . . , rn) = 0] ≤ d

p

Corollary 8 Let f(x1, x2, x3, . . . , xn), g(x1, x2, . . . , xn) be a non-zero polynomials over Fp with de-
gree bound d and (r1, r2, . . . , rn) are uniformly randomly and independently sampled from Fp and d

p

is negligible. If f(r1, r2, . . . , rn) = g(r1, r2, . . . , rn) then with high probability f = g.
Theorem 9 The PlonK interactive oracle proof is complete and knowledge-sound.

26

Martin Pastyřík
martin.pastyrik@seznam.cz

Presented paper by Tianyi Liu et al.
Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge

Proofs as part of series Zero Knowledge
(https://eprint.iacr.org/2023/1271.pdf)

Introduction
In the previous talks, we have seen the use of Polynomial Commitments, KZG and PLONK. These
protocols are great but often present immense computation overhead for the prover. Although
they may be computationally very strong, these players still seek a solution that would be more
scalable. One of the first solutions that comes to mind is to distribute the computation to a group
of machines and combine their partial solutions. The authors of the Pianist seem to achieve that
by implementing the KZG with multivariate polynomials.

Definitions
Definition 1 (SCC scheme [2]) An SCC scheme (signatures of correct computation) for a func-
tion family F is a tuple (KeyGen, Setup, Compute, Verify, Update) of five PPT algorithms with the
following specification:

1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security parameter λ and
a function family F . It outputs a public/secret key pair (PK, SK). KeyGen is run only once
at system initialization by a trusted source;

2. FK(f) ← Setup(SK, PK, f): Algorithm Setup (run by a trusted source) takes as input the
secret key SK, the public key PK, and a function f ∈ F . It outputs the function public key
FK(f) for the function f ;

3. (v, w)← Compute(PK, f, a): Algorithm Compute (run by an untrusted server) takes as input
the public key PK, a function f ∈ F and a value a ∈ domain(f). It outputs a pair (v, w),
where v = f(a) and w is a signature;

4. {0, 1} ← Verify(PK, FK(f), a, v, w): Algorithm Verify (run by any verifier) takes as input the
public key PK, the function public key FK(f), value a ∈ domain(f), a claimed result v and a
signature w. It outputs 0 or 1;

5. FK(f ′) ← Update(SK, PK, FK(f), f ′): Algorithm Update (run by a trusted source) takes as
input the secret key SK, the public key PK, the function public key FK(f) for the old function
f and the updated function description f ′. It outputs the updated function public key FK(f0).

Definition 2 (Adaptive security of an SCC scheme [2]) Let λ be the security parameter and
let P be an SCC scheme (KeyGen, Setup, Compute, Verify, Update) for a function family F . We
say that P is adaptively secure if no PPT adversary A has more than negligible probability negl(λ)
in winning the following security game, played between the adversary A and a challenger:

1. Initialization. The challenger runs algorithm KeyGen which outputs (PK, SK) and then
gives PK to the adversary but maintains SK secret;

27

2. Setup and update. The adversary makes an oracle query to the Setup(SK, PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK, PK, FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The challenger answers the queries by returning the
resulting FK(fi);

3. Forgery. The adversary A outputs a point b ∈ domain(fi) for some 0 ≤ i ≤ k, and the
forgery (b, v, w).

The adversary A wins the game if 1← Verify(PK, FK(fi), b, v, w) and fi(b) ̸= v.
Definition 3 (Pianist: Distributed Bivariate Polynomial Commitment [1]) Suppose P has
M machines of P0, . . . , PM−1 and suppose P0 is the master node. Given the bivariate polynomial
f(X, Y) = ∑M−1

i=0
∑T −1

j=0 fi,jRi(Y)Lj(X), each machine holds fi(X) = ∑T −1
j=0 fi,jLj(X). The protocol

proceeds as follows:

• DKZG.KeyGen(1λ,M,T) : Generate pp =
(

g, gτX , gτY , (Ui,j)0≤i<M,
0≤j<T

=
(
gRi(τY)Lj(τX)

)
0≤i<M,
0≤j<T

)
,

with trapdoor τY and τX . Let P, V hold pp.

• DKZG.Commit(f, pp): In the commitment phase, each Pi computes the commitment comfi
=∏T −1

j=0 U
fi,j

i,j and sends it to P0, where fi,j is the j-th entry in the evaluation representation of
fi(X). After receiving commitments from others, P0 computes comf = ∏M−1

i=0 comfi

• DKZG.Open(f, β, α, pp):

1. Each Pi computes fi(α) and q
(i)
0 (X) = fi(X)−fi(α)

X−α
. Pi computes π

(i)
0 = gRi(τY)q(i)

0 (τX) using
the public parameters and sends fi(α), π

(i)
0 to P0.

2. After receiving
{(

fi(α), π
(i)
0

)}
0≤i<M

, P0 computes π0 = ∏M−1
i=0 π

(i)
0 , and also recover

f(Y, α) = ∑M−1
i=0 Ri(Y)fi(α).

3. P0 computes f(β, α) and q1(Y) = f(Y,α)−f(β,α)
Y −β

. P0 computes π1 = gq1(τY) and sends
z = f(β, α) and πf = (π0, π1) to V .

• DKZG.Verify(comf , β, α, z, πf , pp): V parses πf = (π0, π1), and checks if e(comf/gz, g) =?

e(π0, gτX−α) · e(π1, gτY −β). It outputs 1 if the check passes, and 0 otherwise.

Bibliography

[1] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, Yupeng Zhang:
Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs
https://eprint.iacr.org/2023/1271.pdf

[2] Charalampos Papamanthou, Elaine Shi, Roberto Tamassia:
Signatures of Correct Computation
https://eprint.iacr.org/2011/587.pdf

[3] Helger Lipmaa, Roberto Parisella, and Janno Siim:
Constant-Size zk-SNARKs in ROM from Falsifiable Assumptions
https://eprint.iacr.org/2024/173.pdf

28

[4] Dan Boneh, Justin Drake, Ben Fisch, Ariel Gabizon:
Efficient polynomial commitment schemes for multiple points and polynomials
https://eprint.iacr.org/2020/081.pdf

29

Kristýna Mašková
maskovakristyna25@gmail.com

Algebraic Cryptanalysis of Poseidon as part of series Zero Knowledge

Introduction
In recent years there has been a rapid surge of interest in applications that build on cryptographic
protocols relying on arithmetization. Some examples of such protocols include zero-knowledge
(ZK) proofs and multiparty protocols. A recurring task in these applications consists of evaluating
a hash function. However modern cryptographic hash functions such as SHA2 and SHA3 were built
to operate over F2, while ZK protocols operate over Fq. Therefore there has been a demand for
hash functions designed to be natively efficient in Fq.
Thus recent years have seen several new proposals for primitives designed for arithmetic protocols,
usually referred to as arithmetization-oriented ciphers (AOC). However, their design allows for a
concise description in terms of operations over Fq, which in turn makes them vulnerable to algebraic
attacks [3].
In this talk, we will present one such family of hash functions named Poseidon [1]. We will show
how Poseidon can be described by a system of polynomial equations and how these equations can
be used in a Gröbner basis attack [2].

Bibliography

[1] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy and Markus Schofnegger. Poseidon: A
New Hash Function for Zero-Knowledge Proof Systems. USENIX Association (Aug 2021).

[2] Tomer Ashur, Thomas Buschman and Mohammad Mahzoun. Algebraic Cryptanalysis of HADES Design Strategy:
Application to POSEIDON and Poseidon2. Cryptology ePrint Archive, Paper 2023/537.

[3] Jan Ferdinand Sauer and Alan Szepieniec. SoK: Gröbner Basis Algorithms for Arithmetization Oriented Ciphers.
Cryptology ePrint Archive, Paper 2021/870.

30

Standalone Talks

Adam Beneš
ad.benes@gmail.com

Presented paper by Sourav Chakraborty, N. V. Vinodchandran, Kuldeep S. Meel
Old and new approaches to counting distinct elements

(https://arxiv.org/pdf/2301.10191.pdf)

Introduction
In this talk, I will show you both old and new methods for counting distinct elements. The old
methods are based on hash functions, while the new method is based on sampling. It is one of the
fundamental problems in streaming algorithms.
Definition 1 (Number of distinct elements) F0(A) is the number of distinct elements in A.
Definition 2 (The problem) Given a stream A = (a1, a2, ..., am) of m elements where each ai ∈
[n], parameters ε, δ, output an (ε, δ)-approximation of F0(A). That is, output c such that Pr[(1−
ε) · F0(A) ≤ c ≤ (1 + ε) · F0(A)] ≥ 1− δ.

Algorithm 1: Counting Distinct Elements

Input : Stream A = (a1, a2, . . . , am), ε, δ

1 Initialize p← 1; X = ∅; thresh =
⌈

12
ε2 log

(
8m
δ

)⌉
;

2 for i = 1 to m do
3 X ← X \ ai;
4 With probability p, X ← X ∪ {ai};
5 if |X| = thresh then
6 Throw away each item with probability of 1

2 ;
7 p← p

2 ;
8 if |X| = thresh then
9 Output ⊥;

10 end
11 end
12 end
13 Output |X|

p
;

Fact 3 (Chernoff’s Bound) Let v1, v2, ..., vk be independent random variables taking values in

{0, 1}. Let V =
k∑

i=1
vi. Then, for β > 0, Pr(|V − E(V)| ≥ β · E(V)) ≤ 2e− β2·E(V)

2+β .

Theorem 4 (Space complexity) For any data stream A and any 0 < ε, δ < 1, the algorithm 1
outputs an (ε, δ)-approximation of F0(A). The algorithm uses O(1

ε2 · log n · (log m + log 1
δ
)) space in

the worst case.
Definition 5 (Error) Error : ‘The algorithm algorithm 1 does not return a value in the range
[(1− ε)F0, (1 + ε)F0].’

31

Definition 6 (Fail) Fail : ‘The algorithm 1 outputs ⊥.’
Theorem 7 Pr(Fail) ≤ δ

8 .
Theorem 8 Pr(Error ∩ Fail) ≤ δ

2 .
Observation 9 Pr(Error) ≤ Pr(Fail) + Pr(Error ∩ Fail).

Bibliography

[1] Main paper,
https://arxiv.org/pdf/2301.10191.pdf

[2] Algorithms based on hashing (unit 2),
https://www.cs.dartmouth.edu/ ac/Teach/data-streams-lecnotes.pdf

[3] K minimum values sketch (section 2.5),
http://dimacs.rutgers.edu/ graham/ssbd/ssbd2.pdf

32

Fernando Cortés Kühnast
cortes@math.tu-berlin.de

Presented paper by Fernando Cortés Kühnast, Justin Dallant, Stefan Felsner, Manfred Scheucher
An Improved Lower Bound on the Number of Pseudoline Arrangements

(https://doi.org/10.48550/arXiv.2402.13107)

Introduction
Arrangements of pseudolines are classic objects in discrete and computational geometry. They
have been studied with increasing intensity since their introduction almost 100 years ago. The
study of the number Bn of non-isomorphic simple arrangements of n pseudolines goes back to
Goodman and Pollack, Knuth, and others. It is known that Bn is in the order of 2Θ(n2) and finding
asymptotic bounds on bn = log2(Bn)

n2 remains a challenging task. In 2011, Felsner and Valtr showed
that 0.1887 ≤ bn ≤ 0.6571 for sufficiently large n. The upper bound remains untouched but in 2020
Dumitrescu and Mandal improved the lower bound constant to 0.2083. Their approach utilizes the
known values of Bn for up to n = 12.
We tackle the lower bound with a dynamic programming scheme. Our new bound is bn ≥ 0.2721
for sufficiently large n.

