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Preface

Spring school on Combinatorics has been a traditional meeting organized for almost 40 years for
faculty and students participating in the Combinatorial Seminar at Faculty of Mathematics and
Physics of the Charles University. It is internationally known and regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been
the case for several years, this Spring School is supported by Computer Science Institute (IÚUK)
of Charles University, the Department of Applied Mathematics (KAM) and by some of our grants
(SVV, Progres). This year we are glad we can also acknowledge generous support by the RSJ
Foundation.
The Spring Schools are entirely organized and arranged by our students. The topics of talks are
selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science
Institute (IÚUK) of Charles University as well as from other participating institutions. In contrast,
the talks themselves are almost exclusively given by students, both undergraduate and graduate.
This leads to a unique atmosphere of the meeting, which helps the students in further studies and
their scientific orientation.
This year the Spring School is organized in Jáchymov (in Ore Mountains in northwestern Bohemia)
with a great variety of possibilities for outdoor activities.

Robert Šámal, Pavel Veselý
Petr Chmel

KAMKAM
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Richard Mužík
richard@imuzik.cz

Introduction to Cooperative Game Theory
as part of series Cooperative game theory

Introduction
In this talk, I will present you the basics of cooperative game theory. It is an introduction to a
series of talks solving different problems with the model.
Definition 1 (Cooperative game) A cooperative game is an ordered pair (N, v), where N is a
set of players and v : 2N → R is the characteristic function. Further, v(∅) = 0.
Definition 2 (Payoff vector) Payoff vector is x ∈ Rn, where xi represents payoff of player i. It
is efficient, if ∑i∈N xi = v(N). It is individually rational, if xi ≥ v(i). We denote x(S) = ∑

i∈S xi.
Definition 3 (Core) For a cooperative game (N, v), the core C(v) is

C(v) = {x ∈ Rn | x(N) = v(N) ∧ (S) ≥ v(S), ∀S ⊆ N} .

Observation 4 (Emptyness of the core) There are cooperative games (N, v) with empty core.
Theorem 5 (Weak Bondareva-Shapley) Cooperative game (N, v) has non-empty core if and
only if

v (N) ≥
∑

S⊆N

ySv (S) for all feasible y ∈ R(2n−1).

Definition 6 For a cooperative game (N, v), the Shapley value φ(v) of player i is

φi(v) =
∑

S⊆N\i

s!(n − s − 1)!
n! (v(S ∪ i) − v(S)) .

Definition 7 (Marginal vector) For cooperative game (N, v) and permutation σ ∈ Σn is mσ
v

marginal vector, where (mσ
v )i = v

(
Sσ(i) ∪ i

)
− v

(
Sσ(i)

)
and Sσ(i) = {j ∈ N | σ(j) < σ(i)}.

Definition 8 (Weber set) For cooperative game (N, v) the Weber set is
W(v) = conv {mσ

v | σ ∈ Σn} .

Lemma 9 (Shapley value and Weber set) For a cooperative game (N, v) it holds:
φ(v) ∈ W(v).

Moreover, φ(v) is the center of gravity of W(v).
Theorem 10 (Weber set and core) For every cooperative game (N, v), it holds C(v) ⊆ W(v).
Definition 11 (Classes) The cooperative game (N, v) is said to be

• monotonic game ≡ (S ⊆ T ⊆ N) (v(S) ≤ v(T )).

• superadditive game ≡ (S, T ⊆ N, S ∩ T = ∅) (v(S) + v(T ) ≤ v (S ∪ T )).

• convex game ≡ (S, T ⊆ N) (v(S) + v(T ) ≤ v (S ∩ T ) + v (S ∪ T )).
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• essential game ≡ v(N) ≥ ∑
i∈N v(i).

• balanced game ≡ C(v) ̸= ∅.

Theorem 12 (Balanced and essential) Balanced cooperative games are essential.
Theorem 13 (Convex and superadditive) Convex cooperative games are superadditive.
Theorem 14 (Core of convex games) For a convex cooperative game (N, v), it holds C(v) =
W(v).
Corollary 15 (Shapley value and convex games) For a convex cooperative game (N, v), it
holds:

1. φ(v) ∈ C(v).

2. φ(v) is the centre of gravity of C(v).

Bibliography

[1] Hans Peters Game theory: A multi-leveled approach. Springer Texts in Business and Economics, 2nd edition,
2015.
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Filip Úradník, David Sychrovský
filip.uradnik9@gmail.com, sychrovsky@kam.mff.cuni.cz

On Structure of Cooperative Games
as part of series Cooperative game theory

Introduction
Many problems, ranging from cost sharing to AI explainability, are modelled using cooperative
game theory. The goal is to decide if cooperation is rational in a given situation and how the profit
should be divided. However, the applications are limited to only selected cases with relatively low
number of players. This is because to distribute the profit, values of all sub-coalitions of players is
required — this being exponential in the number of players n. Incomplete cooperative game theory
offers a way to describe the game using only selected coalition values. Additional structure of the
game can be leveraged to obtain more information about the missing values.
However, the lack of full information can be used by each player in order to bargain with the others
about his payoff. This in turn makes it difficult to agree on the profit distribution. A central arbiter
may want to limit such exploitation by gathering more information about the game, i.e. obtaining
values of coalitions which were previously unknown. The arbiter wants to choose such coalitions
that, after their values are revealed, the strategic behaviour is limited as much as possible. This
“coalition revealing strategy” offers insights into which coalitions are most important for a given
class of games.

Background
Definition 1 (Cooperative game) A cooperative game is an ordered pair (N, v) where N =
{1, . . . n} is the set of players and v : 2N → R is the characteristic function of the cooperative game.
Further, v(∅) = 0.
Definition 2 (Coalition) A coalition is any set S ⊆ N . Coalitions of size 1 are called singletons
and N is the grand coalition.
Definition 3 The game (N, v) is said to be

• monotone ≡ (∀S ⊆ T ⊆ N)(v(S) ≤ v(T )),

• super-additive ≡ (∀S, T ⊆ N : S ∩ T = ∅)(v(S) + v(T ) ≤ v(S ∪ T )),

• convex ≡ (∀S, T ⊆ N)(v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T )).

The classes of monotone, super-additive, and convex games with n players are denoted Mn, Sn and
Cn, respectively.
Definition 4 (Payoff vector) Let (N, v) be a cooperative game. Then the payoff vector is x ∈ Rn,
where xi represents the payoff of player i. The payoff vector is

• efficient ≡ x(N) := ∑
i∈N xi = v(N),

• individually rational ≡ (∀i)(xi ≥ v(i)).

Definition 5 (Solution concept) Let (N, v) be a cooperative game. A solution concept of (N, v)
is any function S : Γn → 2Rn.
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A solution concept essentially assigns each game a set of possible payoff vectors.
Definition 6 (Shapley value) Let (N, v) be a cooperative game. Then the Shapley value for
player i is

φi(v) :=
∑

S⊆N\{i}

s! (n − s − 1)!
n! (v(S ∪ i) − v(S)) .

Incomplete Cooperative Games
Definition 7 (Incomplete game) An incomplete game is a cooperative game, in which we do
not know the values of v for all coalitions. Formally, it is a tuple (N, K, v), where

• N = {1, . . . , n} is the set of players,

• K ⊆ 2N is the set of coalitions with a known value, ∅ ∈ K,

• v : K → R is the characteristic function, v(∅) = 0.

Further, an incomplete game is said to be minimal ≡ K = {∅, N} ∪ ⋃i {i}.
Definition 8 (C-extension) Let C ⊆ Γn be a class of cooperative games. Then the game (N, w) ∈
C is a C-extension of the incomplete game (N, K, v) ≡ ∀S ∈ K : v(S) = w(S).
The class of all C-extensions of (N, K, v) is denoted by C(K, v). If C(K, v) is non-empty, then we
say that (N, K, v) is C-extensible.

Coalition Revealing Game
Each player in the game can leverage the lack of knowledge of v to increase his profit as much as
possible.
Definition 9 (Gain) Let C ⊆ Γn, (N, K, v) ∈ C, i ∈ N and (N, v) be a C-extension of (N, K, v).
Then the C-gain is

gC
i (N, K, v) = max

w∈C(K,v)
φi(w) − φi(v) ≥ 0.

The C-exploitability measures how much all can exploit the system.
Definition 10 (Exploitability) Let C ⊆ Γn, (N, K, v) ∈ C and (N, v) be a C-extension of
(N, K, v). Then the C-exploitability is

EC(N, K, v) =
∑
i∈N

gC
i (N, K, v) =

∑
i∈N

(
max

w∈C(K,v)
φi(w)

)
− v(N).

PPO
Definition 11 (Return) Let r(a, s) be the reward gained by taking action a in state s. Then for
a sequence s0, a0, s1, . . . sT the return is

RT =
T∑

t=1
r(at, st).

Definition 12 ((q)-value) Let π : S → ∆|A| be the policy and τ : S × A × S → ∆|S| be the
transition functon. Then

v(s) = Ea∼π

[
T∑

t=1
r(at, st)

]
,

q(a, s) = Ea∼π

[
r(a, s) +

∑
s′

τ(s, a, s′)v(s′)
]

.
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Definition 13 (PPO) The PPO algorithm minimizes the following two losses

Lπ(θ|φ) = −Et∼T (π)

[(Rt − v(st|φ)) π(at|θ)
π(at|θ0)

]1+ε

1−ε

 ,

Lv(φ|θ) = Et∼T (π)
[
(Rt − v(st|φ))2

]
,

along a trajectory t ∼ T sampled under policy π.

Bibliography

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[2] Schulman, John, et al. “Proximal policy optimization algorithms.” arXiv preprint arXiv:1707.06347 (2017).

[3] Masuya, Satoshi, and Masahiro Inuiguchi. “A fundamental study for partially defined cooperative games.” Fuzzy
Optimization and Decision Making 15 (2016): 281-306.

[4] Černý, Martin. “Approximations of solution concepts of cooperative games.” arXiv preprint arXiv:2212.04748
(2022).

[5] Černý, Martin. “Cooperative games with partial information.” Diploma thesis, Charles University (2021).
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Júlia Križanová
julia.krizannova@gmail.com

Interpreting model predictions via the Shapley value
as part of series Cooperative game theory

Introduction
Understanding why a model makes a certain prediction can be as crucial as the prediction’s accuracy
in many applications. It creates appropriate user trust, provides insight into how a model may
be improved, and supports understanding of the process being modeled. However, the highest
accuracy for modern datasets is often achieved by complex models, such as deep learning models,
that are difficult to interpret. This is bringing to the forefront the trade-off between accuracy and
interpretability of a model’s output.
In response to this problem, various methods have been proposed, but it is often unclear in which
way they are related and when one method is preferable over another. This paper presents a unified
approach for interpreting model predictions called SHAP (SHapley Additive exPlanations), based
on results from cooperative game theory.

