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Preface

Spring school on Combinatorics has been a traditional meeting organized for almost 40 years for
faculty and students participating in the Combinatorial Seminar at Faculty of Mathematics and
Physics of the Charles University. It is internationally known and regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been
the case for several years, this Spring School is supported by Computer Science Institute (IÚUK)
of Charles University, the Department of Applied Mathematics (KAM) and by some of our grants
(SVV, Progres). This year we are glad we can also acknowledge generous support by the RSJ
Foundation.
The Spring Schools are entirely organized and arranged by our students. The topics of talks are
selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science
Institute (IÚUK) of Charles University as well as from other participating institutions. In contrast,
the talks themselves are almost exclusively given by students, both undergraduate and graduate.
This leads to a unique atmosphere of the meeting, which helps the students in further studies and
their scientific orientation.
This year the Spring School is organized in Lučany nad Nisou (in Jizera Mountains in northeastern
Bohemia) with a great variety of possibilities for outdoor activities.

Michal Koucký, Martin Koutecký, Martin Tancer, Robert Šámal, Pavel Valtr, Pavel Veselý
Petr Chmel, Tung Anh Vu

KAMKAM
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Series Talks

Martin Černý
cerny@kam.mff.cuni.cz

Completely Positive Matrices as part of series Matrix Theory and
Combinatorics Related to Optimization Problems

Introduction
In this talk, I present the class of completely positive matrices and its connection to copositive
optimisation. I also discuss the properties, sufficient and necessary conditions of completely positive
matrices which can be derived using graph theory.
Definition 1 A matrix A ∈ Rn×n is completely positive if there exists B ∈ Rn×m such that B ≥
On×m and A = BBT .
Definition 2 A matrix A ∈ Rn×n is copositive if xTAx ≥ 0 for all x ≥ 0.
Notice that the class of copositive matrices is a generalisation of positive semidefinite matrices where
we drop the condition of x ≥ 0.
Both classes of matrices form convex cones, meaning they are closed for two matrices A,B from the
classes on A + B and αA for α ≥ 0. The connection of both classes is through cone duality. For
the duality, we need the Frobenius inner product, i.e. 〈A,B〉 := ∑

i,j aijbij for A,B ∈ Rn×n.
Definition 3 Let C be a cone of matrices. Its dual cone is then defined as

C∗ := {B ∈ Rn×n | 〈A,B〉 ≥ 0 for all A ∈ C}.

When analysing completely positive matrices by the means of the graph theory, we employ incidence
and adjacency matrices of a graph G = (V,E). An incidence matrix B ∈ R|V |×|E| is defined as

bve :=
1 if v ∈ e,

0 if v /∈ e.

An adjacency matrix A ∈ R|V |×|V | is defined as

auv :=
1 if {u, v} ∈ E,

0 if {u, v} /∈ E.

Theorem 4 Let A be a non-negative diagonally dominant symmetric matrix. Then A is completely
positive.
In our further analysis we talk about graphs associated to matrices and their counterparts, matrix
realisations of graph. A graph G(A) = (V,E) associated to matrix A ∈ Rn×n is given by V =
{1, . . . , n} and E = {{i, j} | aij > 0}. A matrix A is a realisation of G, if it holds G(A) = G.
Theorem 5 For a graph G, its every realisation is completely positive if and only if it does not
contain an odd cycle of length more than 3.
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Finally, we make use of comparison matrices. For a matrix A ∈ Rn×n, its comparison matrix
M(A) ∈ Rn×n is a matrix defined as

M(A)ij :=
aij if i = j,

−aij if i 6= j.

Theorem 6 For a symmetric matrix A ∈ Rn×n, if M(A) is positive semidefinite, then A is com-
pletely positive.
Theorem 7 For a triangle-free graph G it holds for its every matrix realisation A that if it is
completely positive, than M(A) is positive semidefinite.

Bibliography

[1] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices, World Scientific, 2021.

[2] Natalia Kogan and Abraham Berman. Characterisation of completely positive graphs, Discrete mathematics,
1993.

[3] Immanuel M. Bomze. Copositive optimization – Recent developments and applications, European Journal of
Operations Research, 2011.
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Milan Hladík
hladik@kam.mff.cuni.cz

Absolute Value Equations as part of series Matrix Theory and
Combinatorics Related to Optimization Problems

Introduction
The absolute value equations (AVE) is the algebraic problem of solving the system

Ax+ |x| = b,

where A ∈ Rn×n and b ∈ Rn.

Properties
The solution set of the AVE reads

Σ = {x ∈ Rn; Ax+ |x| = b}.
When finite, it may possess up to 2n isolated points.
Open problem: Is any value in {1, . . . , 2n} attained as the number of solutions of certain AVE?
Observation 1 Σ forms a convex polyhedron in each orthant.
The linear complementarity problem (LCP) is an algebraic problem

y = Mz + q, yT z = 0, y, z ≥ 0.
Observation 2 AVE ⇔ LCP.
Theorem 3 (Mangasarian, 2007) Checking solvability of AVE is NP-complete.
Theorem 4 (Wu & Li, 2018) The AVE has a unique solution for each b ∈ Rn if and only if the
interval matrix [A− In, A+ In] is regular.
For the LCP, the analogous condition is P-matrix property (all principal minors are positive), which
is co-NP-hard to check. Therefore unique solvability of AVE is co-NP-hard to check, too.
Sufficient conditions for the unique solvability (ρ = spectral radius, σmin = minimal singular value):

ρ(|A−1|) < 1 or σmin(A) > 1.
Open problem: Is AVE efficiently solvable if [A− In, A+ In] is regular? (It is the case if any of the
sufficient conditions is fulfilled.)
Theorem 5 The AVE is unsolvable if one of the following conditions holds:

1. −y ≤ ATy ≤ y, bTy < 0 is solvable, or
2. ρ(|A|) < 1 and (I − |A|)−1b is not nonnegative.

Theorem 6 If 2|A||b| < b, then the AVE has 2n solutions, lying in the interiors of the particular
orthants.

Bibliography
[1] Milan Hladík. Absolute Value Programming. chapter in Encyclopedia of Optimization (eds. P.M. Pardalos &

O.A. Prokopyev), wait for the 2024 edition :-)
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Matyáš Lorenc
lorenc@kam.mff.cuni.cz

From P-matrices to Eigenvalues as part of series Matrix Theory and
Combinatorics Related to Optimization Problems

Introduction
In this handout we start by introducing some facts about eigenvalue approximation. Then we move
to P-matrices, more precisely to its two subclasses, B-matrices and doubly B-matrices, and for each
of those subclasses we state some properties and, more importantly, we show their application in
eigenvalue estimation.
Definition 1 (Gershgorin circles) Let A ∈ Cn×n and for i ∈ {1, . . . , n} let Ri = ∑

j 6=i |aij|.
Then by Gershgorin circles we understand a closed discs with radii Ri centered at aii, which we
denote by D(aii, Ri) ⊆ C.
Note 2 We will estimate just real eigenvalues and real parts of complex eigenvalues of real ma-
trices, so for our purposes we may just use intervals

[
aii −

∑
j 6=i |aij| , aii +∑

j 6=i |aij|
]
, which are

intersections of Gershgorin circles (of real matrices) with the real axis.
Definition 3 (Ovals of Cassini) Let A ∈ Cn×n and for i ∈ {1, . . . , n} let Ri = ∑

j 6=i |aij|. Then
by Ovals of Cassini, sometimes called Cassini ovals, we understand ∀i 6= j sets defined as follows:

Oij = {z ∈ C : |z − aii| |z − ajj| ≤ RiRj} .
Theorem 4 (A. Brauer) If A ∈ Cn×n, then all the eigenvalues of A lie inside the union of its(

n
2

)
ovals of Cassini, so ∀λ eigenvalue of A: λ ∈ ⋃i 6=j Oij.