Preliminaries
An arrangement of pseudolines in the Euclidean plane R2 is a finite family of simple curves, called
pseudolines, such that each curve approaches infinity in both directions and every pair intersects
in exactly one point where the two curves cross. More generally, we call a collection of pseudolines
partial arrangement if every pair intersects in at most one crossing-point.
We will focus be on simple arrangements, that is, no three or more pseudolines intersect in a common
point (called multicrossing). Moreover, we consider all arrangements to be marked, that is, they
have a unique marked unbounded cell, which is called north-cell. Two arrangements are isomorphic
if one can be mapped to the other by an orientation preserving homeomorphism of the plane that
also preserves the north-cell.

Main Result
A known strategy for constructing many inequivalent arrangements is the following.

• Start with a partial arrangement L of n lines consisting of k bundles L1, . . . ,Lk of parallel
lines.

• Bound from below the number Fk(n) of ways the lines in L can be rerouted locally.

• Apply Lemma 1.

Lemma 1 If Fk(n) ≥ 2cn2−O(n) for some c > 0 then Bn ≥ 2
k

k−1 cn2−O(n log n).
Our approach combines higher values of k with an increased locality for the perturbations. Instead
of only locally resolving multicrossings, we allow reroutings of the arrangement within designated
regions, which we call patches. By computing the number of reroutingss within the patches, and
taking the product over all patches we obtain an improved lower bound on the number Fk(n) of
partial arrangements. This yields

33

Theorem 2 The number Bn of non-isomorphic simple arrangements of n pseudolines satisfies the
inequality Bn ≥ 2cn2−O(n log n) with c > 0.2721.

Algorithms
We use two algorithms to compute the number F (P) of reroutings of the arrangement within a
patch P . The dynamic program, illustrated in Figure 2 can deal with any patch. In some cases we
can compute the number of reroutings much more efficiently using the Lindström-Gessel-Viennot
lemma.

P 1

1

2

2

33

4

4
5566

7
7

P2 1

1
2

3

4

66

7

P1

P2 1

1

2

2

3

4

66

7

P1

3

4
5

7

4

3

3
44

77

3

5

2

3

77

4

3

7

5
4

5

P2 1

1

2

2

3

4

66

7

P1

3

4
5

7

4
33

77

4

5

F (P) =
∑

≺? lin. ext. of ≺

F (P1(≺?)) · F (P2(≺?))

Figure 2: An illustration of how to recurse on a patch P . When cutting along segment 1, highlighted
purple, there are intersections with the segments 3, 4, and 7. As the segments 3 and 7 do no cross
within P , there are only three possibilities for placing the three crossings along the segment 1,
namely 4–3–7 (right top), 3–4–7 (right center) and 3–7–4 (right bottom).

Lemma 3 (Lindström, Gessel & Viennot) Let G be a finite directed acyclic graph. Consider
starting vertices S = {s1, . . . , sk} and destination vertices E = {e1, . . . , ek}. For any two vertices u
and v, let p(u, v) be the number of paths from u to v. Assume that for any tuple of k vertex-disjoint
paths starting in S and ending in E, the path starting at si necessarily ends at ei, for all 1 ≤ i ≤ k.
Then the number of distinct such tuples is the determinant of the matrix

M =


p(s1, e1) p(s1, e2) . . . p(s1, ek)
p(s2, e1) p(s2, e2) . . . p(s2, ek)

...
p(sk, e1) p(sk, e2) . . . p(sk, ek)

 .

34

Barbora Dohnalová
barca.dohnalova@seznam.cz

Presented paper by Greg Bodwin
An Alternate Proof of Near-Optimal Light Spanners

(https://arxiv.org/pdf/2305.18647.pdf)

Introduction
Given a graph G, t−spanner is a subset of edges such that the distance between any pair of vertices
in the subset is at most t-times larger than the distance between them in G. It is well known that
every graph has a (2k − 1)-spanner on O(n1+ 1

k) edges.
Instead of asking for the number of edges needed to create such a spanner, we can work with a
weighted graph and ask about total weight of a t-spanner. Since this weight can be arbitrarily high,
we instead divide this value by the total weight of a minimum spanning tree of G.
One of the possible algorithms for finding a spanner is the greedy algorithm, which simply tries to
add edges in the order of nondecreasing weight. Perhaps suprisingly, this algorithm works quite
well – in fact, it constructs an asymptotically optimal spanner.
In this paper, the author has shown the known bound: Every n-node graph G has a (1+ε)(2k−1)-
spanner H of lightness Oε(n

1
k). However, he shows it directly analysing the greedy algorithm, in

contrast to the previous researchers, who used analysis of different algorithms.
In this talk we will show how to prove properties of spanners given by the greedy algorithm, using
observations about graphs with high (weighted) girth.

Preliminaries
Definition 1 Given a graph G, a t-spanner is an edge-subgraph H that satisfies distH(u, v) ≤
t · distG(u, v) for all vertices u, v.
Definition 2 The lightness of a subgraph H of a graph G is the quantity

l(H|G) := w(H)
w(MST (G))

where MST (G) is a minimum spanning tree of G.
Theorem 3 For all ε > 0 and positive integers k, n, every n-node graph G has a (1 + ε)(2k − 1)-
spanner H of lightness l(H|G) = Oε(n

1
k).

Warmup 1: Spanner Sparsity
Theorem 4 For all positive integers k, n, every n-node graph G has a (2k − 1)-spanner H on
|E(H)| = O(n1+ 1

k) edges. This tradeoff is best possible, assuming the girth conjecture.
Theorem 5 (Moore Bounds) For any positive integers n, k, every n-node graph H with girth
> 2k has O(n1+ 1

k)edges.

Warmup 2: Weaker Lightness
Definition 6 For a cycle C in G, we define its normalized weight to be

w∗(C) := w(C)
maxe∈C w(e)

35

. The weighted girth of G is the minimum value of w∗(C) over all cycles C in G.
Theorem 7 Let ε > 0, let k, n be positive integers, and let H be an n-node graph with a unit-weight
cycle C and weighted girth > (1 + 2ε) · 2k. Then

w(H) = O(ε−1kn1+ 1
k)

Definition 8 A path π is safe for an edge (u,v) if, for some integer 0 ≤ s ≤ εw(u, v), it has the
following structure: it starts with a prefix of exactly s forward spanning cycle edges, then it uses the
edge (u,v), and then it ends with a suffix of exactly s backward spanning cycle edges. We will say
that π is extra safe for (u,v) if in fact s ≤ εw(u, v)/2.
Definition 9 A path π in H is a safe k-path if it can be partitioned into k subpaths π = q1 ◦ ... ◦ qk

where each path qi is safe for an edge ei. We say that π is an extra-safe k-path if each path qi is
extra-safe for ei. We say that π is monotone if w(e1) < ... < w(ek).

Main Result
Theorem 10 Let ε > 0, let k,n be positive integers, and let H be an n-node graph with a unit-weight
spanning cycle C and weighted girth (1 + 4ε) · 2k. Then

w(H) = O(ε−1n1+ 1
k)

Bucket Bi is the set of edges in H \ C with weights in the range [2i, 2i+1).
Definition 11 A path π in H is safe for bucket Bi if it is non-backtracking (meaning that it does not
repeat any edge twice in a row), all of its non-spanning-cycle edges are in Bi, and for some integer
0 ≤ εk2i it contains exactly 2s spanning cycle edges, where the first s are in the forward direction
and the last s are in the backward direction. We say that π is extra-safe if in fact s ≤ εk2i−1.
Definition 12 A path π in H is a bucket-monotone safe k-path if it has exactly k non-spanning-
cycle edges in total, and it can be partitioned into (possibly empty) subpaths π = q0 ◦ ... ◦ qj, where
each subpath qi is safe for bucket Bi (and so these bucket weights are increasing along π). We say
that π is extra-safe if each subpath qi is extra-safe for Bi.

36

Karolina Drabik
kd417818@students.mimuw.edu.pl

Presented paper by Tereza Klimošová, Maya Stein
Antipaths in oriented graphs

(https://doi.org/10.1016/j.disc.2023.113515)

Introduction
In undirected graphs a large minimum degree is helpful for finding long paths. For example if G
has minimum degree at least k, a simple greedy embedding shows that G contains a path on k
vertices. If an n-vertex graph has minimal degree at least n/2, it contains a Hamiltonian cycle and
if it has minimal degree greater than (n− 2)/2, it contains a Hamiltonian path. One can also show
that any connected graph on at least k + 1 vertices that has minimal degree greater than (k− 1)/2
contains a path of length k. It would be interesting to find extensions of these results to directed
graphs, or particularly to oriented graphs. The natural parameter in this case will be the minimal
semidegree, which is defined as minimum over all in and out-degrees over all vertices. For example
if an n-vertex directed graph has minimal semidegree n/2, it contains a directed Hamiltonian cycle.
In this talk we will focus on oriented graphs and, so called, antipaths, that means oriented paths
with alternating edge directions. We will prove that for any natural number k ≥ 1, any oriented
graph D of minimum semidegree at least (3k − 2)/4 contains an antidirected path of length k.

Definitions and notation
Definition 1 (Digraph) A directed graph (digraph) is a graph D with oriented edges (at most one
for each direction for each pair of vertices). Formally, D = (V, E) where E ⊆ V × V .
Let denote uv to be a directed edge from u to v and say u is an in-neighbor of v and v is an
out-neighbor of u. Let d−(v) = |{u : uv ∈ E}| denote the in-degree of v and d+(v) = |{u : vu ∈ E}|
denote the out-degree of v.
Definition 2 (Oriented graph) A digraph D is called oriented graph if for each pair u, v ∈ V (D)
at most one of the edges uv, vu is present.
Definition 3 (Minimal semidegree) Let D be a directed graph. The minimal semigegree of D
is defined as minimum over all in- and out-degrees over all vertices of D. Formally,

δ0(D) = min{d+(v), d−(v) : v ∈ V (D)}.
Definition 4 (Minimal pseudo semidegree) Let D be a directed graph. If D is not edgeless,
the minimal pseudo semidegree of D is defined as

δ
0(D) = min

min{d−(v) : v ∈ V (D), d−(v) > 0}
min{d+(v) : v ∈ V (D), d+(v) > 0}.

.

Otherwise, δ
0(D) = 0.

Definition 5 (Antipath/anticycle) Antipath (anticycle) is an oriented path (cycle) such that
each vertex has either out-degree 0 or in-degree 0.

Main results
Theorem 6 Let k ∈ N with k ≥ 3 and let D be an oriented graph with δ

0(D) ≥ (3k − 1)/4. Then
D contains each antipath of length k.