Properties
Definition 1 (Additive feature attribution methods) Additive feature attribution methods have
an explanation model that is a linear function of binary variables:

g(z′) = φ0 +
M∑

i=1
φiz

′
i,

where z′ ∈ {0, 1}M , M is the number of simplified input features, and φi ∈ R.
Property 1 (Local accuracy)

f(x) = g(x′) = φ0 +
M∑

i=1
φix

′
i

The explanation model g(x′) matches the original model f(x) when x = hx(x′).
Property 2 (Missingness)

x′
i = 0 =⇒ φi = 0

Missingness constrains features where x′
i = 0 to have no attributed impact.

Property 3 (Consistency) Let fx(z′) = f(hx(z′)) and z′\i denote setting z′
i = 0. For any two

models f and f ′, if
f ′

x(z′) − f ′
x(z′\i) ≥ fx(z′) − fx(z′\i)

for all inputs z′ ∈ {0, 1}M , then φi(f ′, x) ≥ φi(f, x).
Theorem 2 Only one possible explanation model g follows Definition 1 and satisfies Properties 1,
2, and 3:

φi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!
M ! [fx(z′) − fx(z′\i)]

where |z′| is the number of non-zero entries in z′, and z′ ⊆ z′ represents all z′ vectors where the
non-zero entities are a subset of the non-zero entities in x′.
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Theorem 3 (Shapley kernel) Under Definition 1, the specific forms of πx′ , L, and Ω that make
solutions of Equation 2 consistent with Properties 1 through 3 are:

Ω(g) = 0,

πx′(z′) = (M − 1)
(M choose |z′|)|z′|(M − |z′|) ,

L(f, g, πx′) =
∑

z′∈Z

[f(h−1
x (z′)) − g(z′)]2πx′(z′),

where |z′| is the number of non-zero elements in z′.

Bibliography

[1] Scott M. Lundberg, and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Advances in Neural
Information Processing Systems, 2017.

10



David Ryzák
david.ryzak99@gmail.com

Cooperative games in stochastic form
as part of series Cooperative game theory

Introduction
In cooperative game theory we usually need to know values of all the possible coalitions of players.
It is not necessarily possible to obtain all these values exactly. We could therefore define stochastic
characteristic function to incorporate the randomness. Then we are able to model situation in which
we need to make a decision before a random event is observed or in a situation where we just do not
know exact values of coalitions. In this talk we look at a few models incorporating randomness and
solution concepts which can follow from them. We focus on both the generalization of the concept
of core to the stochastic games and on the approach using optimization of various types of objective
functions. We try to not only to look at the solution concepts but also to compare them and discuss
their advantages and drawbacks. Development of such a model is one of the possible ways how to
work with uncertainty in the setting of cooperative (coalitional) games. Another approaches to the
problem of missing information are topics of other talks like Incomplete or Interval games or not
presented fuzzy games.

Definitions and Theorems
Definition 1 (Cooperative game in stochastic form (SCG)) Cooperative game in stochastic
form is a pair (N, v), where N is a set of players and v : (2N , Ω) −→ E for which holds:

• v(S) : Ω −→ E, S ⊆ N

• Ω possible outcomes of a random variable

• E measurable space (for us mostly R)

Definition 2 (Allocation in SCG with transfer payments) Distributing the value v(S) of a
coalition S the allocation of the player i is equal to:

xi = di + ri(v(S) − E(v(S))),
where

• di ∈ R and ∑i∈S di = Ev(S)

• ri ≥ 0 and ∑i∈S ri = 1

Definition 3 (Solution concept for SCG with transfer payments ) Solution concept for Co-
operative game in stochastic form is given by di, ri ⊆ R ∀i ∈ N .
Definition 4 (Model with preferences) It is a triple (N, v, (⪰i)i∈N), i.e., a model of SCG with
defined preferences ⪰i over the random variables is defined for each player. Preferences over random
variables:

• α-quantiles (inverse of a distribution function) of a random variable X denoted by uX
α : X ⪰

Y ⇐⇒ uX
α ≥ uY

α
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• Let b ∈ R then X ⪰ Y ⇐⇒ E(X) + b · V ar(X) ≥ E(Y ) + b · V ar(Y )

• (First order stochastic dominance) Let FX be a distribution function of random variable X
then X ⪰ Y ⇐⇒ FX(z) ≥ FY (z)∀z ∈ R

Definition 5 (Objective function model) It is a quadruple (N, v, (Cov(v(S), v(N)))S⊆N , f), where
f is a given objective function following from the v. The ri part of the allocation is not restricted,
i.e., ri ∈ R ∀i ∈ N .
Definition 6 (Core) If no coalition has incentive to split off for a given allocation then the allo-
cation is in the core of the game.
Theorem 7 (Core in the model with preferences) Let Γα = (N, v, (⪰i)i∈N) be a game in the
form of model with preferences with allocation given by Definition 2. Then coalition has no incentive
to split off if and only if ∑

i∈S

(
di + ri(uv(N)

αi
− E(v(N))

)
≥ maxi∈Suv(S)

αi

Exercise 8 Minimize ∑S⊆N E[e(S, x) − e(S, x)]2, where x is an allocation, e(S, x) = v(S) − x(S)
is an excess of the coalition S and e(S, x) = 1

2n−1
∑

S⊆N e(S, x) is an average excess.
Theorem 9 (Solution in the objective function model) Solution for the exercise 8 is given
by:

ri = 1
n

+
nci(v) −∑

j∈N cj(v)
n2n−2V ar(v(N)) , ∀i ∈ N

di = 1
n
E(v(N)) + nei(v) −∑

j ∈ Nej(v)
n2n−2 , ∀i ∈ N,

where ci(v) = ∑
S∋i cov(v(S), v(N)) and ei(v) = ∑

S∋i E(v(S)).

Additional definitions
Definition 10 (State (Scenario) model) Let S = (S1, . . . , Sk) be a set of possible states and pi

the probability of being in the state Si with ∑i∈N pi = 1. State model is the set S with probabilities
pi ∀i ∈ N , where Si = (N, vi) is a deterministic cooperative game.
Definition 11 (Model with preferences II) Model is defined as the model with preferences with
allocation being: xi = ri(v(S)), ri ≥ 0,

∑
i∈N .
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Martin Kunst
martin.kunst2001@centrum.cz

Interval cooperative games as part of series Cooperative game theory

Introduction
I will introduce cooperative interval games, in which worth of every coalition corresponds to closed
interval. I will show 2 possible approaches to interval games, and some relations between them.
First approach is based on weak ordering. Other approach based on selections. Selections are all
possible outcomes of the interval game with no additional uncertainty.
I will show some results about core coincidence.

Background
Definition 1 (Interval) An interval X is a set

X := [X, X̄] = {x ∈ R : X ≤ x ≤ X̄}

with X being the lower bound and X̄ being the upper bound of the interval. By interval we mean
closed interval.We denote set of real intervals by IR
Definition 2 (Interval arithmetics) For every X, Y, Z ∈ IR and 0 /∈ Z define

• X + Y := [X + Y , X̄ + Ȳ ]

• X − Y := [X − Y , X̄ − Ȳ ]

• X ∗ Y := [min(S), max(S)], S = {X/Ȳ , X̄Y , XY , X̄Ȳ }

• X/Z := [min(S), max(S)], S = {X/Z̄, X̄/Z, X/Z, X̄/Z̄}

Definition 3 (Cooperative interval game) A cooperative interval game is an ordered pair (N, w),
where N = {1, 2, ..., n} is a set of players and w : 2N → IR is a characteristic function of the coop-
erative game. We further assume that w(∅) = [0, 0].
The set of all interval cooperative games on a player set N is denoted by IGN

Definition 4 (border games) For every (N, w) ∈ N, border games (N, w) ∈ GN (lower border
game) and (N, w̄) ∈ GN (upper border game) are given by w(S) = w(S) and w(S) = w(S) for every
S ∈ 2N

Definition 5 (Weakly better operator) Interval I is weakly better than interval J (J ⪰ I) if
and only if I ≥ J and Ī ≥ J̄ .
Definition 6 Set of all interval imputations of (N, w) ∈ GN :

I(w) := {(I1, I2, ..., IN) ∈ IRN|
∑
i∈N

Ii = w(N), Ii ⪰ w(i), ∀i ∈ N}

Definition 7 Set of interval selection core of (N, w) ∈ GN :
C(w) := {(I1, I2, ..., IN) ∈ I(w)|

∑
i∈S

Ii ⪰ w(S), ∀S ∈ 2N \ ∅}

Definition 8 (Selection) A game (N, v) ∈ GN is a selection of (N, w) ∈ IGN if for every S ⊆ N
we have v(S) ∈ w(S). Set of all selections of (N, w) is denoted by Sel(w)

13



Definition 9 (Selection interval imputations) Set of all selection interval imputations of (N, w) ∈
IGN :

SL(w) =
⋃

{I(v)|v ∈ Sel(w)}
Definition 10 (Interval selection core) Set of interval selection core of (N, w) ∈ IGN :

CL(w) =
⋃

{C(v)|v ∈ Sel(w)}
Definition 11 (Selection monotonic interval game) An interval game (N, w) is selection mono-
tonic if all its selections are monotonic games. The class of such games on set of N players is
denoted by SeMIGN

Theorem 12 (Theorem 1) An interval game (N, w) is selection monotonic if and only if for
every S, T ∈ 2N , S ⊂ T

w̄(S) ≤ w(T ).
Definition 13 The function gen : 2IRN → 2RN maps to every set of interval vectors a set of real
vectors. It is defined as:

gen(S) =
⋃
s∈S

{(x1, x2, ..., xn)|xi ∈ si}

Theorem 14 (Theorem 4) For every interval game (M, w) we have gen(C(w)) ⊆ SC(w)
Theorem 15 (Theorem 5) For every interval game (N, w) we have gen(C(w)) = SC(w) if and
only if for every x ∈ SC(w) there exist non-negative vectors l(x) and u(x) such that
4.1 ∑

i∈N

(xi − l
(x)
i ) = w(N),

4.2 ∑
i∈N

(xi + u
(x)
i ) = w(N),

4.3 ∑
i∈S

(xi − l
(x)
i ) ≥ w(S), ∀S ∈ 2N \ {∅},

4.4 ∑
i∈S

(xi + u
(x)
i ) ≥ w(S), ∀S ∈ 2N \ {∅}.