Definition 5 (P-matrix) Let A ∈ Cn×n. We call A a P-matrix if all of its principal minors are
positive.
This class of matrices is computationally complex to recognize, the task of verifying given matrix
on being a P-matrix is co-NP-complete. This leads us to try and define several classes of P-matrices
that are easily recognizable. Such classes are e.g. B-matrices (introduced by Peña in [1]) or doubly
B-matrices (introduced also by Peña in [2]).

B-matrices
Definition 6 (B-matrix) We say that A ∈ Rn×n is a B-matrix, if ∀i ∈ {1, . . . , n} the following
holds:

a)
n∑

j=1
aij > 0 ∧ b) ∀k 6= i : 1

n

n∑
j=1

aij > aik

Let A ∈ Rn×n, we define for each i ∈ {1, . . . , n}:

r+
i := max {0, aij : j 6= i} r−i := min {0, aij : j 6= i} and ri :=

{
r+

i if aii > 0,
r−i if aii < 0.

We define c+
i , c

−
i , and ci in a similar way for the columns of the matrix instead of the rows.

Proposition 7 Let A ∈ Rn×n. It holds that A is a B-matrix if and only if ∀i ∈ {1, . . . , n}:
aii − r+

i >
∑
j 6=i

(
r+

i − aij

)
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Definition 8 (B̄-matrix) We say that A ∈ Rn×n is a B̄-matrix, if it is of a form DB, where D
is a diagonal matrix with its diagonal entries from set {−1, 1} and B is a B-matrix.
Proposition 9 Let A ∈ Rn×n. It holds that A is a B̄-matrix if and only if ∀i ∈ {1, . . . , n}:

|aii − ri| >
∑
j 6=i

|ri − aij|

Theorem 10 Let A ∈ Rn×n and let λ be a real eigenvalue of A. It holds that

I) λ ∈ S := ⋃n
i=1

[
aii − r+

i −
∑

k 6=i |r+
i − aik|, aii − r−i +∑

k 6=i |r−i − aik|
]

II) Let C be a class of real matrices such that if B ∈ C then all eigenvalues of B are real and
all matrices of for Bt := D + t (B −D) , t ∈ [0, 1] belong to C and let us assume that A ∈ C.
If S ′ is the union of m intervals of S such that S ′ is disjoint from all other intervals, then S ′
contains precisely m eigenvalues (counting multiplicities) of A.

The intervals from part I) of the previous theorem will be called row B̄-intervals. (Then of course,
there exist even column B̄-intervals.)
Theorem 11 Let A ∈ Rn×n and let λ be an eigenvalue of A. It holds that

I) Re(λ) ∈ S∗ := ⋃n
i=1 [αi, βi] , where ∀i ∈ {1, . . . , n}:

αi := min
aii − r+

i −
∑
k 6=i

|r+
i − aik|, aii − c+

i −
∑
k 6=i

|c+
i − aik|

 ,
βi := max

aii − r−i +
∑
k 6=i

|r−i − aik|, aii − c−i +
∑
k 6=i

|c−i − aik|

 ;

II) If S ′ is the union of m intervals of S∗ such that S ′ is disjoint from all other intervals, then
S ′ contains precisely the real part of m eigenvalues (counting multiplicities) of A.

Doubly B-matrices
Definition 12 (doubly B-matrix) Let A ∈ Rn×n. We say that A is a doubly B-matrix, if
∀i ∈ [n] the following holds:

a) aii > r+
i

b) ∀j 6= i :
(
aii − r+

i

) (
ajj − r+

j

)
>

∑
k 6=i

(
r+

i − aik

)∑
k 6=j

(
r+

j − ajk

)
Definition 13 (doubly B̄-matrix) We say that A ∈ Rn×n is a doubly B̄-matrix, if it is of a form
DB, where D is a diagonal matrix with its diagonal entries from set {−1, 1} and B is a doubly
B-matrix.
Proposition 14 Let A ∈ Rn×n. It holds that A is a doubly B̄-matrix if and only if ∀i ∈ {1, . . . , n}:

|aii − ri||ajj − rj| >

∑
k 6=i

|ri − aik|

∑
k 6=j

|rj − ajk|


Theorem 15 Let A ∈ Rn×n, let Ci :=

[
aii − r+

i , aii − r−i
]
for i ∈ {1, . . . , n} and for any i 6= j in

{1, . . . , n}, let us define (assuming without loss of generality that aii ≤ ajj)
Bij := B1

ij ∪B2
ij ∪B3

ij,
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where

B1
ij :=

x ∈ (−∞, aii) : |aii − r+
i − x||ajj − r+

j − x| ≤

∑
k 6=i

|r+
i − aik|

∑
k 6=j

|r+
j − ajk|

 ,
B2

ij :=
x ∈ (aii, ajj) : |aii − r−i − x||ajj − r+

j − x| ≤

∑
k 6=i

|r−i − aik|

∑
k 6=j

|r+
j − ajk|

 ,
B3

ij :=
x ∈ (ajj,∞) : |aii − r−i − x||ajj − r−j − x| ≤

∑
k 6=i

|r−i − aik|

∑
k 6=j

|r−j − ajk|

 .
Then all real eigenvalues of A belong to set B which is defined as B := (⋃n

i=1 Ci) ∪
(⋃

i 6=j Bij

)
.

Note 16 It can be proved that the union of the Gerschgorin circles contains the union of ovals of
Cassini. And in the same manner we can observe that the union of the row B̄-intervals contains
the set B of the previous theorem.

Bibliography

[1] Peña, J. M. A class of P -matrices with applications to the localization of the eigenvalues of a real matrix SIAM
Journal on Matrix Analysis and Applications, 2001.

[2] Peña, J. M. On an alternative to Gerschgorin circles and ovals of Cassini Numerische Mathematik, 2003.
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Lukáš Folwarczný
folwarczny@math.cas.cz

Presented paper by P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, T. Pitassi
The Relative Complexity of NP Search Problems

as part of series Total Search Problems
(https://dl.acm.org/doi/10.1145/225058.225147)

Introduction
Consider two subclasses A and B of the class TFNP. If both these classes contain FP, then showing
a separation, i.e. A 6= B, directly implies P 6= NP. The presented paper proves several separations
of important classes inside TNFP with respect to generic oracles. In my talk, I will explain the
model and prove one particular separation.

Definitions and preliminaries
We consider strings x over the binary alphabet {0, 1}, functions α from strings to strings, and type-2
functions (operators) F taking a pair (α, x) to a string y. Such an F is polynomial-time computable
if it is computable in deterministic time that is polynomial in |x| with calls to α at unit cost.
A type-2 search problem Q is a type-2 function that associates with each (α, x) a set Q(α, x) of
strings that are the allowable answers to the problem on inputs α and x.
The class FNP2 is the set of all type-2 search problems Q that are polynomial-time checkable in
the sense that y ∈ Q(α, x) is a type-2 polynomial-time computable predicate and all elements of
Q(α, x) are of length polynomially bounded in |x|.
A problem Q is total if Q(α, x) is nonempty for all α and x. The class TFNP2 is the subclass of
total problems in FNP2. An algorithm A solves a total search problem Q if and only if for each
function α and string x we have A(α, x) ∈ Q(α, x). The class FP2 consists of those problems in
TFNP2 which can be solved by deterministic polynomial time algorithms.
In the problem Lonely ∈ TFNP2, an input pair (α, x) codes a graph GM(α, |x|) which is a partial
matching. Let n = |x|. The nodes are the nonempty strings of length n or less, and there is an
edge between nodes u and v iff (i) u 6= v, (ii) α(v) = u, (iii) α(u) = v, and (iv) neither u nor v is
the standard node 0n. Thus 0n is always unmatched, and we are seeking a second unmatched (or
lonely) node.
In the problem Pigeon ∈ TFNP2, an input pair (α, x) codes a function f : {0, 1}≤n → {0, 1}≤n

where n = |x|. The value f(a) = α(a) if α(a) has length at most n; otherwise f(a) = 0n. The
solution is either a c ∈ {0, 1}≤n s.t. f(c) = 0n or a pair c′, c′′′ ∈ {0, 1}≤n s.t. f(c) = f(c′′). (This
corresponds to the pigeonhole principle in the following way: If there is no solution of the first
type, the function f is a mapping from {0, 1}≤n to {0, 1}≤n \ {0n}. Then there is a collision by the
pigeonhole principle.)
Observation 1 Neither Lonely nor Pigeon is in FP2.
We say that a type-2 problem Q1 is many-one reducible to a type-2 problem Q2 if there exist type-2
polynomial-time computable functions F , G, andH, such thatH(α, x, y) is a solution toQ1 on input
(α, x) for any y that is a solution to Q2 on input (G[α, x], F (α, x)), where G[α, x] = λz.G(α, x, z).
I will define a more general notion of reductions (Turing reductions) during my talk.
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Main presented result
Theorem 2 Lonely is not Turing reducible to Pigeon.
The consequence of this theorem is a separation of the important classes PPA and PPP in the oracle
world.
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František Kmječ
frantisek.kmjec@gmail.com