37

Theorem 7 For each k ∈ N+, every oriented graph D with more than (3k − 4)|V (D)|/2 edges
contains each antipath of length k.

Tools used in the proofs
Fact 8 Let m ∈ N+, let 1 ≤ ℓ ≤ m and let G be a graph. Let X, Y ⊆ V (G), with X = {x0, . . . , xm−1}
and Y = {y1, . . . , ym}, and let F0, Fm ⊆ E(G). If dF0(x0, Y) + dFm(ym, X) ≥ m + ℓ, then there is
an index i with ℓ ≤ i ≤ m such that x0yi ∈ F0 and xi−ℓym ∈ Fm.

Lemma 9 Let k ∈ N and let D be an oriented graph of minimum pseudo semidegree δ
0(D) ≥ k/2.

Let P = v0, . . . , vm be the longest antipath in D. If m < k then m is odd.
Lemma 10 Let k ∈ N, let D be an oriented graph of minimum pseudo semidegree δ

0(D) ≥ (3k − 4)/2
and let m be the maximum length of an antipath in D. If 1 < m < k, then D contains an anticycle
of length m + 1.
Lemma 11 Let k ∈ N, let D be an oriented graph of minimum pseudo semidegree δ

0(D) > k/2,
and let C be an anticycle of length m + 1 in D. If m < k, then D has an antipath of length m + 1.
Lemma 12 Let ℓ ∈ N. If a digraph D has more than ℓ|V (D)| edges, then it contains a digraph D′

with of minimum pseudo semidegree δ
0(D′) ≥ (ℓ + 1)/2.

38

Filip Filipkowski
filip.filipkowski6@gmail.com

Presented paper by Tung Nguyen, Alex Scott and Paul Seymour
A note on the Gyárfás-Sumner conjecture

(https://link.springer.com/article/10.1007/s00373-024-02754-z)

Introduction
The Gyárfás-Sumner conjecture says that for any given tree T , graphs not containing a copy of T
as an induced subgraph are χ-bounded. While it remains open and has only been proved for some
certain families of trees, we will show that the conjecture is true when we change the word "induced"
to "path-induced".

Definitions
Definition 1 - a path induced copy: Let T be a tree and let r be a vertex of a tree. Let φ be the
isomorphism from T to subgraph of G (not necessarily induced). We say that φ is a path-induced
copy of (T, r) if for every path P in T with one end being r, φ(P) is an induced path in G.
Definition 2 - a c-creature: For a given number c we say that X ⊆ V (G) is a c− creature of G
if for every vertex v ∈ X, v has less than c neighbours in V (G) \X.
Definition 3 - χ-bounded graphs: A class G of graphs is χ-bounded if there is some function f
such that, for every graph G ∈ G χ(G) <= f(ω(G)). The function f is called a χ-binding function
for G.
Definition 4 - a (T k

d , r) tree: For given integers k >= 1, d >= 2 a (T k
d , r) tree is a tree in which

the root r has degree d, every vertex has degree either d or 1 and every path from root to a leaf has
length k.
Definition 5 - a level-stable copy: Let φ be a path-induced copy of (T k

d , r) in a graph G for
some given integers k >= 1, d >= 2. We say that φ is level-stable if for every i <= k, vertices at
distance i from the root r create a stable set.
Definition 6 - a type-uniform copy: Let φ be a path-induced copy of (T k

d , r) in a graph G for
some given integers k >= 1, d >= 2. We say that two vertices u, v ∈ φ((T k

d , r)) are incomparable
when neither of them is an ancestor of one another. Let w be the common ancestor of u and v that
is the furthest from the root. We denote d(x, y) as distance between two given vertices in the path-
induced tree. We define type of a pair (u, v) as the triple (a, b, c) where a = d(u, r), b = d(v, r) and
c = d(w, r). We call φ a type-uniform copy of (T k

d , r) if for every two pairs of incomparable vertices
(u, v) and (u′, v′) having the same type, the pairs are either both adjacent or both non-adjacent.

Structure of the proof
Lemma 1: For all integers a, c >= 0 if G is a graph with χ(G) > ac and X is a c-creature of G
with χ(G[X]) <= a, then χ(G \X) = χ(G).
Lemma 2: For all integers k >= 1, d >= 2 and τ >= 0 there exist an integer K with following
property: let G be a graph in which for every vertex v ∈ G χ(N(v)) < τ . Then for every v ∈ V (G)
either G admits a path-induced copy φ of (T k

d , r) with φ(r) = v, or there exists a (1+d+d2+...+dk)-
creature X of G with v ∈ X such that χ(X) <= K.

39

Main result: For every rooted tree (T, r) and every integer t >= 1, if G is a graph with no clique
of size t and does not contain a path-induced copy of (T, r), then its chromatic number is bounded.

Strengthenings
Strenthening 1: For all k, t >= 1 and d >= 2, if G is a graph with no clique of size t and with
sufficiently large chromatic number, then G admits a path-induced, level-stable, type-uniform copy
of (T k

d , r).
Strenthening 2: For every tree T , there is a polynomial f(t) such that for every integer t >= 1,
if G has no induced subgraph isomorphic to T and no subgraph isomorphic to Kt, t, then G has
average degree at most f(t).
Strenthening 3: If G does not contain the five-vertex path P5 as an induced subgraph, and has
clique number t, then χ(G) <= tlog2t

40

Antonina Frąckowiak
antoninamariafrackowiak@gmail.com

Presented paper by Vjekoslav Kovač
Monochromatic Boxes of Unit Volume

(https://kam.mff.cuni.cz/ spring/media/papers/4/2309.09973.pdf)

Introduction
The paper I will present negatively answers the question if for every finite colouring of the Eucledian
space there exists colour class that contains vertices of a rectangle in every given area. Interestingly,
this statement is correct if we consider triangles instead of rectangles. Paper’s author provide an
example of colouring that does not contain a rectangle of area 1 and also a more generic example
of Rn colouring that does not contain monochromatic boxes of unit volume.

Two-dimensional case
Theorem 1 It is possible to partition R2 into 25 color classes such that none of them contains the
vertices of a rectangle of area 2.
R2 is treated as C and color classes in proposed colouring are defined as

ℓj,k := {z ∈ C : z2 ∈ 10
3 (Z + iZ + j + ik

5) + [0,
1
5) + i[0,

1
5))}.

Figure 3: Boundaries of ℓl,k colouring

Theorem 2 For every integer n ≥ 2 there exists a finite colouring of the Eucledian space Rn such
that there is no rectangular box of volume 1 with all 2n vertices coloured the same.

41

First, we partition Rn into sets

ℓl := {(x1, x2, ..., xn) ∈ Rn : x1x2...xn ∈
3
2(Z + [l

3 · 2n
,

l + 1
3 · 2n

))}

for 0 ≤ l ≤ 3 · sn − 1. Then, we find finite subcover of SO(n):
{U1O, U2O, ..., UmO}

where Ui ∈ SO(n) and O = {V ∈ SO(n) : ∥V − I∥ < 1
2n+2n!}. Finally, we have color classes of the

desired colouring given by
ℓl1,l2,...lm := (U1ℓ1) ∩ (U2ℓ2) ∩ ... ∩ (Umℓm)

where l1, l2, ..., lm run over all m-tuples of elements from {1, 2, ..., 3 · 2n − 1}.

42

Vojtěch Gadurek
vojtech@gadurek.cz

Simple Set Sketching

Introduction
Imagine we have two instances of one database and we would like to ensure they are the same. If
they are not identical, we aim to correct the differences. The obvious way is to send all data from
one instance to the other. This may be very wasteful, as with the right algorithm we may send just
the data in the size of the symmetric difference of these two instances. In this talk, we will explore
one, at first glance, somewhat magical algorithm and explain why it is not that surprising that it
works.

Background
Exercise 1 You are given a set of n integers. You may then choose any number of integers as
your recovery key. The enemy comes and picks any integer from the set and removes it. Find a
deterministic algorithm that recovers the lost integer and minimizes the memory used.
Sometimes, we are not able to store all data given to us in memory; thus, we introduce a concept
of Data Stream.
We may imagine a Data Stream as a vector v of unknown size holding some data and a counter i.
We have two possible actions: get the value of vi or increase the value of the counter. So when we
set i to x + 1, we may never again get the value of vx.
Exercise 2 You are given a Data Stream containing some numbers. Every number but one is
contained twice in the Data Stream. Find a deterministic algorithm that recovers the lost integer
and minimizes the memory used.
Definition 3 A family F of hashing functions from X → Y , where |Y | = n, is c-universal if

∀(x, y ∈ X)
(

P (f(x) = f(y)) ≤ c

n

)
,

where f is chosen uniformly randomly from F and x ̸= y .
Dictionaries may be implemented using set buckets and one hashing function from a universal
hashing family that assigns every key to some bucket. This may be helpful in the next exercise.
Exercise 4 You are given a Data Stream containing some numbers. Every number but c is con-
tained twice (these we call singles) in the Data Stream. Find an algorithm that returns as many
singles as possible in as little memory as possible. Memory used should not depend on the size of
the Data Stream.
Definition 5 Hypergraph is a tuple (V, E), where V is a set of vertices and E is a set of subsets
of V (these are called edges). We may imagine a hypergraph as a generalization of a graph, where
edges may connect multiple vertices.
Definition 6 k-core is the largest subgraph H of graph G such that all vertices have a degree of
at least k.
Exercise 7 You have a random hypergraph G := (V, E) with edges of size 3, |E| = n. Determine
the size of V such that G does not contain a 2-core with high probability.

43

Exercise 8 There is dice with n sides. You throw the dice n times; then, we count the side that
has fallen the most, which is O(n) with high probability.
Definition 9 A family F of hashing functions from X → Y , where |Y | = n, is (c,k)-independent
if

∀(x1, . . . , xk ∈ X, y1, . . . , yk ∈ Y)
(

P (f(x1) = y1 ∧ · · · ∧ f(xk) = yk) ≤ c

nk

)
,

where f is chosen uniformly randomly from F and all xi are distinct.
Now, you know nearly enough to build your own algorithm finding the symmetric difference in small
memory with high probability.

Bibliography

[1] Simple Set Sketching, arXiv:2211.03683. Jakob Bæk Tejs Houen, Rasmus Pagh, Stefan Walzer, 2023.

44

Karolína Hylasová
khylas@kma.zcu.cz

Presented paper by Yangyang Cheng, Peter Keevash
On the length of directed paths in digraphs

(http://https://arxiv.org/pdf/2402.16776.pdf)

Introduction
The Caccetta-Haggkvist conjecture [1] states that any digraph on n vertices with minimum out-
degree δ contains a directed cycle of length at most ⌈n/δ⌉. A stronger conjecture proposed by
Thomassé [3, 2] states that any digraph with minimum out-degree δ and girth g contains a directed
path of length δ(g − 1) which was later disproved for every even g ≥ 4 thanks to counterexamples
given by Bai and Manoussakis.
Conjecture 1 Any oriented graph with minimum out-degree δ contains a directed path of length 2δ.

First we construct counterexamples to Thomassé’s conjecture for every g ≥ 4.