Bibliography

[1] Jan Bok, Milan Hladík: Selection-based Approach to Cooperative Interval Games
https://arxiv.org/abs/1410.3877
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Petr Vincena
vincena.petr@gmail.com

Cooperative games with skills in Open Anonymous Environments

Introduction
Traditional models of cooperative game theory consider agents as entities without more subtle
differentiation. Agent as a whole brings some value to already existing coalition and this value is
represented in the characteristic function. Instead, we can see agents not as “magical” units but as
entities with some sets of skills and these skills they bring to the coalitions. This model allows us
to represent more fine-grained picture of reality.
In open anonymous environments (such as internet), it is very easy for agents to collude (and create
a bigger, non-existing agent) which has both their capabilities, separate themselves (and create
smaller agents) or hide some of their skills in order to increase their profits. Traditional solution
concepts are vulnerable to these 3 ways of manipulation and new concepts based on traditional ones
are proposed.

Basic definitions
Definition 1 (Skills and agents) Let T be the set of all possible skills. Each agent t has a subset
of skills St ⊆ T . We assume that the skills are unique: ∀t ̸= u, St ∩ Su = ∅.
Definition 2 (Characteristic function over skills) A characteristic function v : 2T → R as-
signs a value to each set of skills.
Definition 3 (Hiding skills) If agent i has a set of skills Si, for any S ′

i ⊆ Si, it can declare that
it has only S ′

i.
Definition 4 (False names or separation) Agent i can use multiple identifiers and declare that
each identifier has a subset of skills Si. Since we assume each skill is unique, two different identifiers
cannot declare they have the same skill. Thus, a false-name manipulation by agent i corresponds
to a partition of Si into multiple identifiers. (If the manipulation is combined with a skill-hiding
manipulation, only a subset of Si is partitioned.)
Definition 5 (Collusion) Multiple agents can collude and pretend to be a single agent. They can
declare the skills of this agent to be the union of their skills (or a subset of this union, in case we
combine the manipulation with a skillhiding manipulation).
Definition 6 (Solution concept - Shapley value) Give an ordering o of the set of agents W
in the coalition, let X(o, i) be the set of agents in W that appear before i in ordering o. Then the
Shapley value for agent i is defined as

Sh(W, i) = 1
|W |!

∑
o

(w(X(o, i) ∪ {i}) − w(X(o, i)))

15



Martin Černý
cerny@kam.mff.cuni.cz

Where are graphs in cooperative games?
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Introduction
In this talk, you will see graph theory being applied in the analysis of cooperative games. The
problem with the standard model of a cooperative game arises when not all of the coalitions S ⊆ N
are feasible. We restrict to coalitions where each player is known by at least one other player from
the coalition. Under this restriction, the goal is to study an equivalent of the Shapley value. You
will see a derivation of a so called graph value, which, in a sense, generalises the Shapley value.

Games and graphs
Let A(G) ⊆ 2N be the set of all subsets of vertices representing connected subgraphs of a graph G = (N, E).

Definition 1 (Game on graph) A characteristic function v : A(G) → R is a coalitional game
on G. Further, v(∅) = 0.
We denote G the set of all coalitional games on graphs with vertices N .
Definition 2 (Automorphism) A permutation π ∈ ΠN is an automorphism of G if π(S) ∈ A(G)
for all S ∈ A(G).
Lemma 3 A permutation π is an automorphism of G if and only if for every pair i, j ∈ N ,
(i, j) ∈ E implies that (π(i), π(j)) ∈ E.
The Shapley value satisfies several axioms for which we define their weaker forms for games on graphs.

Lemma 4 Let φi be a value for i on G satisfying linearity. Then there is collection of constants
{aS}S∈A(G) such that for all v ∈ G,

φi(v) =
∑

S∈A(G)
aSv(S).

Lemma 5 Let φi be a value for i on G satisfying linearity, dummy and monotonity axioms. Then
φi is a probabilistic value, i.e.

φi(v) =
∑

S∈A(G)−i

pi
S [v(S ∪ i) − v(S)] ,

where {pi
S} is a probability distribution over S ∈ A(G)−i.

Definition 6 (Graph value) A value φ = (φ1, φ2, . . . , φn) over graph G = (N, E) is a graph
value if it satisfies linearity, dummy, monotonicity, efficiency and symmetry axioms.
Theorem 7 A value φ over G is a graph value if and only if it is a random order value (a special
probabilistic value), whose weights are Aut(G) invariant.
Corollary 8 For a complete graph G, there is a unique graph value equivalent to the Shapley value.
Corollary 9 There is graph G such that the graph value is not unique.
Corollary 10 There is graph G such that the graph value is unique but not equal to the Shapley
value.
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Feasible reasoning as part of series Introduction to bounded arithmetic

Introduction
Bounded arithmetic is a branch of mathematical logic that studies the strength and limitations of
the restricted forms of arithmetic. It serves as a unifying framework for a number of different areas
of mathematics and computer science, including model theory, proof complexity, circuit complexity,
TFNP search problems and classical complexity theory. Historically, it has also played a role in
the formalization of feasible reasoning. In this talk I will introduce the basic concepts of bounded
arithmetic together with the context needed to understand the theory. I will discuss some classical
results and mention open problems in the area. This talk is part of the series Introduction to bounded
arithmetic.
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Complexity theory through the eyes of bounded arithmetic
as part of series Introduction to bounded arithmetic

Introduction
What if we show that P=NP cannot be proven? In the second talk of this series, we will more
thoroughly explore the relationship between the hierarchy of fragments of bounded arithmetic and
the polynomial hierarchy. We will then introduce the theories based on Cook’s PV then talk about
the strength of PV1 and recent results which show that it cannot prove P to be computable with
SIZE[nk] circuits for a fixed k.
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Introduction to Proof Complexity
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Introduction
Proof complexity is a field on the border of logic and computational complexity. I will talk about
the basic goals and results of this field. I will show a connection with games and, if time permits,
with graph pebbling.

Proof systems
Definition 1 A literal is a variable or its negation. A clause is a disjunction of literals. A term
is a conjunction of literals. A CNF is a formula which is a conjunction of clauses. A DNF is a
formula which is a disjunction of terms. A formula is satisfiable if for at least one assignment to
variables the formula evaluates to 1. A formula is a tautology if for every assignment to variables
the formula evaluates to 1. The set of all DNF tautologies is denoted by TAUT.
Definition 2 For m > n, let PHPm

n denote the unsatisfiable CNF consisting of the following
clauses:
Pigeon axioms: Each of the m pigeons sits in at least one of n holes

xi,1 ∨ xi,2 ∨ · · · ∨ xi,n for every i = 1, . . . , m.
Hole axioms: No two pigeons sit in one hole

¬xi1,j ∨ ¬xi2,j for every i1 ̸= i2 and j = 1, . . . , n.
Definition 3 A propositional proof system is a binary relation Q ⊆ {0, 1}∗ × {0, 1}∗ such that

• Q is decidable in polynomial time,
• for any α, w, if Q(α, w) holds then α ∈ TAUT, and
• for any α ∈ TAUT there is w ∈ {0, 1}∗ such that Q(α, w) holds.

The system is p-bounded if there exists c ≥ 1 such that every α ∈ TAUT has a proof of length at
most |α|c + c.
Definition 4 (Resolution) A resolution refutation of a CNF F is a sequence of clauses C1, . . . , Cℓ

such that each Cj is either one of the clauses of F , or it is derived from some Cj1 and Cj2 with
j1, j2 < j using the resolution rule

C ∨ p D ∨ ¬p

C ∨ D
,

where Cj1 = C ∨ p, Cj2 = D ∨ ¬p and Cj = C ∨ D. The last clause of the refutation Cℓ is the empty
clause.
Definition 5 (Nullstellensatz proof system) Let F be a field. Consider a CNF φ with clauses
C1, . . . , Cm over variables x1, . . . , xn. We translate each clause Cj into a polynomial equation Pj = 0.
For example x1 ∨ ¬x2 ∨ x3 becomes (1 − x1)x2(1 − x3) = 0.
Then the NS/F-refutation of φ is a set of polynomials Q1, . . . , Qm and R1, . . . , Rn satisfying

m∑
j=1

QjPj +
n∑

i=1
Ri(x2

i − xi) = 1.
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Theorem 6 (Cook-Reckhow) A p-bounded proof system exists iff NP = coNP.

Lower bound for tree-like resolution
Theorem 7 For any m > n, any tree-like resolution refutation proof of PHPm

n has size 2Ω(n log n).
Definition 8 ((a, b)-game) We have a and b such that 1/a + 1/b = 1. The game has two players,
Prover and Delayer. The game starts with an empty partial assignment. The game proceeds in
rounds, in each round:

• Prover suggests a variable xi to be set in this round, and
• Delayer either chooses a value 0 or 1 for xi, or leaves the choice to Prover.
• The number of points earned by Delayer is

– 0 if Delayer chooses the value for xi,
– log2 a if Prover sets xi to 0, and
– log2 b if Prover sets xi to 1.