Presented paper by P. W. Goldberg and A. Hollender
The Hairy Ball Problem is PPAD-Complete
as part of series Total Search Problems

(https://arxiv.org/abs/1902.07657)

Introduction
The Hairy Ball Theorem states that given an even-dimensional k-sphere and a continuous tangent
vector field f defined on that sphere, there exists a point x where f(x) equals zero. As shown by
Goldberg and Hollender, the problem of computing the (approximate) point x is PPAD complete.
In the talk we will present the proof that Hairy Ball lies in PPAD. To do that, we will need to
discuss two topics:
Firstly, we will show the conversion of the Hairy Ball problem to End-of-Line with multiple sources.
After that, we will look at how the multiple-source End-of-Line is equivalent to the classic End-of-
Line. From those two claims we will infer that Hairy Ball problem lies in PPAD.

Definitions
Definition 1 (kD-Hairy-Ball problem) Let k ≥ 2 be even. The kD-Hairy-Ball problem is de-
fined as: given ε > 0 and an arithmetic circuit F with k + 1 inputs and outputs, find x ∈ Sk such
that Px[F (x)] < ε. Here Sk denotes a k-dimensional sphere, F represents the continuous vector
field on Sk and Px[·] denotes the projection onto the tangent space of the sphere at point x.
Definition 2 (End-of-Line) Given boolean circuits S, P with n input bits and n output bits and
such that P (0) = 0 6= S(0), find x such that P (S(x)) 6= x or S(P (x)) 6= x 6= 0.
In plain language, the two circuits S and P define a graph whose vertices have in and out-degree of
at most one. We are given a source and are tasked with finding a sink or another source.
Definition 3 (PPAD) Problem A is in PPAD if there exists a polynomial time reduction from A
to End-of-Line.
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Nikolaj Schwartzbach
nis@cs.au.dk

Presented paper by M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis
On the Complexity of Modulo-q Arguments and the Chevalley–Warning

Theorem as part of series Total Search Problems
(https://dl.acm.org/doi/abs/10.4230/LIPIcs.CCC.2020.19)

Introduction
Let q ≥ 2 be an integer. We define PPAq as the subset of TFNP reducible to a certain problem
on bipartite graphs. The problem is based on the observation that a bipartite graph with a node
with a non-multiple-of-q degree has at least one additional such node. For convenience, we let the
distinguished node be 0n.
Problem Bipartiteq:

• Input: Bipartite graph (V ∪ U,E), with V = {0} × {0, 1}n−1, and U = {1} × {0, 1}n−1, and
a circuit C : {0, 1}n → ({0, 1}n)k. There is an edge (u, v) ∈ E iff u ∈ C(v) and v ∈ C(u).

• Output: 0n, if deg(0n) ≡ 0 (mod q); otherwise, a node v 6= 0n with deg(v) 6≡ 0 (mod q).

Note that we get PPA = PPA2, as Bipartite2 is a canonical problem for PPA.
Definition 1 Let S0, S1 be two problems, then we define S0 &S1 as the problem that on input
(x, b) ∈ {0, 1}∗×{0, 1} should give the solution to x interpreted as an instance of Sb. If M0,M1 are
complexity classes, we define M0 & M1 as the complexity class containing all problems reducible to
S0 &S1.
Theorem 2 (Structural properties of PPAq) The following holds for every q ≥ 2.

1. PPAD ⊂ PPAq.

2. PPAq = &p prime divisor of q PPAp.

3. If q is prime, PPAq is closed under Turing reductions.

4. PPAq is oracle separated from PPAD,PPADS,PPP, and PLS.

We now state a theorem from number theory that can be used to define a so-called ‘natural problem’1
for PPAq.
Theorem 3 (Chevalley-Warning) Let p be prime, and let f = 〈f1, f2, . . . , fn〉 ∈ Fp[x]n be a set
of polynomials, such that ∑n

i=1 deg(fi) < n. Let
Vf = {x ∈ Fn

p | f(x) = 0}
be the set of solutions to f(x) = 0. Then |Vf | ≡ 0 (mod p).

1According to the authors, a ‘natural problem’ is a problem that does not explicitly have a circuit/Turing machine
as part of its description. Whether this constitutes a ‘natural’ problem is debatable. In particular, Chevalleyq has
a system of polynomials as part of its description that can be explicitly used to encode a circuit.
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This theorem can be used to define a problem, Chevalleyq, related to finding solutions in a system
of polynomials. The observation is that by letting all constant terms be zero (a zecote polynomial),
we have a trivial solution 0 = (0, 0, . . . , 0), and hence by Theorem 3 there must be at least one
additional solution, so find it.
Problem Chevalleyq:

• Input: System of zecote polynomials f ∈ Fp[x]n with ∑n
i=1 deg(fi) < n.

• Output: x ∈ Fn
p \ {0} such that f(x) = 0.

It can be established that Chevalleyq ∈ PPAq, but it is not known if the problem is also hard;
it is conjectured by the authors this is not the case because the condition that ensures there is a
non-trivial solution needs to be ‘syntactically refutable’. However, if we add more structure to the
problem, it does become PPAq-complete.
First, let σ ∈ Sn be a permutation, and let 〈σ〉 be the subgroup generated by σ, and let |σ| be
the order of 〈σ〉. If x ∈ Fn

p , we denote by σ(x) ∈ Fn
p the vector resulting from permuting the rows

according to σ. Now let V ⊆ Fn
p , we say that 〈σ〉 acts freely on V if for every x ∈ V , it holds that

σ(x) ∈ V \ {x}. Also denote V = Fn
p \ V .

Theorem 4 (Chevalley-Warning with Symmetry) Let p be prime, and let g ∈ Fp[x]n,h ∈
Fp[x]m be two systems of polynomials, and let f = 〈g,h〉. If there is a permutation σ ∈ Sn+m with
|σ| = p such that 1) the degree of f is ‘not too large’2, and 2) 〈σ〉 acts freely on Vg ∩ Vh, then
|Vf | ≡ 0 (mod p).
Problem ChevalleyWithSymmetryq:

• Input: System of zecote polynomials f = 〈g,h〉 ∈ Fp[x]n, and a permutation σ ∈ Sn.

• Output: Any of the following:

1. A proof that the degree of f is ‘too large’ (see [2]).
2. A proof that σ does not act freely, i.e. an x ∈ Vg ∩ Vh, s.t. σ(x) 6∈ Vg ∩ Vh \ {x}.
3. An element x ∈ Vf \ {0}.

Theorem 5 (Main result) For any prime p, ChevalleyWithSymmetryp is PPAp-complete.