Proposition 2 For every g ≥ 2 and δ ≥ 1 there exists a digraph D with girth g and δ+(D) ≥ δ

such that any directed path has length at most gδ
2 if g is even or (g+1)δ

2 if g is odd.
When g is large we can find a directed path of length close to 2δ.

Theorem 3 Every digraph D with girth g and δ+(D) ≥ δ contains a directed path of length
2δ(1− 1

g
).

For g = 3 or g = 4 we have better bounds.
Theorem 4 Every oriented graph D with δ+(D) ≥ δ contains a directed path of length 1.5δ. Every
digraph D with δ+(D) ≥ δ and girth g ≥ 4 contains a directed path of length 1.6535δ.

A digraph is called (C, d)-regular if d+(v) ≥ d and d−(v) ≤ Cd for each vertex v.

Theorem 5 For every C > 0 there exists c > 0 such that if D is a (C, d)-regular digraph with girth
g then D contains a directed path of length at least cdg/ log d.

Construction
Suppose that D is a digraph with d+(v) = δ for every v ∈ V (D) and for each k ≥ 1 we define
the k-lift operation on some fixed vertex v : delete all arcs with tail v, add k − 1 disjoint sets of δ
new vertices Uv,1, . . . , Uv,k−1 to D, write Uv,0 := {v}, Uv,k := N+(v) and add arcs so that Uv,i−1 is
completely directed to Uv,i for 1 ≤ i ≤ k.

We construct Da,b := K⃗↑
δ+1 for some integer 1 ≤ a ≤ b, which means that we start with complete

distected graph on δ + 1 vertices K⃗δ+1 and we a-lift some vertex v1 and b-lift all other vertices.
Claim 6 The girth of Da,b is a + b and the longest path has length δb.

The key lemma
The following key lemma can be used together with known results on Caccetta-Häggkvist conjecture
to prove Theorems 3 and 4.
Lemma 7 If D is an oriented graph with δ+(D) ≥ δ then D either contains a directed path of
length 2δ or an induced subgraph S such that |V (S)| ≤ δ and δ+ ≥ 2δ − ℓ(D).

45

Theorem 8 ([5]) Every digraph D with order n and δ+(D) ≥ δ contains a directed cycle of length
at most ⌈ 2n

δ+1⌉.
Theorem 9 ([6]) Every oriented graph with order n and minimum out-degree 0.3465n contains a
directed triangle.

Proof of the key lemma
Claim 10 D does not contain two disjoint directed cycles of length at least δ + 1.

Claim 11 Every vertex in N+(va−1) must be on P.

Claim 12 N+(B−) ⊆ V (C).

Long directed paths in almost-regular digraphs
To prove Theorem 5 we will use following probabilistic tools [7]:

• Chernoff’s inequality

Lemma 13 Let X1, . . . , Xn be independent Bernoulli random variables with P[Xi = 1] = pi

and P[Xi = 0] = 1 − pi for all i ∈ [n]. Let X = ∑n
i=1 Xi and E[X] = µ. Then for every

0 < a < 1, we have
P[|X − µ| ≥ aµ] ≤ 2−a2µ/3.

• Lovász Local Lemma

Lemma 14 Let A1, . . . , An be a collection of events in some probability space. Suppose that
each P[Ai] ≤ p and each Ai is mutually independent of a set of all other events Aj but at most
d, where ep(d + 1) < 1. Then P[∩n

i=1Ai] > 0.

• partitioning lemma

Lemma 15 For every C > 0 there exists c > 0 such that for every positive integer d with
t := ⌊cd/ log d⌋ ≥ 1, for every (C, d)-regular digraph D there exists a partition of V (D) into
V1 ∪ · · · ∪ Vt such that ||Vi| − |Vj| ≤ 1 and d+(v, Vj) ≥ log d

2c
for each i, j ∈ [n] and v ∈ Vi.

Concluding remarks
Conjecture 16 There is some c > 0 such that ℓ(D) ≥ cg(D)δ+(D) for any digraph D.

Bibliography

[1] Louis Caccetta and Roland Haggkvist. On minimal digraphs with given girth. Department of Combinatorics and
Optimization, University of Waterloo, 1978.

[2] B. D. Sullivan. A summary of problems and results related to the Caccetta-Häggkvist conjecture,
arXiv:math/0605646, 2006

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2008.

[4] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, Berlin, 2008.

[5] V. Chvátal and E. Szemerédi. Short cycles in directed graphs. Journal of Combinatorial Theory, Series B,
35(3):323-327, 1983.

46

[6] J. Hladký, D. Král, and S. Norin. Counting flags in triangle-free digraphs. Combinatorica, 3(1):49-76, 2017.

[7] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley&Sons, Inc., 1992.

47

Igor Januszkiewicz
igor.januszkiewicz.stud@pw.edu.pl

Presented paper by Torsten Mütze
A Book Proof of the Middle Levels Theorem

(https://link.springer.com/article/10.1007/s00493-023-00070-3)

Introduction
The middle levels conjecture had been an open problem for about 30 years until the first proof by
Torsten Mütze in 2016. It was long and very technical, but in 2023 the original author of the proof
published another one, this time much shorter and from ’the book’. In my talk I will present this
proof.

Definitions and the theorem
Definition 1 (Hypercube) The n-dimensional hypercube Qn is the graph that has as vertices all
bitstrings of length n and edge between any two bitstrings that differ in a single bit. The weight of
a vertex x is number of 1s in x.
Definition 2 The kth level of Qn is the set of vertices with weight k.
Theorem 3 (The middle levels theorem) For all n ≥ 1, the subgraph of Q2n+1 induced by
levels n and n + 1 has a Hamilton cycle.
Definition 4 (Dyck word) Dyck word is a bitstring with the same number of 1s and 0s, in which
every prefix contains at least as many 1s as 0s. We define Dn as the set of all Dyck words of length
n and D := ⋃

n≥0 Dn.
Definition 5 (Ordered three) Ordered three is a rooted three in which the set of children of each
vertex is assigned a total order.
Lemma 6 Every Dyck word of length 2n can be identified by a ordered rooted three with n edges.
Definition 7 (Tree Rotation) Given x = 1u0v ∈ Dn we define a function ρ(x) = u1v0. We
refer to the function as three rotation.
Lemma 8 There is a bijection between Mn and triples ⟨x, b, s⟩ where x ∈ Dn, b ∈ {0, 1}, s ∈
{0, ..., 2n},
Lemma 9 Function f with formula: f(⟨x, 0, s⟩) = ⟨ρ(x), 1, s + 1⟩ and f(⟨x, 1, s⟩) = ⟨x, 0, s⟩
changes only a single bit and is a bijection.
Definition 10 (Pullable tree) We call an ordered rooted tree x ∈ Dn pullable if x = 110u0v, u, v ∈
D. We define p(x) = 101u0v and call it pull operation.
Lemma 11 Any ordered rooted tree x ∈ Dn can be transformed to the star (10)n via a sequence of
tree rotations and/or pulls.

Notations

48

Dn - Set of all Dyck words of length 2n
D - ⋃n≥0 Dn

Qn - n-dimensional hypercube
An - Set of vertices in level n of Q2n+1
Bn - Set of vertices in level n + 1 of Q2n+1
Mn - Subgraph of Q2n+1 induced by An ∪Bn

σs(x) - Cyclic right rotation of a bitstring x, by s steps
⟨x, b, s⟩ - σs(xb), where x ∈ Dn, b ∈ {0, 1}, s ∈ {0, ..., 2n}
f - f(⟨x, 0, s⟩) = ⟨ρ(x), 1, s + 1⟩ and f(⟨x, 1, s⟩) = ⟨x, 0, s⟩
C(y) - (y, f(y), f 2y, ...)
Fn - {C(y)|y ∈ An ∪Bn}
p - Pull operation

49

Volodymyr Kuznietsov
kuzvladim7@gmail.com

Presented paper by Matt DeVos, Jessica McDonald, Kathryn Nurse
Another proof of Seymour’s 6-flow theorem

(https://kam.mff.cuni.cz/ spring/media/papers/4/2302.08625.pdf)

Abstract
In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-connected graph
has a nowhere-zero flow in the group Z2 × Z3 (in fact, he offers two proofs of this result). In this
note we give a new short proof of a generalization of this theorem where Z2 × Z3-valued functions
are found subject to certain boundary constraints.
Theorem 1 Every 2-edge-connected digraph has a nowhere-zero Z6-flow
Theorem 2 Let G = (V, E) be a connected digraph and let T ⊆ U ⊆ V have |T | even and |U | ≠ 1.
Assume further that every ∅ ≠ V ′ ⊂ V with V ′ ∩U = ∅ satisfies d(V ′) ≥ 2. Then for k = 2, 3 there
exist functions φk : E(G)→ Zk satisfying the following properies:
• (φ2(e), φ3(e)) ̸= (0, 0) for every e ∈ E

• supp(∂φ2) = T , and
• supp(∂φ3) = U.

Used notations:
•We define δ+(v), δ−(v) to be the set of edges with tail (head) v. Let Γ be an abelian group written
additevely and let φ :→ Γ. The boundary of φ is the function ∂φ : V → Γ given by the rule:

∂φ(v) = ∑
e∈δ+(v) φ(e)−∑e∈δ−(v) φ(e)

• We say that φ is nowhere-zero if 0 /∈ φ(E)
• supp(f) = {x ∈ X : f(x) ̸= 0} if X is a domain of f.
• For a graph G and a set X ⊆ V (G) we use d(X) to denote the number of edges with exactly one
end in X.

Bibliography

[1] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A nonhomogeneous analogue of
nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992), no.2, 165-182.

[2] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), 130-135.

[3] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.

50

Cyril Kotecký
c.kotecky@gmail.com

Geometry of interval linear systems

Introduction
The sets of so-called weak solutions of interval linear systems of equalities and inequalities are
unions of exponentially many convex polyhedra. As such, they are generally non-convex, but they
take the form of a convex polyhedron in each orthant. This makes many problems concerning these
sets NP or co-NP hard, but on the other hand, it gives them a constrained form that is interesting
to study.
We will cover some geometric properties of these solution sets, mostly focusing on characterizing
convexity, and describing the convex hull and its properties, such as pointedness. In some cases, we
can even give a simple description of the convex hull, but it still remains hard to calculate its exact
form.

Background
Definition 1

• A convex polyhedron is pointed, if it does not contain a line.
• The recession or characteristic cone of a set S is the cone of all unbounded directions

of S, that is

R := {r ∈ Rn| ∃y ∈ S ∀ρ ≥ 0 : y + ρr ∈ P}.

Theorem 2 ([1] Minkowski-Weyl)
P is a convex polyhedron ⇐⇒ P = Q + R where:

1. Q is the convex hull of arbitrary representative points, one from each minimal face of P

2. R is the recession cone of P

Definition 3 (Interval systems)

• An interval matrix is A := [A, A] = {A ∈ Rm×n| A ≤ A ≤ A} for A, A ∈ Rm×n, A ≤ A.
• Its center and radius are Ac := A+A/2 and A∆ := A−A/2.
• The set of interval matrices of dimensions m× n is denoted IRm×n.
• The corner matrices are Aes := Ac −A∆Ds for s ∈ {±1}n, where Ds denotes the diagonal

matrix of s.
• An interval linear system of equalities is the system Ax = b for A ∈ IRm×n and

b ∈ IRm.