The game ends when some of the clauses of F is falsified.
Lemma 9 Let F be an unsatisfiable CNF. If Delayer can earn r points in some (a, b)-game, then
any tree-like resolution refutation proof of F has size at least 2r.
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TFNP: the class of total efficiently verifiable search problems
The field of computational complexity has traditionally been focused on decision problems: Given
a language L ⊆ {0, 1}∗ and some input x ∈ {0, 1}∗, how hard is it to decide whether x ∈ L? Even
if this paradigm seems to be as general as possible, there are computational tasks that don’t fit in.
One such example are search problems that are total:

1. Given an integer n ∈ N, find its prime factors.

2. Given a two player game, find a Nash equilibrium.

3. Given a cubic graph G with an Hamiltonian cycle, find a different Hamiltonian cycle of G.

Each of those problem is guaranteed to have a solution by virtue of mathematical proof; thus, their
decision-counterpart are moot. Indeed, "does game A have a Nash equilibrium?" is trivial to answer
(it’s yes!). Still, it seems those tasks do carry some computational hardness: People have been
trying to solve Nash equilibrium problems to no avail for more than half a century.
Definition 1 Let S ⊆ {0, 1}∗ × {0, 1}∗, be a poly-time computable relation. S ∈ TFNP if for any
x ∈ {0, 1}∗, there exists some y ∈ {0, 1}poly(|x|) with S(x, y).
Definition 2 Let S, R ∈ TFNP, S ≤ R if there exists a pair of poly-time computable function f, g
such that for any x ∈ {0, 1}∗, if (f(x), z) ∈ R, then (x, g(x, z)) ∈ S.
Since TFNP is a semantic class, it is unlikely to have any complete problem. To circumvent
this limitation, subclasses of TFNP have been invented based on the type of mathematical proof
guaranteeing the totality of the problem. For instance, the class PPA is based on the parity principle:
Any graph has an even number of odd-degree vertices. More formally, we define the problem Leaf as
taking for input a small circuit C : {0, 1}n → {0, 1}2n that defines implicitly the graph G = (V, E)
with V = {0, 1}n and {u, v} ∈ E if u ∈ C(v) and v ∈ C(u). A solution to a Leaf circuit is the
vertex 0n if it has even degree or any other vertex v ̸= 0n with odd degree. Note that Leaf ∈ TFNP
because the existence of a solution is guaranteed by the parity principle. PPA is then simply defined
as PPA := {S ∈ TFNP : S ≤ Leaf}. The hardness of solving Leaf stems from the fact that short
instances represent exponential-sized graphs. Thus, any algorithm trying to solve Leaf which only
uses the circuit as a black-box is bound to make an exponential number of queries to the circuit. On
the other hand, we do not (yet) know how to take advantage of knowing the internals of a circuit
– this might explain that there is no known efficient algorithm for PPA.
Yet another example of encoding a totality principle in an exponentially-sized graph is the class
PLS which encodes "any non-empty acyclic DAG must have a sink"; Refer to Figure 1 for an
overview of the TFNP hierarchy. The theory of TFNP has proven to be successful at pinning
down the complexity of many tasks, perhaps culminating in the proof of PPAD-completeness for
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Nash equilibriums [5, 6]. Beyond completeness results, a theoretician’s dream would be to separate
classes. For instance, we know that PPAD ⊆ PPA but could it be that PPAD = PPA? Proving
PPAD ⊊ PPA unconditionally would show P ̸= NP [7]. On the other hand, most known reductions
within TFNP are black-box. A reduction (f, g) from S to R (where S and R are problems defined
by circuits) is said to be black-box if f and g treat the circuit of S exclusively as an oracle and
restrain from looking at its internals. On a high level, such reductions are simply decision trees,
where queries are made adaptively to S. If it is out of reach to separate TFNP subclasses, we might
still hope for the next best thing: can we rule out black-box reductions? The answer is yes, and the
techniques involved are worth to look at.

Decision-tree analogues of TFNP
Query analogues of TFNP subclasses will be denoted by appending a dt superscript, e.g. PLSdt is
the query analogue of PLS. Since decisions tree are non-uniform models of computation, problems
in TFNPdt are actually sequences of relation S = (Sn)n∈N where each Sn ⊆ {0, 1}n × {0, 1}n is
total and efficiently verifiable. In our model, efficiently verifiable means that for each y, there
exists a decision tree oy that can decide S(x, y) by querying at most polylog(n) bits of x. Note
that the logarithm is natural here: In the Leaf problem, the input circuit had size poly(n) but
could be probed on an exponential number N = 2n of points. Still, Leaf ∈ TFNP because only
poly(n) = polylog(N) numbers of circuit-queries are necessary to check that a vertex has odd-
degree. PPAdt could be defined by carefully crafting a decision-tree analogue of Leaf and then
define a notion of decision-tree reductions within TFNPdt. Instead, we will use the more convenient
(but equivalent) notion of PPA-formulation.
Definition 3 Fix some Sn ⊆ {0, 1}n × {0, 1}n ∈ TFNPdt. A PPA-formulation of S is a tuple
F = (V, {tv}v∈V , {ov}v∈V ) where each tv is a decision tree over {0, 1}n with labels in V 2 and each ov

is a decision tree over {0, 1}n with labels in {0, 1}n. On input x ∈ {0, 1}n, {tv} implicitly defines
a graph Gx = (V, Ex) where {u, v} ∈ Ex if u ∈ tv(x) and v ∈ tu(x). F is correct if for any x and
any Leaf solution u of Gx it holds that S(x, ou(x)) = 1. The cost of the formulation is defined as:

cost(F) = max
v∈V

{depth(tv)} + max
v

{depth(ov)} + log(|V |)

PPAdt(S) is defined as the least cost of a PPA-formulation of S. Finally, PPAdt = {S ∈ TFNPdt :
PPAdt(S) = polylog(n)}.
Note that this definition carries the essence of black-box reductions and upon further inspection, the
family {tv} essentially implements the function f and {ov} the function h in the original definition
of reduction within TFNP. One difference is that the reduction is allowed to be non-uniform (i.e.
be different for each n). It turns out the above definition is strong enough for our purpose. For
instance, showing PPADdt ⊊ PPAdt rules out the possibility of a black-box reduction from PPA to
PPAD. Actually, something slightly stronger holds: this separation in the query-world implies the
existence of a generic oracle O such that PPAO ⊊ PPADO (see [1]). We are now left with proving
lower-bounds for PPAdt.

Characterizations and separations of query analogues
There is a rich connection between query analogues of TFNP subclasses and various proof systems.
As a first hint, observe that any CNF contradiction φ = C1 ∧ · · · ∧ Cm can be re-casted as a total
search problem. If the variables of φ are x1, . . . , xn, define S(φ) ⊆ {0, 1}n × [m] as the following
search problem: Given x ∈ {0, 1}n, find some Ci which is not satisfied by x. If each clause is of
size polylog(n), then S(φ) ∈ TFNPdt because verifying a clause is dissatisfied amounts to querying
its literals. In the converse direction, a TFNPdt problem can be encoded as a low-width CNF

22



contradiction that roughly says "this instance has no solution". Those observations go even further:
it turns out proof systems characterize query-analogues of TFNP!
Theorem 4 For any low-width CNF contradiction φ:

1. PPAdt(S(φ)) = F2 − NSdegree(φ) [3]

2. PLSdt(S(φ)) = ResolutionWidth(φ) [2]

Most other classes in TFNP also have a corresponding proof system, see Figure 1 for an overview.
Those characterizations come in very handy, because results from proof complexity (a very rich
field) can be directly imported into search problems theory, as the following showcases.
Theorem 5 PLSdt ̸⊆ PPAdt and PPAdt ̸⊆ PLSdt.
Proof The first result is originally due to [2], but a direct proof can be obtained from the above
characterizations. Indeed, [4] shows that there exists a family of constant-degree acyclic DAGs
{Gn}n∈N with reversible pebbling number RP(Gn) ≥ Ω(n1/3). Let φG be the corresponding peb-
bling contradiction. A theorem from this set of notes shows F2 − NS(φG) = Θ(RP)(G) so that
using the above characterization, PPAdt(S(φG)) ≥ Ω(n1/3), or in other words S(φG) /∈ PPAdt. On
the other hand, φG is a Horn formula (at most one positive literal per clause) so that φG has a
constant-degree resolution proof and S(φG) ∈ PLSdt. For the second result, one can use Tseitin’s
formula (which encode the parity principle). □

It also happens that results within the structure of TFNP imply new discoveries in proof complexity.
One such example is the recent collapse SoPL = PLS ∩ PPADS (which holds in the query world)
[9]. Using the corresponding characterization theorem, we get that a low-width refutation CNF has
a low-width resolution proof and a low-degree unary Sheralli-Adams proof if and only if it has a
low-width reversible resolution proof [8].
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Introduction
Suppose we are given a proof system and a statement α under a reasonable formalization of

mathematics, say, sequent calculus of first-order logic. Then, in order to prove ̸⊢ α (nonexistence of
a proof of α), the only thing we need to do is to find a model which satisfies ¬α. This is remarkable
since nonexistence of a combinatorial object “proof” is characterized by existence of an algebraic
object “model.”

Now, what if we consider “̸⊢n α” (α does not have a proof of complexity ≤ n)? Of course this
question is informal and its rigorous meaning depends heavily on our formalization of mathematical
proofs and the complexity measure of a proof. At least, if we focus on propositional logic and
resolution proof system, and think width as the complexity measure, then we obtain a satisfactory
characterization of nonexistence of a short proof, namely, existence of a winning strategy for Liar
in a kind of pebbling games related to α.

In this talk, we first introduce resolution and width and see why width is important in the study
of proof complexity, following the exhibition of [3]. Then we prove the characterization above and
go through its applications according to [1]. In the course of it, we will also touch briefly other
estimation techniques for proof complexity of resolution.

Preliminaries
Resolution is a propositional proof system which has been studied very vigorously due to its

importance in SAT solving and automated theorem proving. It is interesting also because it can be
regarded as sequent calculus whose formulae in each sequent are all restricted to be literals.

We fix a countable set V = {p0, p1, . . .} of (propositional) variables and V̄ = {p̄0, p̄1, . . .} of the
negations (or, the complements) of variables throughout this talk.
Definition 1 (clause) A clause is a finite subset of V ∪ V̄.
Definition 2 (partial assignments) A partial (truth) assignment is a map from a subset of V to
{0, 1}. If the domain is the whole V, it is simply called an assignment. For a partial assignment f ,
we denote its domain by Dom(f).
Definition 3 (natural extension) Let f : Dom(f) → {0, 1} be a partial assignment. Then we
denote its natural extension to a map

V ∪ V̄ → {0, 1} ∪ V ∪ V̄
by f̃ .
Definition 4 (restriction, and disjunctions as clauses) Let C be a clause and f : Dom(f) →
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{0, 1} be a partial assignment. The restriction C ↾f is defined as follows:

C ↾f :=


1 (if there exists l ∈ C such that f̃(l) = 1)
0 (if each l ∈ C satisfies f̃(l) = 0)
f̃(C) (otherwise)

When C ↾f is 0 (resp.1), we say C is falsified (resp.satisfied) by f .
Definition 5 (CNFs as sets of clauses) Let C be a set of clauses. C is satisfiable if and only if
there exists an assignment which satisfies the all C ∈ C.
Definition 6 (resolution) Let C be a set of clauses and D be a clause. A (dag-like) resolution derivation
of D from C is a finite sequence

π = ⟨C1, r1⟩, . . . , ⟨Cs, rs⟩
of pairs of a clause Ci and a rule indicator ri, which is a two-element set, such that every pair
⟨Ci, ri⟩ satisfies the following:

Axiom: If ri = ∅, then Ci ∈ C.

Weakening: If ri = {j}, then j < i and Cj ⊂ Ci.

Resolution: If ri = {j, k} such that j ̸= k, then j, k < i and Cj, Ck, Ci have the following forms:
Cj = X ⊔ {pt}, Ck = Y ⊔ {p̄t}, Ci = X ∪ Y.