2Formally, this property relates to the symbolic monomial expansion of a certain polynomial, CWf , that can be
deduced from the polynomial system; we require that there are no ‘maximum degree’ monomials in the resulting
symbolic expansion.
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Standalone Talks

Brage Isak Keiserås Bakkane
brage@bakkane.net

Mim-width and W [1]-hardness of (σ, ρ)-dominatation Problems
Parameterized by Mim-width

Introduction
If we accept that some problems are hard (i.e. P 6= NP ) then we would still like to be able to solve
hard problems fast. One way to do this is by either knowing more about the input, or knowing
more about what solution we want to find. This can often be expressed by some number known as
a parameter which is given along with the other input for each instance of a problem.
For instance, instead of the hard problem of finding the smallest vertex cover we could instead have
the problem of finding a vertex cover of size at most k. This problem can be solved in O(2kn) time
by a method known as branching.
When a problem can be solved in f(k)·nc time, for some constant c and some computable function f
the problem is fixed parameter tractable or FPT . This class can be seen as the "P " of parameterized
complexity. Note that f(k) · nc is still exponential, and if one wanted to find the smallest vertex
cover one would have to check k for all values {1, 2, ..., n}. However f(k) · nc can be considerably
faster than for instance nf(k) which is known as XP time.
Another type of parameter are width parameters. These are parameters for graph problems which
describe some sort of complexity of the graph. For instance, tree-width describes how "tree-like"
the graph is, clique-width generalises tree-width and is bounded on several simply structured dense
graphs. And the width parameter which will be described in this handout is mim-width, short for
maximum induced matching width.
The central question of a parameter is of course how useful is it, does it indeed make hard algorithms
easy? And the answer is of course it depends. For mim-width known hard problems, like maximum
independent set, can be shown to be XP (solvable in nf(k) time, where f(.) is some computable
function) when parameterized by mim-width when given its branch decomposition along with the
input graph. In addition it can be shown that certain graph classes have bounded mim-width, which
in particular implies polynomial time solvability for XP or FPT algorithms on those classes.

Mim-width
Recall that a matching is a set of edges whose end points are distinct, see Figure 1. An induced
matching is matching for which all edges that cannot be in the matching is not in the graph, i.e. if
M is a matching, and E the edges of some graph, where ab ∈M and cd ∈M , then ac 6∈ E, ad 6∈ E,
bc 6∈ E, and bd 6∈ E, see Figure 1.
The mim-width measures the largest induced matching, but where? This is a described by a branch
decomposition. A branch decomposition of a graph G is a pair (T,L), where T is a tree where its
vertices have degree at most 3, which in general is not rooted but for simplicity we will assume that
it is, and L a bijection mapping the vertices of the graph V (G) to the leaves of the tree T . For an
example of a branch decomposition see Figure 2.
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Figure 1: Example of a matching and an induced matching.
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Figure 2: Example of a branch decomposition.

Let Tt be the subtree of T rooted at t, Vt = L−1(L(Tt)), Gt = G[Vt], and V t = V (G) \ Vt. Then the
mim-width of (T,L) is maxt∈V (T ) mimG(Vt), where

mimG(A) = max{|M | |M is an induced matching in G[A, V (G) \ A]}
Furthermore, we define the mim-width of a graph G to be the minimum mim-width over all branch
decompositions of G.
A simpler type of branch decomposition is a linear branch decomposition, which is equivalent to a
linear ordering on the vertex set of the graph. If we have a graph with the ordering: a < b < c <
d < ... < z, then the mim-width of the ordering is

max{max{|M | |M is an induced matching in G[La, V (G) \ La] = G[La, Ra]} | a ∈ V (G)}
where La = {α | α ≤ a} and Ra = {α | α > a}, and we call (La, Ra) a cut along the ordering. For
an example see Figure 3.

A = {1 2 3 4} B = {5 6 7 8}

A = {1 2 3 4 5} B = {6 7 8}

mim of this branch decomposition: 3
 ⇒ mim-width(G) ≤ 3

A = {1 2 3 4} B = {5 6 7 8}

1
2

3

4

5

6
7

8

1

2
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3
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6
7

8

Figure 3: Example of linear mim-width along with ordering.

Graph classes and their mim-width
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Figure 4: Example of an interval graph.

Many graph classes have bounded mim-width, the graph class with bounded mim-width we will
consider here are Interval graphs.
An interval graph G has a set of intervals I = {Iv = (sv, ev) | sv ≤ ev, v ∈ V (G)} ⊂ R × R where
uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅. For an example see Figure 4.
We will then prove that any interval graph G has bounded mim-width by giving an ordering on the
vertices (equivalent with a linear branch decomposition) of mim-width 1.
Order the vertices of V (G) by the start point of the interval, i.e. by sv. Then u < v if su < sv.
Then suppose that for some cut along the ordering (Li, Gi) there is a matching of size > 1, then
there must be a pair of edges ab, cd ∈ M with a, c ∈ Li and b, d ∈ Gi. As ab ∈ M Ia ∩ Ib 6= ∅ i.e.
sb < ea and similarly sd < ec. Furthermore we can assume without loss of generality that ea > ec.
Then sd < ec < ea and therefore ad ∈ E(G). But then M is not induced. Therefore there is no
induced matching of size > 1 in (Li, Gi) and therefore mim-width of G is 1. And in general the
mim-width of any interval graph is 1. See Figure 5.

as ae

bs be

ds de

cs ce

es ee

a

db

c e

Figure 5: The same interval graph as in Figure 4, but ordered and with a cut. Note that the red
edges in the graph cannot be an induced matching.

Algorithmic applications of branch decompositions and mim-width
As mentioned maximum independent set, when given its branch decomposition, parameterized by
its mim-width is in XP and we will show this by giving an algorithm. The algorithm uses the
branch decomposition, the mim-width itself is simply used for an upper bound on the run time.
Let G be a graph with the rooted branch decomposition (T,L), and let r be the root of T .
Then we define an equivalence relation over 2Vt such that for any set X equivalent with Y X
and Y have the same neighbourhoods outside Vt. We say for two sets X, Y ⊆ Vt X ≡t Y if
N(X) ∩ V t = N(Y ) ∩ V t. Then for each equivalence class Qt we only need to store the largest
independent set of Gt contained in Qt, as the vertex sets in Qt all have the same neighbourhoods
outside of Vt. Therefore in Gt the independent set in Qt can always be replaced by any other
independent set in Qt. For an example of a branch decomposition along with examples of the
equivalence relation see Figure 6.
Therefore for each t ∈ V (T ) and each equivalence class Qt ∈ 2Vt/ ≡t we store the maximum
independent set of Gt contained in Qt. However equivalence classes themselves can be exponentially

17



[{b}], [{e}]=[ø], [{d}]

[{e}]=[ø], [{d}]

[{b}]=[{d}]=[{b,d}], [{e}]=[{f}]=[{e,f}]=[ø]

a d

b c

e

f

ab cde
1

2

3

f

G T, implicit L

Figure 6: A branch decomposition highlighting some examples of the equivalence relation ≡t.

large, therefore we instead store a description of the equivalence class, this description we call
desct(Qt) = {S ⊆ V t | ∀X ∈ Qt N(X) ∩ V t = S}.
Then we define a table: tab, where tab[t, desct(Qt)] = argmaxS∈Qt{|S| | S is an independent set in Gt}.
A problem does arise here, as desct(Qt) is a subset of V (G) and therefore one would require ≥ 2|V (G)|

many table entries. However "most" of these are uninteresting, as we only care about the subsets
of Vt which actually describe / correspond to some equivalence class of ≡t, and as we will see later
the number of equivalence classes is bounded by mim-width. We therefore assume that if the table
entry is not filled then it holds ∅.
Let t be a leaf of T , then recall that t is "equivalent" with some v ∈ V (G). Therefore ≡t has two
equivalence classes: {∅} and {{v}}, with the following descriptions ∅ and N(v). We then fill the
table entries: tab[t, desct{∅}] = ∅ and tab[t, desct({{v}})] = {v}.
Now let t be an internal node of T with the children a and b. Observe that if X ≡a Y or X ≡b Y
then X ≡t Y , therefore the equivalence classes of ≡a and ≡b do not have to be split up, only merged,
in order to obtain the equivalence classes of ≡t. We can therefore enumerate all descriptions of the
equivalence classes of ≡t by considering at most |2Va/ ≡a | × |2Vb/ ≡b | subsets of V t.