– Its set of (weak) solutions is the set Σ= := {x ∈ Rn| ∃A ∈ A ∃b ∈ b : Ax = b}.
– The set of strong solutions is the set Σ=

S := {x ∈ Rn| ∀A ∈ A ∀b ∈ b : Ax = b}.

51

• Equivalently, an interval linear system of inequalities is the system Ax ≤ b.

– The set of (weak) solutions is Σ := {x ∈ Rn| ∃A ∈ A ∃b ∈ b : Ax ≤ b}.
– The set of strong solutions is ΣS := {x ∈ Rn| ∀A ∈ A ∀b ∈ b : Ax ≤ b}.

• The matrix A is invertible, if all the matrices contained are invertible. We define properties
such as being singular or having full column rank analogously.

• An orthant of signature s ∈ {±1}n is Rn
s := {x ∈ Rn| Dsx ≥ 0}.

Solution sets
Theorem 4 ([2] Oettli-Prager)

Σ= = {x ∈ Rn| |Acx− bc| ≤ A∆|x|+ b∆}
Theorem 5 ([3] Gerlach)

Σ = {x ∈ Rn| Acx ≤ A∆|x|+ b}
Corollary 6

Σ= and Σ are convex in each orthant, and they are unions of up to 2n convex polyhedra.
Definition 7 (Notation)

• Inequalities:

– Ps := {x ∈ Rn| Aesx ≤ b}
– Rs := {x ∈ Rn| Aesx ≤ 0}
– ΣR := {r ∈ Rn : ∃x ∈ Σ ∀0 ≤ ρ ∈ R : x + ρr ∈ Σ}

• Equalities:

– P =
s := {x ∈ Rn| Aesx ≤ b, −A−esx ≤ −b}

– R=
s := {x ∈ Rn| Aesx ≤ 0, −A−esx ≤ 0}

– Σ=
R := {r ∈ Rn| ∃x ∈ Σ ∀0 ≤ ρ ∈ R : x + ρr ∈ Σ}

Corollary 8

• Inequalities

1. Σ = ⋃
s∈{±1}n

Ps = ⋃
s∈{±1}n

(Ps ∩ Rn
s)

2. ΣR = ⋃
s∈±1}n

Rs = ⋃
s∈{±1}n

(Rs ∩ Rn
s)

3. Rs is the recession cone of Ps

4. ΣR is the recession cone of Σ.

52

• Equalities

1. Σ= = ⋃
s∈{±1}n

P =
s = ⋃

s∈{±1}n
(P =

s ∩ Rn
s)

2. Σ=
R = ⋃

s∈{±1}n
R=

s = ⋃
s∈{±1}n

(R=
s ∩ Rn

s)

3. R=
s is the recession cone of P =

s

4. Σ=
R is the recession cone of Σ=

5. Σ=
R = Ker(A) := {x ∈ Rn : ∃A ∈ A : Ax = 0}

6. Σ=
R is centrally symmetric around the origin.

• The solution set Σ= of the system Ax = b is the same as the solution set Σ of the system
Ax ≤ b, Ax ≥ b.

Theorem 9 ([4] Rohn, Kreslová)
ΣS = {x ∈ Rn| x = x1 − x2, x1, x2 ≥ 0, Ax1 − Ax2 ≤ b} is a convex polyhedron.

Square systems of equalities
Theorem 10 ([5] Jansson)

If A ∈ IRn×n and Σ= ̸= ∅, then:

1. If A is invertible, then Σ= is compact and connected.
2. If A is not invertible, then each connected component of Σ= is unbounded.

Theorem 11 ([6] Rohn)
Let A ∈ IRn×n be invertible. Then:

1. Σ= has 2n unique vertices xs, solutions of Acx−DsA
∆|x| = bs for each s ∈ {±1}n.

2. conv(Σ=) = conv{xs| s ∈ {±1}n}.

Convexity conditions
Theorem 12 ([6] Rohn)

For A ∈ IRn×n invertible, Σ= is non-convex ⇐⇒ ∃s1, s2 ∈ Σ vertices and i, j ∈ [n] such that:

a) A∆
ij > 0

b) (s1)i = (s2)i

c) (xs1)j(xs2)j < 0

Theorem 13 (General inequalities)
For A ∈ IRm×n, the set Σ is non-convex ⇐⇒ ∃x1, x2 ∈ Σ ∃i ∈ [m] : (Aesx1)i = bi < (Aesx2)i,

with s is defined as sk :=
{

sgn(x1)k (x1)k ̸= 0
sgn(x2)k (x1)k = 0 .

53

Square systems of inequalities
Definition 14 (Notation)

• C = conv(Σ)
• C = cl(conv(Σ))
• R = conv(ΣR)

Observation 15 (Properties)

• C is a convex polyhedron while C may not be, if it is unbounded.
• R is the recession cone of C and C

• C = Rn ⇐⇒ R = Rn

• Σ is bounded ⇐⇒ ΣR = {0} ⇐⇒ R = {0}
• If A is invertible, then Σ is unbounded and connected.

Theorem 16 (Convex hull properties)
C of A ∈ IRn×n invertible is:

1. Pointed, if ∃B ∈ IRn×n : A−1 := {A−1| A ∈ A} ⊆ B and the system BT x ≥ 0 has n linearly
independent strong solutions.

2. Equal to Rn, if ∃B ∈ IRn×n : A−1 := {A−1| A ∈ A} ⊇ B and the system BT x ≥ 0 only has
the trivial strong solution x = 0.

3. If it is pointed, then C is an offset cone with a unique vertex and n generating rays.

Corollary 17 (Pointedness)
If A is an inverse M-matrix or its negative, then C is pointed.

Observation 18 (Non-pointedness)
If A ∈ IRm×n contains a matrix without full column rank, then C is not pointed.

Bibliography
[1] Schrijver, A. Theory of Linear and Integer Programming. Repr. Wiley, Chichester. ISBN 0-471-98232-6, 1998

[2] Oettli, W. and Prager, W. Compatibility of approximate solution of linear equations with given error bounds for
coefficients and right-hand sides. Numer. Math.,6, 405–409. doi: 10.1007/BF01386090, 1964.

[3] Gerlach, W. Zur lösung linearer ungleichungssysteme bei störung der rechten seite und der koeffizientenmatrix.
Math. Operationsforsch. Stat., Ser. Optimization, 12. 41–43. doi: 10.1080/02331938108842705, 1981.

[4] J. Rohn and J. Kreslová. Linear interval inequalities. Linear Multilinear Algebra, 38(1-2):79–82, 1994.

[5] Jansson, C. Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra Appl., 251,
321–340, 1997.

[6] Rohn, J. A manual of results on interval linear problems. Technical Report 1164, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague.
http://hdl.handle.net/11104/0212115, 2012.

54

Sofiia Kotsiubynska
sofiak0423@gmail.com

Presented paper by Johannes Pardey, Dieter Rautenbach
Vertex degrees close to the average degree

(https://www.sciencedirect.com/science/article/pii/S0012365X23002856)

Abstract
The study "Vertex degrees close to the average degree", authored by Johannes Pardey and

Dieter Rautenbach, delves into the investigation of how the degrees of individual vertices in a graph
compare to the graph’s average degree. By characterizing the minimal intervals around the average
degree that must contain at least one vertex’s degree, provided insights into the structural properties
of graphs.

Theorem 1 provides a detailed analysis of the distribution of vertex degrees around the average
degree. Specifically, it asserts that for a graph with n vertices and an average degree d, there always
exists at least one vertex whose degree falls within a precisely defined interval around d. This
interval is [d− n−2

2(n−1)d, d + n−2
2(n−1)d] for d = 2m

n
and d = n− 1− d . Furthermore, if G has no vertex

whose degree is in the interval (d− n−2
2(n−1)d, d + n−2

2(n−1)d), the structure of G is very restricted: it is
a disjoint union of a clique of order d = dn

n−1 and an independent set of order d = dn
n−1 and every

vertex in V+ is adjacent to exactly half the vertices in V−, and every vertex in V− is adjacent to
exactly half the vertices in V+.

Theorem 2 offers a precise description, up to terms of smaller order, of the intervals around a
chosen degree d+ within which there must exist a vertex degree. If d+ is in the interval (

√
dn, n−1],

then there is a vertex u in G with a degree dG(u) satisfying the bounds provided by the theorem,
sharpening the estimate provided by Theorem 1.

Applications and Implications
By repeatedly applying the results to a given graph and removing a vertex of degree close to the

current average degree, one can identify several vertices whose degrees are confined within slowly
changing intervals around the original average degree. This is useful for understanding the degree
sequences of graphs and has applications in various graph problems and algorithms.

Bibliography

[1] P. Erdős, T. Gallai, Graphs with prescribed degrees of vertices (in Hungarian), Mat. Lapok 11 (1960) 264–274.

[2] S.L. Hakimi, E.F. Schmeichel, Graphs and their degree sequences: a survey, Lect. Notes Math. 642 (1978)
225–235.

[3] E. Mohr, J. Pardey, D. Rautenbach, Zero-sum copies of spanning forests in zero-sum complete graphs, Graphs
Comb. 38 (2022) 132.

[4] J. Pardey, D. Rautenbach, Efficiently finding low-sum copies of spanning forests in zero-sum complete graphs
via conditional expectation, Discrete Appl. Math. 328 (2023) 108–116.

55

Václav Lepič
vaclav@lepic.me

Presented paper by Alexandr Grebennikov, João Pedro Marciano
C10 has positive Turán density in the hypercube

(https://arxiv.org/abs/2402.19409v1)

Introduction
We denote the number of edges in a graph G to be e(G). We denote ex(Qn, H) to be maximum

number of edges in a subgraph of n-dimensional hypercube Qn that does not contain H. We say
that H has a positive Turán density in hypercube if there is a constant α > 0 such that for every
n ∈ N ex(Qn, H) ≥ α · e(Qn). We show that C10 has positive Turán density in Hypercube.