Conclusion: Cs = D.

We denote the situation by π : C ⊢ D. In particular, when D = ∅, we say π is a resolution refutation of C.
Note 7 (underlying graph) It is a simple observation that a resolution derivation can be regarded
as a directed acyclic graph with each vertex labeled by a clause. Each ri corresponds to the arrows
from a vertex labeled with Ci.
Definition 8 (tree-like resolution) Let π be a dag-like resolution derivation. When the under-
lying graph of π is a directed tree, we say π is tree-like.
Proposition 9 Resolution gives a propositional proof system (in the sense of Cook and Reckhow).
Note 10 Strictly speaking, we have to “extend” resolution to enable it to deal with propositional
formulae of arbitrary depth (not just CNFs or DNFs). However, we do not get into it this time
although we see the trick we need here later in Example 18.
Definition 11 (complexity measures) Let π = ⟨C1, r1⟩, . . . , ⟨Cs, rs⟩ be a resolution derivation.
Then set:

size(π) :=
s∑

i=1
|Ci|,

width(π) := max
i=1,...,s

|Ci|.

Furthermore, for an unsatisfiable set C of clauses, define
minsize(C ⊢ ∅) := min

π : C⊢∅
size(π),

minwidth(C ⊢ ∅) := min
π : C⊢∅

width(π).

Moreover, we abuse the notation width and set:
width(C) := max

C∈C
|C|.
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Let C be a set of clauses and D be a clause and k ∈ N. We write C ⊢k D if and only if there exists
π : C ⊢ D such that width(π) ≤ k.
Example 12 The pigeonhole principle for m pigeons and n holes (m > n) can be expressed by
unsatisfiability of a set of clauses (let us denote it by PHP m

n ). We will exhibit a resolution refutation
of it for small parameters in the talk.

Why resolution width?
In the context of proof complexity, the first thing we want to consider is to estimate minsize(C ⊢

∅). However, it turns out that the analysis of minwidth(C ⊢ ∅) is actually helpful for that purpose:
Theorem 13 ([2]) Let C be an unsatisfiable set of clauses which contains n variables. Then the
following holds:

minsize(C ⊢ ∅) ≥ exp
(

Ω
(

(minwidth(C ⊢ ∅) − width(C))2

n

))
.

Furthermore, for a minimum size s of tree-like refutations of C, the following holds:
s ≥ 2(minwidth(C⊢∅)−width(C)).

We also stress that there are other reasons why resolution width is important:

• It is tightly related to a complexity measure of Polynomial Local Search (PLS).

• The quantitative provability ⊢k has a good semantics, which will be presented in the next
section.

Model theory of ⊢k

Given an unsatisfiable set C of clauses, consider the following two-player game:

• There are two players; named Liar and Prover .

• Liar “lies” as if they had a satisfying assignment of C, and Prover wants to “prove,” by asking
the truth value of each variable, that Liar is actually lying.

• If Prover had an unlimited ability to make queries, the “game” would become trivial. So, we
parametrize the game by k ∈ N.
At the beginning of the game, Prover has k-pebbles in their pocket, and now the play proceeds
in turn, starting from Prover :

1. Prover chooses one pebble from their pocket and put it on a variable. Before doing it,
it is allowed for Prover to remove several pebbles already played and put them back in
their pocket (therefore, the pebbles can be reused during the game).

2. Then Liar answers the truth value of the variable and passes the turn back to Prover.
3. The play continues until the partial truth assignment with domain induced by the pebbles

and values defined by the last answers of Liar falsifies some C ∈ C. In that case, Prover
wins the game. Otherwise, that is, if Liar can survive endlessly, then Liar wins.

This game serves as the semantics for ⊢k. To be precise, the game is rigorously formalized as follows:

27



Definition 14 Let C be an unsatisfiable set of clauses, and k ∈ N.
We say Liar wins Boolean existential k-pebble game on C if and only if there exists a family H of
partial truth assignments which satisfies the following:

1. H ̸= ∅.

2. If f ∈ H and C ∈ C, then C ↾f ̸= 0.

3. If f ∈ H, |Dom(f)| ≤ k.

4. If g ⊂ f and f ∈ H, then g ∈ H.

5. If f ∈ H, |Dom(f)| < k and x is a variable, then there exists g ∈ H such that f ⊂ g and
x ∈ Dom(g).

H is called a winning strategy for Liar.
The following characterization shows up:
Theorem 15 ([1]) Let r, k ∈ N, C be an unsatisfiable set of clauses, and suppose each C ∈ C
satisfies |C| ≤ r < k. Then the following are equivalent:

• C ̸⊢k ∅, that is, minwidth(C ⊢ ∅) ≥ k + 1.

• Liar wins the Boolean (k + 1)-pebble game on C.

Note 16 In the original text [1], the condition r < k is accidentally missing. However, the condition
is not necessary for the backward implication, which is enough for lower-bound proofs.

Applications
Using the criterion of Theorem 15, we can estimate the necessary width of various kinds of C.

Example 17 For m > n, PHP m
n ̸⊢n ∅, that is, minwidth(PHP m

n ⊢ ∅) ≥ n + 1.
Example 18 Densely Linear Ordering Principle for [n], that is, any linear order on [n] cannot
be dense, can be expressed by an unsatisfiable set of clauses (let us denote it by DLOn). Then
DLOn ̸⊢n/3 ∅, that is, minwidth(DLOn ⊢ ∅) ≥ n/3 + 1.
Example 19 We can formalize “necessary memory” for carrying out a resolution refutation of C,
denoted by Csp(C ⊢ ∅). It holds that Csp(C ⊢ ∅) ≥ minwidth(C ⊢ ∅) − width(C). See section 4
of [1] and section 5.5 of [3] for details.

Further reading on estimation techniques for proof complexity of resolution
We refer interested audience to chapters 5, 10, 11, 13 and the related chapters of [3].
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Introduction
Given a graph G(V, E), a proper k−coloring of the vertices of G is an assignment of colors from
{1, 2, . . . , k} (called the palette) to the vertices of G such that no two adjacent vertices have the
same color.
Given that the graph has maximum degree ∆, it can always be colored using ∆+1 colors and there
exists a simple greedy algorithm for (∆ + 1)−coloring problem. It runs in linear time and takes
linear amount of space (reading the entire graph). Now the question is can (∆ + 1)−coloring be
solved in sublinear time and/or sublinear space?
This paper by Assadi, Chen and Khanna [1] answers the above question.

Results
The main technical result of this paper is this key theorem:
Theorem 1 ([1]Palette-Sparsification Theorem) Let G(V, E) be an n vertex graph with max-
imum degree ∆. Suppose for any vertex v ∈ V , we sample O(log n) colors L(v) from {1, ..., ∆ + 1}
independently and uniformly at random. Then with high probability there exists a proper (∆ + 1)
coloring of G in which the color for every vertex v is chosen from L(v).
Using the Palette-Sparsification Theorem, they have designed the following two (among others)
sublinear algorithms:
Result 2 There exists a randomized single-pass dynamic streaming algorithm for the (∆+1)−coloring
problem using Õ(n) space.
In dynamic streaming model, both edge insertions and deletions are allowed.
Result 3 There exists a randomized Õ(n

√
n) time algorithm for the (∆ + 1)−coloring problem.

They have also shown the above result is essentially tight upto poly(log n) factors, i.e., any algorithm
for (∆ + 1)−coloring problem requires Ω(n

√
n) time.

Note 4 For proving the Palette-Sparsification Theorem, they have used a modified version of
the Harris-Schneider-Su (HSS) network decomposition [2], to partition the graph into “dense” and
“sparse” subgraphs (as the palette sparsification works differently for “dense” and “sparse” graphs).
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Introduction
Balinski’s theorem states that the graph of a d-dimensional convex polytope is d-connected. In this
paper, the author shows a new proof of this theorem, using the notion of the link of a vertex.

Definitions
Definition 1 The boundary complex of a polytope P is the set of faces of P other than P itself.
Definition 2 The link of a vertex x in P, denoted lk(x), is the set of faces of P that do not contain
x but lie in a facet of P that contains x.
Definition 3 An empty (d-1)-simplex in a d-polytope P is a set of d vertices of P that does not
form a face of P but every proper subset does.
Proposition 4 (Ziegler, [1]) Let P be a d-polytope. Then the link of a vertex in P is combinatorially
isomorphic to the boundary complex of a (d-1)-polytope. In particular, for each d ≥ 3, the graph of
the link of a vertex is isomorphic to the graph of a (d-1)-polytope.

Results
Theorem 5 For d ≥ 1, the graph of d-polytope P is d-connected. Besides, for each d ≥ 3, each
vertex x in a d-separator X of G(P) lies in the link of every other vertex of X, and the set X \ {x}
is a separator of the link of x.
Corollary 6 Let P be a simplicial d-polytope with d ≥ 2. A d-separator of G(P) forms an empty
(d − 1) simplex of P.
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Introduction
The crown C13 is the linear 3-graph with vertices {a, b, c, d, e, f, g, h, i} and edges

{a, b, c}, {a, d, e}, {b, f, g}, {c, h, i}.

We will prove the following conjecture of Gyárfás et al.: Any C13-free linear 3-graph G satisfies

|E(G)| ≤ 3(n − s)
2

where s is the number of vertices with degree at least 6. This combined with previous work
essentially determines Turán number for linear 3-graphs with at most 4 edges.
We will first summarize previous work, then state and proof two similar theorems on upper bounds
of E(G) where G is a crown-free graph.

Figure 2: C13 as shown in the presented paper.

Important definitions
Definition 1 (Linear 3-graph) A 3-graph G = (V, E) consists of a finite set of vertices V (G)
and set of edges E(G) where edges are 3-element subsets of V . A hypergraph is linear if any two
edges share at most 1 vertex.
Definition 2 (linear Turán number) Linear Turán number ex(n, F ) is the maximum number
of edges in any F -free linear 3-graph on n vertices.
Definition 3 (F -free graph) A graph is F -free if it does not contain F as a subgraph.
Definition 4 (Minimal counter-example) A minimal counter-example is a counter-example that
contains no proper subgraph that is also a counter-example.

Previous work
Gyárfás, Ruszinkó and Sárközy showed

6
⌊

n − 3
4

⌋
+ ε ≤ ex(n, C13) ≤ 2n
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where ε changes based on the numerator. It is 0 whenever n − 3 ≡ 0, 1 mod 4, it is 1 whenever
n − 3 ≡ 2 mod 4 and 3 otherwise.
In a different paper Gyárfás et. al. showed that every linear 3-graph with minimum degree 4 is not
crown free.
Recently, Fletcher improved the previous upper bound to

ex(n, C13) ≤ 5
3n.