1 foreach Qa ∈ 2Va/ ≡a and Qb ∈ 2Vb/ ≡b do
2 Xa ← tab[a, desca(Qa)], Xb ← tab[b, descb(Qb)];
3 if no edges from Xa to Xb then
4 S = (desca(Qa) ∪ descb(Qb)) ∩ V t ;
5 if |Xa ∪Xb| ≥ |tab[t, S]| then
6 tab[t, S]← Xa ∪Xb ;

Algorithm 1: Maximum independent set table.

Algorithm 1 solves tab[t, desct(Qt)], which needs tab[a, desca(Qa)] and tab[b, descb(Qb)] to be com-
puted for all Qa ∈ 2Va/ ≡a and Qb ∈ 2Vb/ ≡b:
Then the root node of the tree r holds the value tab[r,Qr] with Qr = 2Vr which holds the maximum
independent set of the whole graph. In order to find this we first fill in the values of all leaves, then
gradually traverse upwards in the tree computing tab[., .] as we go.
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We now describe the running time of the algorithm. Let the number of equivalence classes in the
branch decomposition (T,L) be nec(T,L) = maxt∈V (T ) |2Vt/ ≡t |. The leaf nodes take constant
time to compute, internal nodes we need to consider ≤ nec(T,L)2 pairs of equivalence classes, and
for each equivalence class pair we do operations taking at most O(n2) time. Furthermore there
are O(n) nodes in V (T ) for which we need to compute tab[., .]. Therefore the total runtime is
O(nec(T,L)2 · n3).
Finally nec(T,L) ≤ nmim(Vt). This is as if the size of a maximum induced matching over (Vt, V t)
is at most k then each equivalence class of ≡t contains a set of size at most k, as we show below.
Therefore if we look at all equivalence class of size ≤ k then all equivalence classes will have been
enumerated by the time we reach size = k.
We will show that mim(Vt) ≤ k if and only if for all S ⊂ Vt there is a set R ⊆ S where |R| ≤ k
and R ≡t S. To do so we will show that mim(Vt) > k if and only if there is some S ⊆ Vt where for
every R ⊆ S, either |R| > k or N(R) ∩ V t 6= N(S) ∩ V t i.e. S 6≡t R.
Let M be an induced matching in G[Vt, V t] of size > k, and let S = V (M)∩ Vt. Furthermore let R
be any subset of S. Then if R = S then |R| = |S| > k. If R ⊂ S then let u ∈ S \R, and let v ∈ V t

be the vertex matched to u (i.e. uv ∈M). M is an induced matching therefore v is not adjacent to
any other vertices in S and therefore v ∈ N(S) ∩ V t but v 6∈ N(R) ∩ V t. Therefore S 6≡t R.
For the other direction let S ⊆ Vt be an inclusion-wise minimal set such that for all R ⊆ S either
|R| > k or R 6≡t S. Then |S| > k as if not R cannot always be > k, and there does not exist a
vertex v ∈ S such that N(S \ {v}) ∩ V t = N(S) ∩ V t as if there were S would not be minimal.
Therefore for all v ∈ S trivially N(S \ {v}) ∩ V t ⊆ N(S) ∩ V t, combined with N(S \ {v}) ∩ V t 6=
N(S) ∩ V t gives N(S \ {v}) ∩ V t ⊂ N(S) ∩ V t.
Therefore for all v ∈ S there must exist an unique vertex v ∈ V t adjacent to v, but not adjacent to
any other vertex in S. Therefore M = {vv | v ∈ S} is an induced matching in G[Vt, V t] of size > k.
Then as described above if we enumerate all subsets of size ≤ k we will have enumerated at least
one element of each equivalence class. Therefore ≡t has at most |Vt|mim(Vt) ≤ nmim(Vt). And if w is
the mim-width of (T,L) we can then solve maximum independent set in time O(n2w+3).

Generalised domination problems

1 unique solution 0 solutions

a

d d

b

c c

e b e

Figure 7: Example of the perfect code problem, or the ({0}, {1})-dominating set problem. Circled
vertices are vertices in the solution set.

The dominating set problem asks if there is some set of a certain size such that every vertex not
in the set is adjacent to at least one vertex in the set. There also exist problems asking if there
exists some set such that every vertex not in the set is adjacent to a given amount of vertices in
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Figure 8: Example of the (σ, ρ)-dominating set problem, where S is the (σ, ρ)-dominating set.
More specifically this is the ({0, 1, 2}, {1, 2, 3})-dominating set problem or any (σ012, ρ123) where
0, 1, 2 ∈ σ012 and 1, 2, 3 ∈ ρ123.

the set. One such example is the perfect dominating set problem where every vertex not in the set
is adjacent to exactly one vertex in the set.
Other dominating set-like problems place restrictions on how the dominating set should interact
with itself. One example of which is the dominating independent set problem, which asks for a
dominating set which is also an independent set. Finally both of these "generalised" dominating set
problems can be combined into a problem imposing restrictions on both the dominating set and
on how many vertices a vertex should be dominated by. One example of this is the perfect code
problem, which asks for an independent perfect dominating set. See Figure 7 for an example of the
perfect code problem.
All of these problems can be generalised into one class of problems: (σ, ρ)-dominating set problem,
where σ, ρ ⊆ N. These are problems asking whether there is a set of a certain size with the following
property: ∀v ∈ V (G) if v ∈ D then |N(v) ∩D| ∈ σ. If v 6∈ D then |N(v) ∩D| ∈ ρ. So σ describes
how vertices in the set should interact and ρ describe by how many vertices a vertex not in the set
should be dominated. See Figure 8 for an example of a (σ, ρ)-dominating set problem.
The dominating set problem is only difficult (W [1]-hard) if we ask for if there is a dominating set
of size ≤ k for some k. And the independent set problem is only difficult if we ask for sets of size
≥ k. So when are (σ, ρ)-dominating set problems hard? The answer is that it depends. For some
problems it might be hard for minimisation i.e. ≤ k, for others for maximisation i.e. ≥ k, and for
some problems both are hard. The problems where both are hard are when we ask for a set with
"difficult" constraints on both σ and ρ, for instance the perfect code problem and the dominating
induced matching problem.
The "normal" dominating set problem is then the (N,N\{0})-dominating set, the perfect dominating
set problem is the (N, {1})-dominating set, the dominating induced matching problem is the ({1},N\
{0})-dominating set, and perfect code is the ({0}, {1})-dominating set.

W [1]-hardness of the (σ, ρ)-dominating set problem parameterized by mim-width.

20



We will show the W [1]-hardness of the (σ, ρ)-dominating set problem parameterized by mim-width
by a parameterized reduction from the multicoloured clique problem. Formally a parameterized
reduction is an algorithm A taking in a instance (G, k) of problem A and turning it into the instance
of problem B: (H, l), where (H, l) is a yes-instance of B if and only if (G, k) is a yes-instance of
A. Furthermore l < g(k), and A runs in time f(k) · |G|O(1) for some computable functions f(.) and
g(.).
We will start with the multicoloured clique problem which asks if for some instance: G, V1, ..., Vk,
where V1, ..., Vk is a partition of V (G), if there is a clique in G c1, c2, ..., ck such that c1 ∈ V1, c2 ∈
V2, ..., ck ∈ Vk. First observe that we can assume that |V1| = |V2| = · · · = |Vk| as if they are not
we can add isolated vertices to the sets such that they all are the same size. And isolated vertices
clearly do not affect whether G is has a multicoloured clique. Let p = |V1| = · · · |Vk|. We will also
label the vertices of Vi by {vi

1, v
i
2, ..., v

i
p}.

Then we construct the instance (H, k′) of the perfect code problem parameterized by mim-width,
where k′ =

(
k
2

)
. See Figure 9.