Main result
Theorem 1 For all n ∈ N : ex(Qn, C10) > 0.024 · e(Qn)

The tools
Theorem 2 (originally Lemma 19 in [1]) ex(Qn, C10) > 1

3 · ex*(Qn, C−
6)

Where ex*(Qn, C−
6) is defined as the maximum number of edges of a subgraph of Qn such that there

is no embedding of C6 minus one edge that can be extended to a C6 in Qn

Theorem 3 For any r, n ∈ N with r ≤ n, there exists a C6-free induced subgraph Gr of Lr(n) with
e(Gr) > c

2 · e(Lr(n))
Where Lr is rth edge layer of Qn

We then combine Gr for every odd r to construct G a C6-free subgraph of Qn to get
ex*(Qn, C−

6) ≥ e(G) > c
4 · e(Qn), where c > 0.288

Bibliography

[1] Axenovich, M., Martin, R. & Winter, C. On graphs embeddable in a layer of a hypercube and their extremal
numbers. (2023)

56

Matúš Matok
matus.matok@fmph.uniba.sk

Presented paper by Robert E. Tarjan, Uri Zwick
Optimal resizable arrays

(https://arxiv.org/abs/2211.11009)

Introduction
In this talk we will discuss resizable arrays. Usually, we optimise for time complexity which

leaves the space complexity overlooked. The paper provides a solution which decreases the data
structure’s overhead to O(rN1/r) when storing an array of size N and O(N1−1/r) while resizing,
where r is a parameter of the data structure. This comes at a cost of decreased efficiency of grow and
shrink operations, but only by a constant factor of r, which makes the amortized complexity of each
such operation O(r). To prove that the complexity cannot be improved for any data structure only
using O(rN1/r) extra space to store an array, we will analyse a so-called growth game; a solitaire
like single player game, which mimics the behavior of such data structures.
Definition 1 A resizable array is an abstract data type that supports the following operations:

1. A← Array() - Create and return an initially empty array.

2. A.Length() - Return the current length of the array A.

3. A.Get(i) - Return the i-th item ai in the array A. It is assumed that 0 ≤ i < A.Length().

4. A.Set(i, a) - Change the i-th item in the array A to a. It is assumed that 0 ≤ i < A.Length().

5. A.Grow(a) - Increase the length of array A by 1 and set the new and last item in it to a.

6. A.Shrink() - Decrease the length of array A by 1, discarding its last item.

Definition 2 ((s(N), t(N))-implementation) Lets s(N), t(N) be two non-decreasing functions.
A resizable array data structure is said to be an (s(N), t(N))-implementation if it uses at most
N + s(N) space to store an array of size N and at most N + t(N) space during a grow or shrink
operation on an array of size N .
Theorem 3 Any data structure for maintaining a resizable array must at certain times use N +
Ω(
√

N) space where N is the current length of the array, even if only grow and access operations
are performed.
Theorem 4 Any (s(N), t(N))-implementation of resizable arrays must have s(N)t(N) ≥ N , even
if only grow and access operations are supported.
Definition 5 Total and amortized cost Let CN,k,l be the minimum total cost required to play the
(N, k, l)-growth game. Let AN,k,l = CN,k,l

N
be the corresponding amortized cost of a single grow

operation.
Definition 6 (States and their cost) Let

PN,k =
a = (a1, a2, . . . , ak) ∈ Nk|

k∑
i=1

a1 = N and a1 = 0 => ai−1 = 0, i = 2, . . . , k

,

57

be the set of all states of total size N in the (N, k)-growth game. For a ∈ PN,k, let C(a) = Ck(a)
be the minimum total cost needed to reach state a = (a1, a2, /dots, ak, i.e., |Ai| = ai, for i ∈ [k],
starting from state (0,0,. . . , 0). Clearly CN,k = min{C(a) | a ∈ PN,k}
Lemma 7 For every a = (a1, a2, . . . , ak) ∈ PN,k

• Ck(a1, a2, . . . , ak) = Ck(0, . . . , 0, ak) + Ck−1(a1, a2, . . . , ak−1).

• Ck(a1, a2, . . . , ak) = ∑k
j=1 Cj(0, . . . , 0, aj).

• Ck(0, . . . , 0, ak) = Cak−1,k + ak.

• C(a) = N +∑k
j=i Caj−1,j, if 0 = ai−1 < ai

Theorem 8 • If
(

n+k−1
k

)
− 1 ≤ N ≤

(
n+k

k

)
− 1, for some n ≥ 0, then

CN,k = (N + 1)n−
(

n + k

k + 1

)
.

• If
(

n+k−1
k

)
≤ N <

(
n+k

k

)
− 1, for some n ≥ 1, then

CN,k − CN − 1, k = n.

• If
(

n+k−1
k

)
− 1 ≤ N <

(
n+k

k

)
− 1, for some n ≥ 0, and a ∈ PN,k, then

CN,k = C(a)⇐⇒
(

n + i− 2
i

)
≤ ai ≤

(
n + i− 1

i

)
, for everyi ∈ [k].

Theorem 9 Any standart resizable array data structure that uses only N +O(rN1/r) space to store
an array of size N , where r = O(logN), must have an amortized cost of Ω(r) for grow operations.

Bibliography

[1] Robert E. Tarjan, Uri Zwick: Optimal resizable arrays.
https://arxiv.org/abs/2211.11009

58

David Mikšaník
miksanik@iuuk.mff.cuni.cz

Characterization of graphs with k edge-disjoint spanning trees and its
vertex analogue

Introduction
In this talk, we characterize graphs with k edge-disjoint spanning trees. This is a well-known

theorem proved by Tutte [1] and Nash-Williams [2] in 1961. We will present a proof by Tomáš
Kaiser [6], which directly translates into an efficient algorithm. We conclude the talk by stating
two conjectures related to the theorem.

Characterization of graphs with k edge-disjoint spanning trees
Unless otherwise is stated, G is an arbitrary graph.

Definition 1 A subgraph T of G is called a spanning tree if T is a tree and V (T) = V (G).
Definition 2 For a partition P of V (G), let G/P denote the multigraph obtained from G by iden-
tifying each class of P into single vertex and removing all loops.
Theorem 3 ([1, 2]) A graph G contains k pairwise edge-disjoint spanning trees if and only if, for
every partition P of V (G), the multigraph G/P has at least k(|P − 1|) edges.
Corollary 4 Every 2k-edge connected graph G contains k edge-disjoint spanning trees.

Proof of Theorem 3
The proof is by Tomáš Kaiser [6]. We list here only the key definitions for the proof.

Definition 5 A k-decomposition T of G is a k-tuple (T1, . . . , Tk) such that {E(Ti) | 1 ≤ i ≤ k} is
a partition of E(G).
Definition 6 For a k-decomposition T = (T1, . . . , Tk) of G, let (P0,P1, . . . ,P∞) be the sequence of
partitions of V (G) defined inductively as follows

(i) P0 := {V (G)},
(ii) for i ≥ 0, let ci be the least number such that Tci

[X] is disconnected for some X ∈ Pi and
define Pi+1 to be the vertex sets of all components in Tci

[X], where X ranges over all the
classes X ∈ Pi (if there is no such ci, let ∞ := i and ci := k + 1).

Definition 7 Given two k-decomposition T and T ′ of G, let T ≺ T ′ if there is some j ≥ 0 such
that

(i) for 0 ≤ i < j, Pi = P ′
i and ci = c′

i,
(ii) either Pi refines P ′

i, or Pi = P ′
i and ci < c′

i.

Conjectures
Consider the following question: Given a graph G and a parameter k, how fast can we find k pair-

wise edge-disjoint paths between two vertices in G? If G is 2k-edge connected, then by Corollary 4
we can build a data structure of size O(k|V (G)|) that, given two vertices x, y ∈ V (G), outputs k
pairwise edge-disjoint paths between x and y in G in time O(k|V (G)|). The data structure is simply
a list of k pairwise edge-disjoint spanning trees of G.

59

It is not hard to see that this approach does not work for k-edge connected graphs. Nevertheless,
a similar approach might work for k-edge connected graphs in the following special situation: Given
a special vertex r ∈ V (G), we would like to find k pairwise edge-disjoint paths only between r
and any other vertex in G. In this case, it is sufficient to have k spanning trees (not necessarily
edge-disjoint) such that, for every v ∈ V (G), the paths between r and any other vertex in the
spanning trees are pairwise edge-disjoint. It is conjectured that k-edge connectivity guarantees the
existence of such k spanning trees. To state the conjecture precisely, we need one definition.
Definition 8 Given a tree T , the unique path between vertices u and v in T is denoted by T [u, v].
Conjecture 9 ([3]) For every k-edge connected graph G and vertex r ∈ V (G), the graph G con-
tains k spanning trees T1, . . . , Tk (not necessarily edge-disjoint) such that, for every v ∈ V (G), the
paths T1[r, v], . . . , Tk[r, v] are pairwise edge disjoint.

We can ask for paths to be vertex disjoint:
Conjecture 10 ([3]) For every k-vertex connected graph G and vertex r ∈ V (G), the graph G
contains k spanning trees T1, . . . , Tk (not necessarily edge-disjoint) such that, for every v ∈ V (G),
the paths T1[r, v], . . . , Tk[r, v] are pairwise vertex disjoint.

Both conjecture are true for k = 2, 3, 4 (cf. [3, 4, 5]).

Bibliography

[1] William Thomas Tutte: On the problem of decomposing a graph into n connected factors. Journal of the London
Mathematical Society, Vol. s1-36, pp. 221-230 (1961)

[2] Crispin St John Alvah Nash-Williams: Edge-Disjoint Spanning Trees of Finite Graphs. Journal of the London
Mathematical Society, Vol. s1-36,pp. 45-50 (1961)

[3] Alon Itai and Michael Rodeh: The Multi-Tree Approach to Reliability in Distributed Networks. Information and
Computation, Vol. 79, pp. 43-59 (1988)

[4] Alon Itai and Avram Zehavi: Three Tree-Paths. Journal of Graph Theory, Vol. 3, pp. 175-188 (1989)

[5] Sean Curran, Orlando Lee, and Xingxing Yu: Chain Decompositions of 4-Connected Graphs. SIAM Journal on
Discrete Mathematics, Vol. 19, pp. 848-880 (2005)

[6] Tomáš Kaiser: A Short Proof of The Tree-packing Theorem. Discrete Mathematics, Vol. 312, pp. 1689-1691
(2012)

60

Jędrzej Olkowski
jo417777@students.mimuw.edu.pl

Presented paper by D.Dorfman, H.Kaplan, R.Tarjan, M.Thorup, U.Zwick
Minimum-cost paths for electric cars

(https://arxiv.org/abs/2403.16936)

Introduction
We consider an electric car, which travels on a road network, consisting of a junctions V and

arcs A ⊆ V ×V . In every junction v, there is a charging station, where unit of energy cost r(v). For
every arc (u, v) ∈ A, we know the cost r(u, v) of traversing this arc. The cost might be negative,
which might correspond to a downhill segment. At every moment, the charging level of a car needs
to be within [0, B]. We show the algorithm for finding minimal cost of traversing between any
two pairs of junctions. It turns out that we can reduce this problem to two subtasks. First one is
calculation of a minimal cost between any two junctions if no chargings are allowed and second one
is standard APSP (all pairs shortest paths).

Definitions
Let us define the following values to describe various distances within a road network:

1. ρB(s, t) is a minimum cost of a travel from s to t, starting at s with an empty battery of
capacity B and ending in t.

2. αB,a(s, t) is the Maximum Final Charge (MFC) with which the car can reach t if it starts in
s with charge a, where no chargings are allowed.

3. βB,b(s, t) is the (MIC) Minimum Initial Charge needed in s in order to reach t with a charge
of at least b, where no chargings are allowed.

We use shortend notation for the following problems:

• Let MCP(m, n) denote the the problem of the computing of ρB(s, t) for every s, t ∈ V .

• Let MFC(m, n) be the problem of computing of αB,a(s, t) for every s, t ∈ V and for a given
0 ≤ a ≤ B.

• Let MIC(m, n) be the problem of computing of βB,b(s, t) for every s, t ∈ V and for a given
0 ≤ b ≤ B.

• Let MPP(n, p) be the problem of computing a Min-Plus Product of an n × p matrix and a
p× n matrix.