Stronger bounds
In this talk, we will prove the following two upper bounds and try to connect them to the previous
results.
Theorem 5 Let G be any crown-free linear 3-graph G on n vertices. Then its number of edges
satisfies

|E(G)| ≤ 3(n − s)
2

where s is the number of vertices in G with degree at least 6.
Theorem 6 Let G be any crown-free linear 3-graph G on n vertices, and let s be the number of
vertices in G with degree at least 6. If s ≤ 2, then the number of edges satisfies

|E(G)| ≤ 10(n − s)
7 .

Outline of proofs of the theorems
We will use the following notation D({x, y, z}) ≥ ⟨a, b, c⟩ to say that d(x) ≥ a, d(y) ≥ b and
d(z) ≥ c for positive integers a, b, c where a ≥ b ≥ c.
To do the proofs we also need the lemma stated below.
Lemma 7 Let G be a crown-free graph and e = {x, y, z} ∈ E(G) satisfy D(e) ≥ ⟨5, 5, 4⟩. Then,
the vertex set of all vertices sharing an edge with {x, y, z}

S =
⋃

f∈E(G),f∩{x,y,z}≠∅
f,

contains exactly 11 vertices and all vertices in S have degree at most 5. The set of edges that contain
at least one vertex in S,

ES = {f : f ∈ E(G), f ∩ S ̸= ∅}
contains at most 13 edges, and all elements of ES are subsets of S.
Both theorems can be proved by contradiction. We assume a minimal counter-example. We always
start by showing the existence of some special edge based on some equality on the degrees of its
vertices. We then analyze D(e) of this particular edge. This yields multiple cases. With most
of them, it is simple to show that they lead to a contradiction. Only complicated case is the one
when D(e) ≥ ⟨5, 5, 4⟩. However, using the previous lemma we can show that the assumed minimal
counterexample can be made even smaller.
Proofs of theorems are relatively straightforward as we will see. The hardest part is to prove the
lemma which we might attempt at the end of the talk in case we have enough time left.
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Introduction
Lászlo Babai in 1979 proved that in every vertex transitive graph on at least n ≥ 3 vertices there
exists a cycle of length at least

√
3n. This had been for a long time the only found general lower

bound. In this talk we will take a look at the improvement by Matt DeVos who showed that such
graph contains a cycle of length at least (1 − o(1))n3/5.

Preliminaries
A graph G is vertex transitive if its automorphism group acts transitively on the vertex set V (G).
Thus for any two distinct vertices of graph G there is an automorphism mapping one to the other.
Theorem 1 (Babai [1]) Every connected vertex transitive graph with n ≥ 3 vertices contains a
cycle of length at least

√
3n.

Lemma 2 Let G be a finite group acting transitively on the set V, let B, C ⊆ V and let k ≥ 0. If
|D ∩ Cg| ≥ k holds for every g ∈ G, then |B||C| ≥ k|V |.
Lemma 3 Let X be a 2-connected graph and let C1, C2 be longest cycles in X. If |V (C1)∩V (C2)| =
k, then there exists a set of at most k2 + k vertices hitting all longest cycles.

Main result
Theorem 4 Every connected vertex transitive graph on n ≥ 3 vertices contains a cycle of length
at least (1 − o(1))n3/5.
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The LOCAL model
Our goal is to model a distributed computation in a graph G = (V, E):

• Every node of G corresponds to a computer with unbounded power.

• At the beginning, each node knows n = |V | and its unique ID from the set {1, . . . , n}.

• The computation happens in rounds, each round consists the three following parts:

1. All nodes do some computation according to the algorithm.
2. All nodes send an arbitrarily large message to their neighbors.
3. All nodes receive messages sent by their neighbors.

• Sometimes, the graph is directed, but the nodes can still communicate in both directions.
(The direction is just additional information for the algorithm.)

• Each node is responsible for computing its part of the output. For example, if we were
interested in graph colouring, we only expect each node to know its color (so that all its
neighbors have a different color).

• The measure of complexity is the number of rounds.

Observation 1 Every computable graph property can be calculated in O(diameter(G)) rounds.

The lower bound for 3-colouring a cycle
Theorem 2 Any LOCAL algorithm for computing a 3-colouring of a directed n-vertex cycle must

take at least 1
2 log∗(n) − 1 rounds, where log∗(n) =

0 if n ≤ 1
1 + log∗(log2(n)) otherwise.

Definition 3 (k-ary c-colouring function) A : {1, . . . , n}k → {1, . . . , c} is a k-ary c-colouring
function if

• For all 1 ≤ x1 < x2 < . . . < xk ≤ n, A(x1, x2, . . . , xk) ∈ {1, 2, . . . , c}

• For all 1 ≤ x1 < x2 < . . . < xk < xk+1 ≤ n, A(x1, x2, . . . , xk) ̸= A(x2, x3, . . . , xk+1)

Observation 4 Any algorithm computing a 3-colouring of a cycle is a k-ary 3-colouring function.
Lemma 5 If A is a 1-ary c-colouring function, we have c ≥ n.
Lemma 6 If A is a k-ary c-colouring function, we can construct a (k−1)-ary 2c-colouring function
B.
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Introduction
In this talk I will present a Luby’s MIS Algorithm which computes an MIS and also I wil show how
it is related to colouring problem of a graph. Below you can see the main topics of a talk.

Definition and Reductions
What is MIS?
Definition 1 Given a graph G = (V, E), a set of vertices S ⊆V is called a Maximal Independent
Set (MIS for simplicity) if it is satisfies two properties:
(1) the set S is an independent set meaning that no two vertices v, u ∈ S are adjacent,
(2) the set S is maximal - with regard to independence - meaning that we cannot add any node v /∈
S to the set S, i.e., there exists a neighbor u of v such that u ∈ S.
Algorithms for MIS can be used to solve a number of other graph problems. We will see a simple
and beautiful reduction that allows us to solve a ∆ + 1 coloring using an MIS algorithm, without
any significant overhead in the round complexity.
Lemma 2 Given a LOCAL algorithm A that computes an MIS on any N-node graph in T(N)
rounds, there is a local algorithm B that computes a ∆ + 1 coloring of any n-node graph with
maximum degree ∆ in T(n(∆ + 1)) rounds.
Luby’s Algorithm: The algorithm is made of iterations, each of which has two rounds as follows:
• In the first round, each node v picks a random variable rv ∈ [0, 1] and sends it to its neighbors.
Then node v joins the (eventual) MIS set S if and only if node v has a strict local maxima, that is,
if rv > ru for all neighbors u of v

• In the second round, if a node v joined the MIS, then it informs its neighbors and then, node
v and all of its neighbors get removed from the problem. That is, they will not participate in the
future iterations
Analysis: It is easy to see that the algorithm always produces an independent set, and eventually,
this set is maximal. The main question is, how long does it take for the algorithm to reach a
maximal independent set?
Theorem 3 Luby’s Algorithm computes a maximal independent set in O(log n) rounds, with high
probability
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Definitions
Definition 1 A cut is a set S ⊂ V, S ̸= ∅ of undirected graph G = (V, E). The size of cut is the
number of edges between S and S = V \ S.
Definition 2 In semi-streaming model the data stream is given in arbitrary order, we are allowed
to make one or few passes over the stream.
Definition 3 In the M-FOLD-GREATER-THAN problem for any integers M, N ≥ 1, Alice and
Bob are each given M separate N-bit numbers, X = {x1, . . . , xM} and Y = {y1, . . . , yM} (each
xi, yi ∈ {0, 1}N). The goal is to determine the value of GTM

N (X, Y ) defined as follows:

• GTM
N (X, Y ) = 1 if ∃xi, yi : yi > xi.

• GTM
N (X, Y ) = 0 otherwise.

Proposition 4 For any integers M, N, r ≥ 1, any r round communication protocol for the M-
FOLD-GREATER-THAN problem, wherein Alice and Bob send only r messages to each other,
requires Ωr

(
M · N

1
r

)
bits to succeed with constant probability more than half.

Main results
Theorem 5 There is a semi-streaming algorithm that with high constant probability outputs an
exact minimum cut of given n-vertex graph in two passes and space of O(n log n) bits.
Theorem 6 Any streaming algorithm that outputs the exact value of minimum cut of given n-vertex
graph with probability more than half a p > 1 passes requires Ω

(
n · (log n)

1
2p−1

)
space.

Algorithm
First pass: For every vertex v ∈ V sample two edges incident to v uniformly at random (with
repetition). Let G(2) be the resulting graph with connected components V1, . . . , Vt. Compute the
minimum degree degmin of G. If t > 100 · n/ degmin, terminate and output FAIL.
Second pass: Consider the multi-graph H obtained from G by contracting each component Vi into
a single vertex and removing the self-loops. Let F1, . . . , Fdegmin be initially empty. For each arriving
edge e in stream include e in Fi, where i is the smallest index such {e} ∪ Fi contains no cycle as an
induced sub-graph of H; skip e if no such i exists.
Post processing: Compute minimum cut of F = F1 ∪ · · · ∪ Fdegmin ; if it contains less then degmin
edges, return this cut. Otherwise return any vertex v with deg(v) = degmin.
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Tools for Theorem 5
Let C := {e1, . . . , eλ} denote the minimum non-singleton cut of G, where λ denotes the size of the
cut.
Lemma 7 With probability Ω(1) in the graph G(2) at the end of the first pass:

1. number of connected components is at most 100 · n/ degmin.

2. if λ < degmin the no edge e ∈ C has both endpoints in one connected component.

Lemma 8 Conditioned on event in Lemma 7 the cut output by the algorithm after post-processing
is a minimum cut in G.