First let i < j for some i, j ∈ [k], and a, b ∈ [p], with the notation that [k] = {1, 2, ..., k}.
We first add both xij

a and xji
b to H.

We then add sj
a to H. We connect the vertices sj

a and xjj′
a for all j′ 6= j.

If vi
av

j
b is an edge in G we add the vertex rij

ab to H. This vertex will be connected to all the vertices
in {xij

a′ ∈ V (H) | a′ 6= a} and to all the vertices in {xji
b′ ∈ V (H) | b′ 6= b}.

Let Sj = {sj
a | a ∈ [p]}, Rij = {rij

ab ∈ V (H) | a, b ∈ [p]}, and X ij = {xij
a | a ∈ [p]}, and

Xji = {xji
a | a ∈ [p]}. We make all of these sets into cliques. Furthermore we make X = {xij

a , x
ji
a |

i, j ∈ [k], a ∈ [p]} into a clique.
Furthermore let Xj = ⋃

j′ 6=j X
jj′

Notice that for all i′, j′ ∈ [p] where i′ 6= j′, Ri′j′ exists but Rj′i′ does not. However both X i′j′ and
Xj′i′ exist.
Then if v1

c1 , v
2
c2 ..., v

k
ck

is a multicoloured clique in G, then {rij
cicj
, sj

cj
| i < j, i, j ∈ [k]} is a perfect

code of size ≤ k′ of H.
We will give a rough sketch for the proof of the other direction. We can assume that p > 2, either
C intersects a clique or all the vertices of the clique has to be dominated by some vertex outside
the clique, which can only be in X. The presence of a vertex in X ∩ C would then imply that all
cliques, except for X, must have no vertices in C, or that more than 1 vertex has to be in X, neither
of which can be the case. Therefore any perfect code C can intersect each clique exactly once, and
X ∩ C = ∅.
Furthermore, if some si

ci
∈ C then rij′′

cia′′ ∈ C rj′i
a′ci
∈ C for all i, j′, j′′ ∈ k such that j′ < i < j′′. This

ensures that v1
c1 , ..., v

k
ck

is a multicoloured clique in G.
This graph H is then the supergraph of the graph in the general reduction from multicoloured
clique to the minimisation or maximisation (σ, ρ)-dominating set problem. More vertices are added
depending on σ and ρ. See the Figures 10 and 11.
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Figure 9: Example of H.

Figure 10: Example of S1 ∪X12 for p = 3, % = 6, ς = 3 where ς = min(σ) and % = min(ρ). Circles
indicate vertices, and grey coloured regions indicate cliques. The blue regions indicate vertices not
adjacent even though they should be according to the grey colouring. This is the construction
used for minimisation problems if % − 1 > ς, and for the maximisation problems if we instead let
ς = max(σ) and % = max(ρ) and % > ς.
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Figure 11: Example of S1 ∪X12 for p = 3, ς = 6, % = 3 where ς = min(σ) and % = min(ρ). This is
the construction used for minimisation problems if ς ≥ %, and for the maximisation problems if we
instead let ς = max(σ) and % = max(ρ) and ς ≥ %.
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Presented paper by Marcus Schaefer
A New Algorithm for Embedding Plane Graphs at Fixed Vertex

Locations
(https://doi.org/10.37236/10106)

Introduction
We investigate the problem of attempting to draw a plane graph with preassigned locations of
vertices while drawing the edges as polygonal chains and attempting to minimize the number of
bends of the polygonal chains per edge.

The main result
Theorem 1 Given a plane graph G on n vertices v1, . . . , vn and n distinct points p1, . . . , pn in the
plane, we can find an isomorphic embedding of G in which vi is located at pi for all 1 ≤ i ≤ n, and
every edge is a polygonal chain with at most 2.5n+ 1 bends. Moreover, the embedding can be found
in quadratic time.

The tools
Lemma 2 Any plane Hamiltonian graph on n vertices has an isomorphic embedding at fixed vertex
locations in which every edge is drawn as a polygonal chain with at most 2n − 1 bends. Moreover,
the embedding can be found in quadratic time given the Hamiltonian cycle.
Definition 3 (Synchronized covering) Polygonal chains P1, . . . , Pn form a synchronized cover-
ing of points p1, . . . , pn if the chains are pairwise disjoint, chain Pi contains the point pi for every
i ∈ [n], the i-th points of all chains lie on the same line `j (we label the lines so that pj ∈ `j and we
call them bend-lines) and the polygonal chains do not cross the bend-lines except at their vertices.
Lemma 4 For every set of n distinct points in the plane, we can find a synchronized covering such
that all bend-lines are parallel.
Lemma 5 Every plane graph on n vertices can be made Hamiltonian by subdividing each edge at
most once, and adding some edges. The added vertices have degree at most four. A Hamiltonian
cycle can be found in linear time. Moreover, whenever the Hamiltonian cycle passes through a
subdivision vertex, the two parts of the subdivided edge lie on the opposite sides of the cycle in the
embedding.

Tools from other literature
Theorem 6 (Whitney [1]) Every plane triangulation without a separating triangle has a Hamil-
tonian cycle.
Theorem 7 (Finding Hamiltonian cycles in plane triangulations [2]) There exists a linear
time algorithm for finding Hamiltonian cycles in 4-connected maximal planar graphs.

Bibliography
[1] Hassler Whitney, A Theorem on Graphs, Annals of Mathematics, https://doi.org/10.2307/1968197.

[2] Takao Asano, Shunji Kikuchi, Nobuji Saito, A linear algorithm for finding Hamiltonian cycles in 4-connected
maximal planar graphs, Discrete Applied Mathematics, https://doi.org/10.1016/0166-218X(84)90109-4.
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Colouring of (P3 ∪ P2)-free Graphs
(https://link.springer.com/article/10.1007/s00373-017-1870-8)

Introduction
It is a well-known fact that there exist triangle-free graphs with an arbitrarily high chromatic
number. However, for many classes of graphs we can bound the chromatic number by a certain
function of the clique number — we call such classes of graphs χ-bounded. Our main object of
interest will be the class of (P3∪P2)-free graphs, for which we will show that the chromatic number
is bounded by the cubic function of the clique number.

Preliminaries
For a graph G, we will denote its chromatic number by χ(G) and its clique number (i.e. the size of
any largest clique in G) by ω(G).
Definition 1 A class C of graphs is χ-bounded if there exists a function f : N → N with the
following property — for every graph G ∈ C, χ(G) ≤ f(ω(G)). If the function f is polynomial, we
also say that C is polynomially χ-bounded.
Definition 2 A graph G is H-free if any of its induced subgraph is not isomorphic to H.

Main results
Theorem 3 For any (P3 ∪ P2)-free graph G we have χ(G) ≤

(
ω(G)+2

3

)
. In particular, a class of

(P3 ∪ P2)-free graphs is polynomially χ-bounded.
It turns out that one can obtain the same bound for the (P4 ∪ P2)-free graphs.
Theorem 4 For any (P4 ∪ P2)-free graph G we have χ(G) ≤

(
ω(G)+2

3

)
. In particular, a class of

(P4 ∪ P2)-free graphs is polynomially χ-bounded.
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Efficient attack sequences in m-eternal domination

Introduction
We study the m-eternal domination problem from the perspective of the attacker. For many graph
classes, the minimum required number of guards to defend eternally is known. By definition, if the
defender has less than the required number of guards, then there exists a sequence of attacks that
ensures the attacker’s victory. Little is known about such sequences of attacks, in particular, no
bound on its length is known.
We show that if the game is played on a tree T on n vertices and the defender has less than the
necessary number of guards, then the attacker can win in at most n turns. Furthermore, we present
an efficient procedure that produces such an attacking strategy.