• Let APSP(m, n) be the problem of computing the All-Pairs Shortest Paths.

Results
Theorem 1 MCP(m, n) can be reduced to two instances of MFC(m, n) and MIC(m, n) each, an
instance of MPP(2n, p), where p ≤ n is the number of charging stations, and an instance of
APSP(4n2, 2n).

61

Theorem 2 The all-pairs version of the Minimum-Cost Plans (MCP) problem in a graph with no
negative cycles can be solved in O(n3

2c
√

log n
+ mn) time, for some c > 0. The same time bound, with

a different constant c, applies when at most ∆ ≤ n rechargings can be used on each path.
Theorem 3 The all-pairs version of the Minimum-Cost Plan (MCP) problem in a graph that may
contain negative cycles can be solved in O(mn2 + n3) time. The same time bound applies when at
most ∆ rechargings can be used on each path.

Bibliography

[1] D.Dorfman, H.Kaplan, R.Tarjan, M.Thorup, U.Zwick: Minimum-cost paths for electric cars.
https://arxiv.org/abs/2403.16936

62

Lluís Sabater Rojas
llsabater@iuuk.mff.cuni.cz

Presented paper by Kempe, D., Kleinberg, J., & Tardos, É.
Maximizing the Spread of Influence through a Social Network

(https://dl.acm.org/doi/pdf/10.1145/956750.956769)

Introduction
If we want a new product to become popular by making some people to use it (and convince the

largest possible number of users), who should we focus on? The optimization problem of selecting
the most influential nodes is NP-hard.

Using sub-modular functions, this paper shows that it’s possible to create a greedy strategy to
find a solution that is provably within 63% of optimal for several classes of models.

Definitions
Definition 1 (Influence Maximization Problem) Given a graph G = (V, E), we aim to find
a seed set S ⊆ V of size at most k such that it maximizes the influence spread under a specific
diffusion model.
Definition 2 (Influence) The influence of a set of nodes A, denoted σ(A), is the expected number
of active nodes at the end of the process.
Definition 3 (Linear Threshold Model) Every node v is influenced by each neighbour w ac-
cording to a weight bv,w s.t. ∑

w∈N(v)
bv,w ≤ 1

each node v chooses a threshold θv ∈ [0, 1] uniformly at random. A node is activated if∑
w∈ active N(v)

bv,w ≥ θv

Definition 4 (Independent Cascade Model) When node v first becomes active in step t, it
is given a single chance to activate each inactive neighbour (succeeds with probability pv,w). If v
succeeds, w will become active in step t + 1. Whether or not v succeeds, it cannot make any further
attempts to activate w in subsequent rounds.
Definition 5 (Sub-modular function) A function that satisfies

f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T)
for all elements v and all pairs of sets S ⊆ T .
Theorem 6 For a non-negative, monotone sub-modular function f , let S be a set of size k obtained
by selecting elements one at a time, each time choosing an element that provides the largest marginal
increase in the function value. Let S∗ be a set that maximizes the value of f over all k-element sets.
Then f(S) ≥ (1− 1/e) · f(S∗); in other words, S provides a (1− 1/e)-approximation.

Results
Theorem 7 For an arbitrary instance of the (Independent Cascade Model / Linear Threshold
Model), the resulting influence function σ(·) is sub-modular.

63

Theorem 8 The influence maximization problem is NP-hard for the (Independent Cascade Model
/ Linear Threshold Model).
Definition 9 (Triggering Model) Each node v independently chooses a random "triggering set"
Tv according to some distribution over subsets of its neighbors. To start the process, we target a set
A for initial activation. After this initial iteration, an inactive node v becomes active in step t if it
has a neighbor in its chosen triggering set Tv that is active at time t + 1.
Fact 10 The Independent Cascade Model and the Linear Threshold Model are special cases of the
Triggering Model.
Theorem 11 In every instance of the Triggering Model, the influence function σ(·) is sub-modular.

64

Ondřej Sladký
sladky@iuuk.mff.cuni.cz

Masked superstrings framework for representing k-mer sets

Introduction
The exponentially increasing amount of sequenced DNA data [3] has led to the development

of methods which instead of raw genomic data analyse corresponding sets of k-mers, which are
substrings of length k from the data. This calls for efficient representations of k-mer sets, however,
although this is a combinatorial problem, the general information-theory-based approaches do not
provide satisfactory results as they do not take into account the structure of the genomic data. As
a result textual representations which benefit from non-independence of k-mers have emerged [4].
These aim to represent a set of k-mers K as a set of strings with the following properties:

(P1) Each k-mer from K appears in at least one string.

(P2) Each substring of length k of any of the strings is in K.

We show that, in fact, only (P1) is needed and based on this we devise a new framework for
representing k-mer sets called masked superstrings.

The talk is based on the following papers:
Paper I [1] Ondřej Sladký, Pavel Veselý and Karel Břinda. Masked superstrings as a

unified framework for textual k-mer set representations. bioRxiv, 2023.
Paper II [2] Ondřej Sladký, Pavel Veselý and Karel Břinda. Function-Assigned Masked

Superstrings as a Versatile and Compact Data Type for k-Mer Sets. bioRxiv,
2024.

Masked Superstrings
Definition 1 Given K a set of k-mers, a pair (S, M) where S is a superstring of all k-mers in K
and M is a binary mask of the same length L is called a masked superstring representing K if it
satisfies

K = {Si . . . Si+k−1 |Mi = 1, i ∈ {0, . . . , L− k}}
We consider computation of optimal masked superstrings maximizing a general objective func-

tion g(S, M).
Theorem 2 Given a objective g and a set of k-mers K, computing a masked superstring (S, M)
representing K and maximizing g(S, M) is generally NP-hard, and even if g(S, M) = |S|.

We thus propose a two-step optimization protocol: we first compute a superstring and then
optimize the mask. In fact, each step of this protocol is in general NP-hard, even for simple
respective objective. Despite this, we provide algorithms for the individual steps and further show
that this protocol yields near-optimal solutions for many objectives.

f-Masked Superstrings
We further generalize the framework to be able to seamlessly perform set operations on k-mers.

65

Definition 3 For a superstring S, a mask M , and a k-mer Q, the occurrence function λ(S, M, Q)→
{0, 1}∗ is a function returning a finite binary sequence with the mask symbols of the corresponding
occurrences, i.e.,

λ(S, M, Q) :=
(
Mi

∣∣∣Si · · ·Si+k−1 = Q
)

.

Definition 4 We call a symmetric function f : {0, 1}∗ → {0, 1, invalid} a k-mer demasking
function.
Definition 5 Given K a set of k-mers, a pair (f, S, M) where f is a demasking function, S is a
superstring of all k-mers in K and M is a binary mask of the same length L is called a f -masked
superstring representing K if it satisfies

K = {Q ∈ {A, C, G, T}k | f(λ(S, M, Q)) = 1}.

We prove that if we choose a suitable demasking function f , it possible to perform any symmetric
set operation on k-mers using a simple concatenation of the string and the mask.

We conclude with a remark that the masked superstring framework has many practical benefits,
such as improving the compressibility of k-mer sets over the currently best approaches and enabling
the design of single k-mer set indexes that require substantially less memory than the state-of-the-
art.

Bibliography

[1] Ondřej Sladký, Pavel Veselý and Karel Břinda. Masked superstrings as a unified framework for textual k-mer set
representations. bioRxiv, 2023.
https://doi.org/10.1101/2023.02.01.526717

[2] Ondřej Sladký, Pavel Veselý and Karel Břinda. Function-Assigned Masked Superstrings as a Versatile and Com-
pact Data Type for k-Mer Sets. bioRxiv, 2024.
https://doi.org/10.1101/2024.03.06.583483

[3] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J Efron, Ravishankar
Iyer, Michael C Schatz, Saurabh Sinha and Gene E Robinson. Big Data: Astronomical or Genomical?. PLoS
Biology, 2015.
https://doi.org/10.1371/journal.pbio.1002195

[4] Rayan Chikhi. K-mer Data Structures in Sequence Bioinformatics. HDR thesis, Institut Pasteur Ecole Doctorale
“EDITE”, 2021.

66

Diana Švecová
diana.svecova@gmail.com

Presented paper by Maria Chudnovsky, Alex Scott, Paul Seymour, Sophie Spirkl
Detecting an Odd Hole

(https://dl.acm.org/doi/pdf/10.1145/3375720)

Introduction
A hole of a graph G is an induced subgraph of G that is a cycle of length at least four. Scott

and Seymour [2] proved that if a graph has no odd holes, then its chromatic number is bounded by
a function of its clique number. In the talk, we will present an algorithm testing for the presence
of an odd hole in a graph, running in polynomial time.
There are two special subgraphs we will need.

First, let v0 ∈ V (G), and for i = 1, 2, 3, let Pi be an induced path of G between v0 and vi such
that

• P1, P2, P3 are pairwise vertex-disjoint except for v0;

• v1, v2, v3 ̸= v0, and at least two of P1, P2, P3 have length at least two;

• v1, v2, v3 are pairwise adjacent; and

• for 1 ≤ i < j ≤ 3, the only edge between V (Pi) \ {v0} and V (Pj) \ v0 is the edge vivj.

We call the subgraph induced on V (P1 ∪P2 ∪P3) a pyramid, with apex v0 and base {v1, v2, v3} (see
Figure 4).

Figure 4: A pyramid

Theorem 1 [1] There is an algorithm with the following specifications:
Input: A graph G.

Output: Determines whether there is a pyramid in G.
Running time: O(|G|9).

Second, we say that G[V (P) ∪ {v1, . . . , v5}] is a jewel in G if v1, . . . , v5 are distinct vertices,
v1v2, v2v3, v3v4, v4v5, v5v1 are edges, v1v3, v2v4, v1v4 are nonedges, and P is a path of G between
v1, v4 such that v2, v3, v5 have no neighbors in the interior of P (see Figure 5).

67

Figure 5: A jewel

Theorem 2 [1] There is an algorithm with the following specifications:
Input: A graph G.

Output: Determines whether there is a jewel in G.
Running time: O(|G|6).

It can be shown that if a graph G contains either a pyramid or a jewel, then G has an odd hole.

Main result
The main result of the article is the following algorithm:

Theorem 3 There is an algorithm with the following specifications:
Input: A graph G.

Output: Determines whether G has an odd hole.
Running time: O(|G|9).

This algorithm has three stages.

1. At first, the algorithm tests for "easily-detected configurations" (a pyramid or a jewel), which
can be efficiently detected and whose presence guarantees that G contains an odd hole.

2. The second step is called "cleaning", and it is the most challenging part. Let C be a shortest
odd hole of a graph G. A vertex v ∈ V (G) is C-major if there is no three-vertex path of
C containing all the neighbours of v in V (C); and C is clean (in G) if no vertices of G are
C-major. If G has a shortest odd hole that is clean, then it is easy to detect that G has an
odd hole. In this step, the algorithm generates a "cleaning list", polynomially many subsets
X1, . . . , Xk of the vertex set of the input graph G, with the property that if G contains an
odd hole, then for some i ∈ {1, . . . , k}, an odd hole can be found in G \Xi using the method
of step 3.