Tools for Theorem 6
Lemma 9 Let M, N be positive integers such that M = 8 · 2N , let A be a δ-error p-pass streaming
algorithm that determines if the global min-cut of (2M)-vertex graph is ≥ 2N or < 2N . Then there
is a δ-error (2p − 1)-round protocol π that solves GTM

N with communication cost O(p · s), where s
is the space needed by A.
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Introduction
The study of unavoidable regularities has a long history in mathematics and has given interesting
results in multiple areas. One of the first (and better known) examples is a lemma used to prove
the Bolzano-Weierstrass theorem, and it states that every sequence in R admits a monotone sub-
sequence. This lemma is a good example of a wide array of results that try to study what kind of
regular substructures cannot be avoided in large structures.
The first results of this kind in graph theory are due to Ramsey. In his seminal paper [5], Ramsey
showed that for any graph H it is possible to find a monochromatic copy of H in any two-colouring
of Kn, provided n is large enough. This result started an active and influential area of graph theory
which is now called Ramsey Theory.
Definition 1 Let H be a graph. We denote by R(H, H) the Ramsey number of H, which is the
smallest n ∈ N such that any {red, blue}-edge colouring of Kn admits a monochromatic copy of H.
In his 1930 paper [5], Ramsey showed that the value R(H, H) is well defined for any graph H.
Determining or approximating the value of R(H, H) for any given H has been the driving question
of Ramsey theory since then.
One of the first families of graph for which the Ramsey number was determined is the fam-
ily of paths. By path Pn we mean the graph over the vertex set {1, . . . , n} and with edge set
{12, 23, . . . , (n − 1)n}. The result, due to Gerencsér and Gyárfás [4], reads as follows.
Theorem 2 (Gerencsér and Gyárfás, [4]) Let n ≥ 2 be a natural number. Then R(P2n, P2n) =
3n − 1.
More recently, Chvátal, Rödl, Szemerédi and Trotter proved that if a graph H has bounded degree,
then its Ramsey number is linear in the number of vertices of H.
Theorem 3 (Chvátal, Rödl, Szemerédi and Trotter, [3]) Let H be a graph over n vertices
and with maximum degree ∆. The Ramsey number R(H, H) is bounded above by c∆ · n for some
constant c∆ depending only on ∆.
However, this result is still very far from giving us more precise estimates for R(H, H).
For k, n ∈ N+, we denote by P k

n the k-th power of the path Pn, which is the graph obtained from
Pn by adding an edge between any two vertices at distance at most k in the path Pn.
There are at least two reasons why studying the Ramsey number of power of paths is an important
question in Ramsey theory. Firstly, it is a natural next step in the strengthening of the result of
Gerencsér and Gyárfás. Secondly, powers of paths are of particular importance in the study of
Ramsey problems because they are related to a measure of complexity of graphs (the bandwidth)
that has been proved to be relevant in the area.
More in detail, we say that a graph H over n vertices has bandwidth k if k is the smallest integer
such that H is a subgraph of P k

n . A result by Allen, Brightwell and Skokan [2] shows a better upper
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bound for the Ramsey number of graphs with bounded maximum degree if in addition we assume
that the graph has sublinear bandwidth.
Theorem 4 (Allen, Brightwell and Skokan, [2]) For any ∆ positive integer, there exist n0 ∈
N and ε > 0 such that the following holds for any n ≥ n0. Let H be a graph over n vertices
with maximum degree at most ∆ and with bandwidth at most εn, then we have that R(H, H) ≤
2(χ(H) + 2)n.
The proof of this theorem relies on good estimates of the value of R(P k

(k+1)n, P k
(k+1)n) and an im-

provement in the approximation of the Ramsey number for the square of paths is likely to lead to
better upper bounds for the Ramsey number of graphs with sublinear bandwidth. In particular,
Allen, Brightwell and Skokan conjectured the following:
Conjecture 5 (Allen, Brightwell and Skokan, [2]) For any ∆ positive integer, there exist n0 ∈
N and c, ε > 0 such that the following holds for any n ≥ n0. Let H be a graph over n vertices
with maximum degree at most ∆ and with bandwidth at most εn, then we have that R(H, H) ≤
(χ(H) + c)n.
For the nature of the proof of Theorem 4, it seems that determining the value of R(P k

(k+1)n, P k
(k+1)n)

would be of a big step forward in proving Conjecture 5.
The aim of this paper is to prove the following result.
Theorem 6 There exists an n0 ∈ N such that for all integers n ≥ n0 we have

R(P 2
3n, P 2

3n) = 9n − 3.

Let us point out that the n0 of this theorem is given us by the Regularity Lemma, and we did no effort
to try to minimise n0. Even if this result answers a natural question in the Ramsey theory setting
and it might be of help in improving the result of Theorem 4, additional study will be required to
extend Theorem 6 to higher powers of k and to determine the value of R(P k

(k+1)n, P k
(k+1)n) for other

values of k.

Lower bound
In order to prove Theorem 6, we first show that there exists a {red, blue}-edge colouring of K9n−4
without monochromatic copied of P 2

3n. The construction follows the recipe drawn in Figure 3.

2n − 1

2n − 1

2n − 1

2n − 1

n − 1

Figure 3: Our extremal colouring

We partition our 9n − 4 vertices in six sets. The sets B1, B2, R1, R2 of size 2n − 1, the set Z of size
n−1 and an additional single vertex r. We colour all the edges in B1, B2, (B1 ∪B2, {r}), (R1, R2, Z)
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by blue and all the edges in R1, R2, (R1 ∪ R2, {r}), (B1, B2, Z) by red. We then arbitrarily colour
the rest of the edges.
It is evident that in our construction there is no monochromatic P 2

3n

Proof strategy for the upper bound
At the base of our strategy for the upper bound of R(P 2

3n, P 2
3n) there are the regularity method of

Szemerédi [6] and an embedding lemma due to Allen, Böttcher and Hladký [1].
We show that any two-edge-colouring of a large clique not containing a monochromatic copy of P 2

3n

must have a very specific structure. Which is, any such colouring must be similar in structure to
the colouring in Figure 3. Some of the details follow.
Theorem 7 (Szemerédi, [6]) For every ε > 0 there exist natural numbers M and n0 such that
for any n ≥ n0 and any two-colouring G of Kn we can partition the vertex set of G in at most M
sets V0, . . . , Vm such that m ≥ 1

ε
and |V0| ≤ εn and |V1| = . . . = |Vm|. Moreover, all but at most

ε
(

m
2

)
of the pairs (Vi, Vj) are ε-regular in both colours.

Here, by (Vi, Vj) being ε-regular we mean that whenever A ⊆ Vi and B ⊆ Vj are such that |A| ≥ ε |Vi|
and |B| ≥ ε |Vj|, the density of edges (both in blue and in red) between A and B is the same (up to
an error ε) of the density of the same colour between Vi and Vj.
Therefore, given n sufficiently large and a two edge colouring of Kn, we can partition the vertex set
of Kn in a bounded number of subsets such that between most pairs of subsets we see some strong
regularity property. In particular, we can build a support graph R, called an ε-reduced graph for
G, over the parts V1, . . . , Vm such that we have the edge ViVj if and only if (Vi, Vj) is ε-regular in
both colours. We can colour each edge ViVj of the majority colour in the set of edges E(Vi, Vj).
Notice that R is an almost complete two-edge-coloured graph.
The use of Szemerédi regularity lemma has been used to embed substructures in large graphs, and
it is of fundamental importance here because it allows us to apply a result introduced by Allen,
Böttcher and Hladký [1].
We first need a definition.
Definition 8 Let R be a {red, blue}-edge-coloured graph. Let T and T ′ be monochromatic (wlog
blue) triangles. We say that T and T ′ are triangle-connected if there exists a sequence of blue
triangles T = T0, . . . , Tℓ = T ′ such that for every i = 0, . . . , ℓ − 1 we have that Ti and Ti+1 share an
edge.
A triangle factor is a set of vertex disjoint triangles. It is natural to define as monochromatic
triangle-connected triangle factor a set of pairwise vertex disjoint monochromatic triangles of the
same colour that are pairwise triangle connected.
The following embedding lemma allows us to reduce the problem of finding a monochromatic copy of
P 2

3n in a two-colouring of Kn to the problem of finding a monochromatic triangle-connected triangle
factor in the reduced graph R.
Theorem 9 (Allen, Böttcher and Hladký, [1]) For all positive δ, λ < 1 there exists ε > 0 and
M, n0 ∈ N such that whenever n > n0 the following holds. Let G be a two-colouring of Kn, and
let R be an ε-reduced graph of G with |R| = m ≤ M vertices. If R contains a monochromatic
triangle-connected triangle factor over 3(1 + δ)λm vertices, we can find a monochromatic copy of
P 2

3λn in G.
We can show that whenever R is an almost complete two-coloured graph over m vertices, either R
contains a triangle-connected triangle factor of the right size or the colouring of R is close to the
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lower bound construction. A careful analysis of the possible extremal structure finishes the proof
of the upper bound.
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Introduction
We present a deterministic algorithm in the LOCAL model that colors a graph G using ∆(G) + 1
colors in O(∆(G) log ∆(G) + log∗ |V (G)|) rounds. The model definition is as follows.
Definition 1 (the LOCAL model; [1, 2]) Let G = ([n], E) be a graph, where [n] := {1, 2, . . . , n}.
In the LOCAL model, there is one process on each node v ∈ [n] (which is named the same). At the
beginning of an algorithm, every process v ∈ [n] knows only its name, neighbors, and n. Then the
algorithm works in synchronous rounds: per round, each process (in this exact order)

(i) performs some computation based on its knowledge,
(ii) sends a message to all of its neighbors,

(iii) receives the messages sent to it by its neighbors in that round.

Moreover, we require that each process learns its own part of the output.
Observation 2 In the LOCAL model, every graph problem can be solved in O(n) rounds.
Later, in the proof of Lemma 6, we use the following notion.
Definition 3 (∆-cover free family) A family of sets S1, S2, . . . , Sk ⊆ {1, 2, . . . , k′} is called
a ∆-cover free family if no set in the family is a subset of the union of ∆ other sets.

Warm up: coloring rooted trees
Theorem 4 There is a deterministic algorithm in the LOCAL model that colors any rooted tree T
using 3 colors in log∗ n + O(1) rounds.
Remark: The number of rounds is optimal up to an additive constant.

The main result: coloring arbitrary graphs
Let G = ([n], E) be a fixed graph with maximum degree ∆ := ∆(G).
Theorem 5 (The main result) There is a deterministic algorithm in the LOCAL model that colors
the graph G using ∆ + 1 colors in O(∆ log ∆ + log∗ n) rounds.
The algorithm starts with the trivial n-coloring and, in the first O(log∗ n) rounds, transforms the
coloring into a O(∆2 log ∆)-coloring. In one additional round, the algorithm reduces the number
of colors to O(∆2). This part of the algorithm is based on a repeat application of the subsequent
lemma.
Lemma 6 ([1, 2]) Given a k-coloring φold, in a single round, we can compute a k′-coloring φnew

for k′ = O(∆2 log k). In addition, if k = O(∆3), then the bound can be improved to k′ = O(∆2).
Finally, using the following lemma, the algorithms computes a desired (∆ + 1)-coloring.
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Lemma 7 ([3]) Let k ≥ ∆ + 2. Given a k-coloring φold, in O(∆ log k
∆+1) rounds, we can compute

a (∆ + 1)-coloring φnew.
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5-List-Coloring Graphs on the Torus: A Computational Approach

Introduction
In this talk, we present a computer-aided approach to some problems related to list-coloring graphs,
developed with the goal of finding the finitely many 6-list-critical graphs embeddable on the torus.
The basic ideas of this approach were originally published in [1] (§2.1), and are motivated by the
results in Postle’s PhD thesis ([2]).