Definition
Consider the following game of two players, an attacker and a defender, played on a simple graph.
First, the defender places guards on some vertices. In each turn, the attacker attacks a vertex. The
defender responds by moving some (all) guards along adjacent edges, so that the attacked vertex is
occupied, thus defending against the attack. The defender wins if he is able to defend indefinitely.
Definition 1 A set of vertices is m-eternally dominating, if used as a starting configuration of
guards, it is possible to defend agains any sequence of attacks indefinitely.
Definition 2 The m-eternal domination number of G is the minimum number of guards required
to defend G indefinitely and is denoted by γ∞m (G) .
Definition 3 A neo-colonization of a graph G is a partition {V1, . . . , Vt} of the vertex set of G such
that each G[Vi] is connected. Let γc(G) denote the size of a minimum connected dominating set.
Each part Vi is assigned a weight ω(Vi) as follows.

ω(Vi) =
1 if G[Vi] is a clique
γc(G[Vi]) + 1 otherwise

Definition 4 A shrubbery is a tree with no vertices of degree 2.

Result
Theorem 5 ([2]) If the number of guards on a tree T is less than γ∞m (G), then the attacker can
win in at most d turns, where d is the diameter of the tree. Furthermore, the sequence of attacks
can be generated in polynomial time.

Bibliography

[1] William F. Klostermeyer and Christina M. Mynhardt Protecting a Graph with Mobile Guards. Applicable Analysis
and Discrete Mathematics, 2014

[2] Efficient attack sequences in m-eternal domination
https://arxiv.org/abs/2204.02720, 2022
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Presented paper by D. Conlon, A. Ferber
Lower Bounds on Multicolor Ramsey Numbers

(https://www.sciencedirect.com/science/article/pii/S0001870820305569)

Introduction
Definition 1 The Ramsey number r(t; `) is the smallest natural number n such that every `-coloring
of the edges of the complete graph Kn contains a monochromatic Kt.

Some simple bounds known since the 1940’s:
√

2t ≤ r(t, 2) ≤ 4t.
Observation 2 (Lefmann) r(t; `1 + `2)− 1 ≥ (r(t; `1)− 1)(r(t; `2)− 1)
Theorem 3 (D. Conlon, A. Ferber) [1] For any prime q, r(t; q + 1) > 2t/2q3t/8+o(t). In partic-
ular, r(t; 3) > 27t/8+o(t).
In the special case of q = 2, we will see the Conlon-Ferber construction. Let t be even and let
V ⊂ F t

2 denote the set of vectors of even Hamming weight, so that |V | = 2t−1. Define a graph G0
with vertex set V by letting {u, v} ∈ E(G0) if and only if u · v = 1 mod 2.
Lemma 4 G0 has no clique of order t.
Lemma 5 G0 has at most 25t2/8+o(t2) independent sets of order at most t.

Further results:
Theorem 6 (Y. Widgerson) [2] r(t; `+ 2) ≥ 23`t/8+t/2−o(t).
Theorem 7 (W. Sawin) [3] r(t; `+ 2) ≥ 2.383796`t+t/2+o(t).
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Abstract
The paper we are presenting concerns itself with proving the following result:
Theorem 1 (Two lists of size two) Let G a plane graph with outer cycle C, let v1, v2 ∈ C and
let L be a list assignment with |L(v1)| = |L(v2)| = 2, |L(v)| ≥ 3 ∀v ∈ C \ {v1, v2}, and |L(v)| ≥ 5
∀v ∈ V (G) \ V (C). Then G has an L-coloring.
This is a variation of Thomassen’s notable theorem on the five-list-colorability of planar graphs.
In this talk, we will explain the proof presented in the paper, as well as provide some background
for this result.

Background
List-coloring (for vertices) is a concept similar to regular (vertex) coloring in which each vertex has
a list of possible color. Let G be a graph.
Definition 2 A list assignment is a function L : V (G) → 2N. A k-list-assignment is a list as-
signment with |L(v)| ≥ k ∀v ∈ V (G). An L-coloring is a (proper vertex) coloring f for which
f(v) ∈ L(v) ∀v ∈ V (G). A graph is k-list-colorable or k-choosable if there exists an L-coloring for
all k-list-assignments L. The list chromatic number or choosability χ`(G) is the least integer so
that G is χ`(G)-list-colorable.
A natural question is whether there is an analogue of the four color theorem for list-colorability,
Theorem 3 There exists a planar graph (with 238 vertices) with χ`(G) = 5.
Theorem 4 (Thomassen) For all planar graphs, χ`(G) ≤ 5.
The previous theorem has a simple proof based on proving the following stronger statement.
Theorem 5 Let G be a plane (embedded) graph whose faces are all triangles except for possibly
the outer face C, and let L be a list assignment satisfying: |L(v)| ≥ 5 for all internal vertices,
|L(v)| ≥ 3 for all v ∈ V (C) \ {x, y} where x, y are a pair of adjacent vertices, |L(x)| = |L(y)| = 1,
L(x) 6= L(y). Then G has an L-coloring.
Let us consider list-coloring of graph embedded in general surfaces, not just the plane. We have
the following result, mirroring analogous results for regular coloring.
Definition 6 A graph G is L-critical for some list assignment L if G has no L-coloring but every
proper subgraph G′ has. A graph G is k-list-critical if there exists a (k − 1)-list assignment L such
that G is L-critical.
Theorem 7 For k ≥ 6 there exist only finitely many k-list-critical graphs embeddable in a given
surface Σ.
The two lists of size two result is used as a lemma to prove the above theorem.
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Proof of the two lists of size two theorem
The following definitions are used in the paper:
Definition 8 (G,S, L) is a canvas if G is a plane graph with outer face boundary C, S is a subgraph
of C and L is a list assignment with |L(v)| ≥ 5 ∀v ∈ V (G) \ V (C), L(v) ≥ 3 ∀v ∈ V (C) \ V (S),
and there exists a L-coloring of S.
Definition 9 A canvas (G,S, L) is critical if there does not exist an L-coloring of G but for all
edges e ∈ E(G) \ E(S) there exists an L-coloring of G \ e.
Definition 10 A cutvertex v ∈ V (G) of a canvas (G,S, L) is essential if for the decomposition
G1 ∪ G2 = G, G1 ∩ G2 = {v}, then V (S) 6⊆ V (Gi). A chord u, v ∈ V (C) of a canvas (G,S, L) is
essential if for the decomposition G1 ∪G2 = G, G1 ∩G2 = {u, v}, then V (S) 6⊆ V (Gi).
Additionally, we use the following lemmas about critical canvases.
Lemma 11 If (G,S, L) is a critical canvas, then every cutvertex and every chord of the outer walk
of G is essential.
Lemma 12 If (G,S, L) is a critical canvas, then every cycle of G of length at most four bounds an
open disk containing no vertex of G.
In a similar way to the proof of the five-list-colorability of planar graphs, the main idea is to find a
suitable strengthening of the statement:
Theorem 13 Let (G,S, L) be a canvas, where S has two components: a path P and an isolated
vertex u with |L(u)| ≥ 2. Assume that if |V (P )| ≥ 2, then G is 2-connected, u is not adjacent to
an internal vertex of P and there does not exist a chord of the outer walk of G with an end in P
which separates a vertex of P from u. Let L0 be a set of size two. If L(v) = L0 for all v ∈ V (P ),
then G has an L-coloring, unless L(u) = L0 and V (S) induces and odd cycle in G.
The proof assumes a minimum counterexample and successively reduces it to more particular cases.
To finish the proof, we need the following lemma following from results of [2].
Lemma 14 Let (G,P, L) be a canvas with outer cycle C and P = p1p2p3 such that there is no path
Q contained in C with ends p1 and p3 so that every vertex of Q is adjacent to p2. Then there is at
most one L-coloring of P that does not extend to an L-coloring of G.
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Introduction
Following a given ordering of the edges of a graph G, the greedy edge colouring procedure assigns
to each edge the smallest available colour. The minimum number of colours thus involved is the
chromatic index χ′(G). Here, we are interested in the restricted case where the ordering of the edges
builds the graph in a connected fashion. Let χ′c(G) be the minimum number of colours involved
following such an ordering.