3. The third step is an algorithm that tries to find an odd hole directly. It would not be expected
to work on a general input graph, and this is why the second step is essential.

In the paper, the authors give a new, simpler way of cleaning a shortest odd hole C in a graph
G with no pyramid or jewel, which we will present in the talk.

Bibliography

68

[1] Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul Seymour, and Kristina Vušković. 2005. Recognizing
Berge graphs. Combinatorica 25, 2 (2005), 143–186.

[2] Alex Scott and Paul Seymour. 2016. Induced subgraphs of graphs with large chromatic number. I. Odd holes. J.
Comb. Theory, Ser. B 121 (2016), 68-84.

69

Hadi Zamani
hadiz@iuuk.mff.cuni.cz

Counting Perfect Matchings, Permanent, Real Stability and Beyond

Introduction
Counting perfect matchings in a graph, even for a bipartite graph, is recognized as a #P-

complete problem, equivalent to computing the permanent of the biadjacency matrix. However,
what if we narrow down the class of graphs? For instance, in the case of planar graphs, the FKT
algorithm operates in polynomial time, which I will elaborate on in this talk.

For the hard problem, we should be content with a good approximation, and fortunately, there
exists a straightforward algorithm for this purpose. Demonstrating the effectiveness of this approx-
imation opens a new chapter on Real Stable Polynomials and Gurvits’s machinery.

To expand the application of this machinery to more general counting problems, we will explore
the main reference[1].

Background
"The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally

to give drastically simplified proofs of the Van der Waerden lower bound for permanents of doubly
stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs.
Since this seminal work, the notion of capacity has been utilized to bound various combinatorial
quantities and to give polynomial-time algorithms to approximate such quantities (e.g., the number
of bases of a matroid). These types of results are often proven by giving bounds on how much a
particular differential operator can change the capacity of a given polynomial."[2]
Definition 1 Real Stable Polynomials
A multivariate polynomial p is called real stable if all coefficients are real numbers and p (x1, . . . , xn) ̸=
0 whenever (x1, . . . , xn) ∈ Hn where H = {y ∈ C | ℑ(y) > 0} is the upper-half of the complex plane.
Definition 2 Capacity
Given a polynomial p ∈ R [x1, . . . , xn] with non-negative coefficients and a vector α ∈ Rn with
non-negative entries, we define the α-capacity of p as:

Capα(p) := inf
x>0

p(x)
xα

= inf
x1,...,xn>0

p (x1, . . . , xn)
xα1

1 · · · xαn
n

.

α = 1, when there is no α.
Theorem 3 Gurvits’s Machinery
Given a polynomial p ∈ R [x1, . . . , xn] with non-negative coefficients and the sum of the degrees of
each term bounded by n, we have

∂np

∂z1 . . . ∂zn

(0, . . . , 0) ≤ Cap(p) ≤ nn

n!
∂np

∂z1 . . . ∂zn

(0, . . . , 0).

Bibliography
[1] D. Straszak and N. K. Vishnoi. Real stable polynomials and matroids: Optimization and counting. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 370–383, 2017.

[2] L. Gurvits and J. Leake. Counting matchings via capacity-preserving operators. Combinatorics, Probability and
Computing, 30(6):956–981, 2021

70

Patrik Zavoral
patrik.zavoral@gmail.com

Presented paper by Richard Montgomery, Rajko Nenadov, Tibor Szabó
Global rigidity of random graphs in R

(https://arxiv.org/abs/2401.10803)

Introduction
Consider a finite set of vertices V and suppose that we only know distances between some of

them. In other words, consider a random graph G over V and a function d : E(G) → R+ ∪ {0}.
What properties of G make it possible to uniquely reconstruct the configuration of V (up to isom-
etry)? We will show that the minimum degree ≥ 2 is alone sufficient with high probability.

Definition 1 Erdős-Rényi random graph process on the vertex set [n] is the sequence {Gm}m≥0,
where G0 is the empty graph and all following Gi are formed by adding a new edge uniformly at
random into Gi−1.

⇒ ⇒ ⇒ ⇒ ⇒ . . .

Figure 6: Erdős-Rényi random graph process for n = 4.

Of particular importance will be Gτ , where τ = min{m | δ(Gm) ≥ 2}. Note that a single
Gm ∼ G(n, m), where G(n, m) is the uniform distribution over all graphs with exactly n vertices
and m edges.

Definition 2 Let f : V (G)→ R. We define the G-distance function of f :

df,G : E(G) −→ R+ ∪ {0}
ij 7−→ |f(i)− f(j)|

Further, we say that a function f : V (G)→ R realizes d : E(G)→ R+ ∪ {0} if d = df,G.

0 4

2 8 −3.5

4

8
4

2

11.5

7.5

6

Figure 7: G-distance function and its realization.

Notice that f1, f2 : V (G)→ R are isometric if f1 = af2 + b for some a ∈ {±1} and b ∈ R. There
can be possibly multiple non-isometric realizations of a given d : E(G)→ R+ ∪{0} or no satisfying

71

realization may exist at all. Given a graph G and a G-distance function d : E(G) → R+ ∪ {0}, it
is possible to find the satisfying realizations f : V (G)→ R in non-deterministic linear time.

Definition 3 We will call the graph G globally rigid if for every G-distance function there exists
at most one injective realization up to isometry.

Goal
Theorem 4 Let {Gm}m≥0 be a random graph process over [n]. Gτ is w.h.p. globally rigid.
Theorem 5 ∀ε > 0 ∃C > 0 : m ≥ Cn =⇒ w.h.p. there exists a globally rigid induced subgraph
G′ of G ∼ G(n, m) with |V (G′)| ≥ (1− ε)n.

Proof
In the talk, we will demonstrate the proof of the two theorems given in the paper. The paper

builds the proof around the following two lemmas:
Lemma 6 The graph G on the vertex set [n] is globally rigid if the following properties are satisfied:

(P1) For every disjoint U, W ⊆ V (G) of size |U |, |W | ≥ n
15 there is an edge between U and W .

(P2) For every U ⊆ V (G) of size n
15 ≤ |U | < n there exists a vertex v ∈ V (G) \U with at least two

neighbors in U .

Lemma 7 ∀ε > 0 ∃C > 0 : m ≥ Cn =⇒ G ∼ G(n, m) w.h.p. satisfies the following property:

(P3) For every disjoint X, Y ⊆ V (G) of size |X|, |Y | ≥ εn, there is an edge between X and Y .

Lemma 6 guarantees global rigidity if the graph G is in some way sufficiently connected. We will
prove it by finding a correspondence between the highest-ranked vertices of f and the highest-ranked
vertices f ′, their lowest-ranked vertices, and finally employing a type of triangulation. Lemma 7 in
turn guarantees that a dense enough random graph G w.h.p. contains a large subgraph G′ that is
sufficiently connected in a related way. We will prove it holds for C > 2

ε2 by lower-bounding the
probability and showing it goes to 1 as n approaches∞. Finally, by proving these two lemmas, and
by using some previous results [2][3], we will straightforwardly show that Theorems 4,5 hold.

Bibliography

[1] R. Montgomery, R. Nenadov, T. Szabó. Global rigidity of random graphs in R. arXiv preprint arXiv:2401.10803,
2024.

[2] B. Bollobás. Random graphs., volume 73 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press,
2nd ed. edition, 2001.

[3] A. Lew, E. Nevo, Y. Peled, and O. E. Raz. Sharp threshold for rigidity of random graphs. Bull. Lond. Math.
Soc., 55(1):490–501, 2023.

72

List of participants

Jakub Balabán

Juraj Belohorec

Benjamin Benčík

Adam Beneš

Martin Černý

Petr Chmel

Fernando Cortés Kühnast

Barbora Dohnalová

Karolina Drabik

Filip Filipkowski

Antonina Frąckowiak

Vojtěch Gaďurek

Milan Hladík

Pavel Hubáček

Karolína Hylasová

Igor Januszkiewicz

Jan Jedelský

Cyril Kotecký

Sofiia Kotsiubynska

Júlia Križanová

Volodymyr Kuznietsov

Václav Lepič

Kristýna Mašková

Matúš Matok

David Mikšaník

Richard Mužík

Jędrzej Olkowski

Martin Pastyřík

David Ryzák

Lluís Sabater Rojas

Ondřej Sladký

Dominik Stejskal

Robert Šámal

Diana Švecová

Martin Tancer

Mykhaylo Tyomkyn

Filip Úradník

Pavel Veselý

Petr Vincena

Hadi Zamani

Patrik Zavoral

73

	Cooperative Game Theory: Introduction to Cooperative Game Theory (Martin Černý)
	Cooperative Game Theory: Applications of cooperative games in machine learning (Júlia Križanová)
	Cooperative Game Theory: Learnability of Cooperative Games (Filip Úradník)
	Cooperative Game Theory: Stochastic cooperative games (David Ryzák)
	Cooperative Game Theory: Set-valued Solutions for Cooperative Game with Integer Side Payments (Richard Mužík)
	Cooperative Game Theory: Cooperative games with skills in Open Anonymous Environments (Petr Vincena)
	Twin-Width: Introduction to Twin-Width (Jakub Balabán)
	Twin-Width: Twin-width of Planar Graphs is at most 8, and some Related Bounds (Jan Jedelský)
	Zero Knowledge: Introduction to Zero-Knowledge and zk-SNARKs (Petr Chmel)
	Zero Knowledge: The KZG polynomial commitment scheme (Dominik Stejskal)
	Zero Knowledge: The PlonK protocol (Benjamin Bencik)
	Zero Knowledge: Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs (Martin Pastyřík)
	Zero Knowledge: Algebraic Cryptanalysis of Poseidon (Kristýna Mašková)
	Old and new approaches to counting distinct elements (Adam Beneš)
	An Improved Lower Bound on the Number of Pseudoline Arrangements (Fernando Cortés Kühnast)
	An Alternate Proof of Near-Optimal Light Spanners (Barbora Dohnalová)
	Antipaths in oriented graphs (Karolina Drabik)
	A note on the Gyárfás-Sumner conjecture (Filip Filipkowski)
	Monochromatic Boxes of Unit Volume (Antonina Frąckowiak)
	Simple Set Sketching (Vojtěch Gadurek)
	On the length of directed paths in digraphs (Karolína Hylasová)
	A Book Proof of the Middle Levels Theorem (Igor Januszkiewicz)
	Another proof of Seymour’s 6-flow theorem (Volodymyr Kuznietsov)
	Geometry of interval linear systems (Cyril Kotecký)
	Vertex degrees close to the average degree (Sofiia Kotsiubynska)
	C10 has positive Turán density in the hypercube (Václav Lepič)
	Optimal resizable arrays (Matúš Matok)
	Characterization of graphs with k edge-disjoint spanning trees and its vertex analogue (David Mikšaník)
	Minimum-cost paths for electric cars (Jędrzej Olkowski)
	Maximizing the Spread of Influence through a Social Network (Lluís Sabater Rojas)
	Masked superstrings framework for representing k-mer sets (Ondřej Sladký)
	Detecting an Odd Hole (Diana Švecová)
	Counting Perfect Matchings, Permanent, Real Stability and Beyond (Hadi Zamani)
	Global rigidity of random graphs in R (Patrik Zavoral)