Background
List-coloring (for vertices) is a concept similar to regular (vertex) coloring in which each vertex has
a list of possible color. Let G be a graph.
Definition 1 A list assignment is a function L : V (G) → 2N. A k-list-assignment is a list as-
signment with |L(v)| ≥ k ∀v ∈ V (G). An L-coloring is a (proper vertex) coloring f for which
f(v) ∈ L(v) ∀v ∈ V (G). A graph is k-list-colorable or k-choosable if there exists an L-coloring for
all k-list-assignments L. The list chromatic number or choosability χℓ(G) is the least integer so
that G is χℓ(G)-list-colorable.
A natural question is whether there is an analogue of the four color theorem for list-colorability,
Theorem 2 (Voigt, 1993) There exists a planar graph with χℓ(G) = 5.
Theorem 3 (Thomassen, 1994) For all planar graphs, χℓ(G) ≤ 5.
The previous theorem has a simple proof based on proving the following stronger statement.
Theorem 4 Let G be a plane (embedded) graph whose faces are all triangles except for possibly
the outer face C, and let L be a list assignment satisfying: |L(v)| ≥ 5 for all internal vertices,
|L(v)| ≥ 3 for all v ∈ V (C) \ {x, y} where x, y are a pair of adjacent vertices, |L(x)| = |L(y)| = 1,
L(x) ̸= L(y). Then G has an L-coloring.
Definition 5 A graph G is L-critical for some list assignment L if G has no L-coloring but every
proper subgraph G′ has. A graph G is k-list-critical if there exists a (k − 1)-list assignment L such
that G is L-critical.
Let us consider list-coloring of graph embedded in general surfaces, not just the plane. Postle proved
in [2] the following result, mirroring analogous results for regular coloring.
Theorem 6 For k ≥ 6 there exist only finitely many k-list-critical graphs embeddable in a given
surface Σ.

List-Coloring Graphs on the Torus
Our goal is to find all the 6-list-critical graphs on the torus. Thomassen did this for regular vertex
coloring:
Theorem 7 A graph G embeddable on the torus is 5-colorable if and only if it does not contain the
following subgraphs:

• K6.

• C3 + C5.
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• K2 +H7, where H7 is the Moser spindle, the graph obtained by applying the Hajós construction
to a pair of K4.

• T11, where T11 is a triangulation of the torus with 11 vertices.

Where + denotes the join of two graphs: their disjoint union with all pairs of vertices from different
graphs joined by edges.
We conjecture that there are no other minimal 6-list-critical graphs:
Conjecture 8 A graph G embeddable on the torus is 5-list-colorable if and only if it does not
contain the following subgraphs: K6, C3 + C5, K2 + H7, T11.
How can we prove this? Postle’s general result for arbitrary surfaces involves carefully studying
when precolorings of certain subgraphs extend to the entire graph.
Definition 9 (Canvas) We say that (G, S, L) is a canvas if G is a connected plane graph with outer
walk C, S is a subgraph of C, and L is a list assignment such that |L(v)| ≥ 5 ∀v ∈ V (G) \ V (C)
and |L(v)| ≥ 3 ∀v ∈ V (C) \ V (S). If S = C and C is a cycle, then (G, C, L) is a cycle-canvas.
A canvas is critical if S ̸= G and for every proper subgraph H ⊇ S of G, there exists an L-coloring
of S which extends to H but not to G.
One example of such a result is:
Theorem 10 If (G, C, L) is a critical cycle-canvas, then |V (G)| ≤ 19|V (C)|.
Having a explicit list of all the critical cycle-canvases for small cycle sizes can be helpful to obtain
all the 6-list-critical graphs on the torus.

Critical Graphs Generation
We use the following result from Postle:
Theorem 11 (Cycle Chord or Tripod Theorem) If (G, C, L) is a critical cycle-canvas, then
either

1. C has a chord in G, or

2. there exists a vertex v ∈ V (G) V (C) with at least three neighbors on C such that at most one
of the faces of G[{v} ∪ V (C)] includes a vertex or edge of G.

This means that we can generate critical cycle-canvases of size ℓ with the following algorithm
(assuming we have already generated those with size < ℓ):

1. Generate all possible canvases with a chord iterating a from 3 to ℓ − 1 and fusing together
two canvases of size a and ℓ + 2 − a in all possible orientations. Put all the canvases that are
critical in a queue.

2. Generate all possible canvases with a tripod with biggest face of size at most ℓ − 1. Again,
put those canvases that turn out to be critical in the queue.

3. While the queue is not empty, dequeue the first canvas, add a tripod with three consecutive
neighbours to it in all the possible ways, and enqueue the canvases that turn out to be critical.
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Critical Graphs Testing
How do we determine if there exists some L so that a cycle-canvas is L-critical? Even if L were
fixed, it would be a computationally hard problem. We can use some coloring heuristics, as well as
results such as the following:
Observation 12 In a L-critical graph, d(v) ≥ |L(v)| ∀v ∈ V (G).
Theorem 13 (Gallai) Let G be a L-critical graph and let H be the subgraph of H induced by the
vertices with d(v) = |L(v)|. Then each 2-connected component of H is a complete graph or an odd
cycle.
Theorem 14 (Alon, Tarsi) Let G be a directed graph and L a list assignment with |L(v)| ≥
d+(v) + 1. If the number of even spanning eulerian subgraphs of G is different than the number of
odd spanning eulerian subgraphs of G, then G is L-colorable.
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Introduction
Definition 1 If X is a set, a family F of subsets of X is said to be union-closed if the union of
any two sets in F is also in F .
A famous open problem in Combinatorics posed by Péter Frankl in 1979 states:
Conjecture 2 (Union-Closed Conjecture) If X is a finite set and F is a union-closed family
of subsets of X (with F ̸= {∅}, then there exists x ∈ X such that x is contained in at least half of
the sets in F .
One approach to tackle this problem (studied during a Polymath project in 2016) is based on the
definitions below.

Definitions
Definition 3 If X is a finite set and F ⊂ P(X) with F ̸= {∅}, we define the abundance of x (with
respect to F) as the probability that a uniformly random element of F contains x. We denote it as
γx := |{A ∈ F : x ∈ A}|/|F|
Note 4 If the average abundance of a uniformly random element of the ground set X were always
at least 1/2, the Union-Closed Conjecture would immediately follow. However, there’s a simple
counterexample with average abundance of 4/9. Moreover, for any n ∈ N there exists a family with
average abundance of Θ(1/

√
n).

Definition 5 The average overlap density AOD(F) of F is the expected value of γx, where x is a
uniformly random element of a uniformly random nonempty member of F :

AOD(F) := 1
|F \ {∅}|

∑
A∈F\{∅}

1
|A|

∑
x∈A

γx

Note 6 If the average overlap density of F is at least 1/2, then the Union-Closed Conjecture easily
follows. Unfortunately, there exists infinitely many families with AOD(F) = 7/15 + o(1) as n
→ ∞.
The last note brought the following conjecture:
Conjecture 7 There exists a constant c > 0 such that the following holds. Let n ∈ N and let
F ⊂ P({1, 2, ..., n}) be union-closed with F ̸= {∅}. Then the average overlap density of F is at
least c.

Main result
The main result disproves Conjecture 7:
Theorem 8 For infinitely many positive integers n, there exists a union-closed family F of subsets
of {1, 2, ..., n} with average overlap density of Θ( log2(log2(|F|))

log2(|F|) ).
We will construct these families.
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Definitions
D1. For a nonempty and nondecreasing sequence (d1, ..., dn) of nonnegative integers and a positive
integer k the relation (d1, ..., dn) → k means that every directed graph on n vertices with outdegree
sequence (d1, ..., dn) contains k vertex disjoint cycles.
D2. Let integers 1 ≤ r ≤ s ≤ n be given. A sequence (d1, ..., dn) satisfying
(a) dr ≥ r, ds ≥ s + 1, and
(b) if n ≥ 2s − r + 2 and d2s−r+2 = s + 1, then there is an integer j ∈ [2s − r + 3, n] such that dj ≥ j
is called (r, s) − large. We say that (d1, ..., dn) is large if it is (r, s) − large for some two integers
r ≤ s in [n].
D3. Transitive tournament Tn is a digraph whose vertex set can be enumerated such that V (Tn) =
{v1, v2, ..., vn} and E(Tn) = {vi → vj : vi, vj ∈ V (Tn) and i > j}

Auxilary statements
Conjecture. For every positive integer k every digraph with minimum outdegree at least 2k − 1
contains k vertex disjoint cycles.
Lemma. The statement (d1, ..., dn) → 1 is true if and only if for some j ∈ [n] the inequality dj ≥ j
holds.
Fact. Let integers 1 ≤ r ≤ s < n be given. If a nondecreasing sequence d′ = (d1, ..., dn) with dn < n
is (r, s)-large, then every sequence e′ = (e1, ..., en−1) obtained from d′ by deleting one arbitrary term
is also (r, s)-large.

Main theorem
MT. Let (d1, ..., dn) be a nonempty, nondecreasing sequence of nonnegative integers. The relation
(d1, ..., dn) → 2 holds if and only if the sequence (d1, ..., dn) is large.
Step 1. We have r = 1.
Step 2. There are no loops in D. In particular, dn < n.
Step 3. Every 2-cycle of D is dominated by a vertex of outdegree s + 1.
Step 4. Suppose that an arc x → y of D does not appear in a 2-cycle.
(1) There is some vertex a /∈ {x, y} dominating x and y.
(2) If the outdegree of x is 1, then at least s + 1 vertices distinct from y and having outdegree s + 1
dominate {x, y}.
Step 5. The inneighbourhood of every vertex of D contains a cycle.
Step 6. There is a 2-cycle in D.
Step 7. In D there are a directed cycle C all of whose vertices have outdegree s + 1 and a vertex
x /∈ V (C) connected to every vertex of C by a 2-cycle.
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Step 8. We have s > 1.
Step 9. If n ≥ 2s + 1, then d2s+1 ≥ s + 2. In particular, D has at most s + 1 vertices of outdegree
s + 1.
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