Main Results
Theorem 1 For all ∆ ≥ 4, it is NP-hard to decide whether χ′(G) = χ′c(G) on the class of graphs
with chromatic index δ.
Theorem 2 If G is a bipartite connected graph, then χ′(G) = χ′c(G).
Theorem 3 If G has maximum degree 3, then χ′c(G) ≤ 4.

Open Problem
Conjecture 4 Is it true that χ′c(G) ≤ ∆ + 1 for every graph G of maximum degree ∆?
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Definitions
D1. A proper k-coloring or simply k-coloring of a graph G = (V,E) is a function f : V →
{1, 2, . . . , k}, such that for each uv ∈ E, f(u) 6= f(v). A graph G is k-colorable if there exists a
k-coloring of G.
D2. The chromatic number, χ(G), of a graph G is the smallest k such that G is k-colorable.
D3. A graph G is k-critical if G is not (k − 1)-colorable, but every proper subgraph of G is
(k − 1)-colorable.
D4. For R ⊆ V (G), define the potential of R to be ρG(R) = 5|R| − 3|E(G[R])|. When there is no
chance for confusion, we will use ρ(R). Let P (G) = min∅6=R⊆V (G) ρ(R).
D5. For a graph G, a set R ⊂ V (G) and a 3-coloring ϕ of G[R], the graph Y (G,R, ϕ) is constructed
as follows. First, for i = 1, 2, 3 let R′i denote the set of vertices in V (G) − R adjacent to at least
one vertex v ∈ R with ϕ(v) = i. Second, let X = {x1, x2, x3} be a set of new vertices disjoint
from V (G). Now, let Y = Y (G,R, ϕ) be the graph with vertex set (V (G) − R) ∪ X, such that
Y [V (G)−R] = G−R and N(xi) = R′i ∪ (X − xi) for i = 1, 2, 3
D6. A charge is a small positive number that is assigned to each face and each vertex of a graph.
Discharging phase is a process of redistribution of the charges to nearby vertices and faces in
accordance to a custom set of discharging rules.

Auxilary theorems
A1. If k ≥ 4 and k + 2 ≤ n ≤ 2k − 1, then

fk(n) = 1
2((k − 1)n+ (n− k)(2k − n))− 1

A2. Every triangle-free planar graph is 3-colorable

A3. If k ≥ 4 and G is k-critical, then |E(G)| ≥
⌈

(k+1)(k−2)|V (G)|−k(k−3)
2(k−1)

⌉
. In other words if k ≥ 4

and n ≥ k, n 6= k + 1, then

fk(b) ≥ F (k, n) :=
⌈

(k + 1)(k − 2)|V (G)| − k(k − 3)
2(k − 1)

⌉

Main theorem

MT. If G is 4-critical, then |E(G)| ≥
⌈

5|V (G)|−2
3

⌉
Step 1. Suppose R ⊂ V (G), and ϕ is 3-coloring of G[R]. Then χ(Y (G,R, ϕ)) ≥ 4
Step 2. There is no R ( V (G) with |R| ≥ 2 and ρG(R) ≤ 5
Step 3. If R ( V (G), |R| ≥ 2 and ρ(R) ≤ 6, then R is a K3

Step 4. G does not contan K4 − e
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Step 5. Each triangle in G contains at most one vertex of degree 3
Step 6. Let xy ∈ E(G) and d(x) = d(y) = 3. Then both, x and y are in triangles.

Bibliography

[1] T.Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar.. Acad. Sci. (1963), 373-395

[2] A.V. Kostochka and M.Yancey, Ore’s conjecture is almost true, submitted.

32



Jakub Svoboda
jakub.svoboda@ist.ac.at

Presented paper by T. Korhonen
A Single-Exponential Time 2-Approximation Algorithm for Treewidth

(https://arxiv.org/abs/2104.07463)

We give an algorithm, that given an n-vertex graph G and an integer k, in time 2O(k)n either outputs
a tree decomposition of G of width at most 2k + 1 or determines that the treewidth of G is larger
than k.

Definitions
The vertices of a graph G are denoted by V (G) and edges by E(G). The subgraph induced by a
vertex set X ⊆ V (G) is denoted by G[X] and the subgraph induced by a vertex set V (G) \ X is
denoted by G \X.
A balanced separator of W is a vertex set X such that for each connected component Ci of G \X
it holds that |W ∩ Ci| ≤ |W |/2.
A vertex set W ⊆ V (G) is splittable if V (G) can be partitioned into (C1, C2, C3, X) such that there
are no edges between Ci and Cj and |(W ∩ Ci) ∪X| < |W | for all i. We refer to such 4-tuple as a
split of W.
Let W be a root bag of a tree decomposition T . A split (C1, C2, C3, X) is a minimum split of W if
the split minimizes |X| among all splits of W , and among splits minimizing |X| the split minimizes∑

x∈X d(x) where d(x) is the distance from the home bag Bx of x to W in T .

Exercises
Problem 1 Let G be a graph of treewidth k and W ⊆ V (G) a vertex set of G. There is a balanced
separator X of W of size |X| ≤ k + 1.
Problem 2 A graph is outerplanar if it can be embedded in the plane in such manner that all its
vertices are on one face. What values can treewidth of an outerplanar graph have?
Problem 3 Prove that the treewidth of a simple graph cannot increase after subdividing any of its
edges. Show that in the case of multigraphs the same holds, with the exception that the treewidth
can possibly increase from 1 to 2.
Problem 4 For a graph G with tree decomposition of with t construct in time tO(1)n time a structure
that in time O(t) time aswers if vertices u and v are adjacent.
Problem 5 Solve MAX-CUT in time 2O(t) · tO(1)n

Problem 6 Solve q-coloring in time qO(t) · tO(1)n

Problem 7 Solve Hamiltonian cycle in time tO(t)n

Problem 8 Find a set X, such that G \X does not contain any four-cycles (time 2O(t2)nO(1)).
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Introductions
MIS Is an independent set which is maximal with respect to the independent set property, meaning
that you cannot add any vertex to it.
LOCAL The network is abstracted as a graph G = (V,E) where |V | = n; initially each node only
knows its neighbors; communications occur in synchronous rounds, where in each round nodes can
exchange information only with their graph neighbors.

Old local complexity

O(log2 ∆ + log 1/ε) O(log ∆ log log ∆ + log ∆ log 1/ε)

Cool new local complexity

O(log2 ∆ + log 1/ε)

Getting there

The Algorithm

In each round t, each node v has a desire-level pt(v) for joining MIS, which initially is set to
p0(v) = 1/2. We call the total sum of the desire-levels of neighbors of v it’s effective-degree
dt(v), i.e., dt(v) = ∑

u∈N(v) pt(u). The desire-levels change over time as follows:

pt+1(v) =
pt(v)/2 if dt(v) ≥ 2

min{2pt(v), 1/2} if dt < 2
The desire-levels are used as follows: In each round, node v gets marked with probability
pt(v) and if no neighbor of v is marked, v joins the MIS and gets removed along with its
neighbors.

Theorem For each node v, the probability that v has not made its decision within the first
β(log deg + log 1/ε) rounds, for a large enough constant β and where deg denotes v’s degree at
the start of the algorithm, is at most ε. Furthermore, this holds even if the outcome of the coin
tosses outside N+

2 (v) are determined adversarially.
Golden rounds Let us say that a node u is low-degree if dt(u) < 2, and high-degree otherwise.
Considering the intuition discussed above, we define two types of golden rounds for a node v:

(1) rounds in which dt(v) < 2 and pt(v) = 1/2,
(2) rounds in which dv(t) ≥ 1 and at least dt(v)/10 of it is contributed by low-degree neighbors.
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Lemma 1 By the end of round β(log deg + log 1/ε), either v has joined, or has a neighbor in, the
(computed) MIS, or at least one of its golden round counts reached 100(log deg + log 1/ε).
Lemma 2 In each type-1 golden round, with probability at least 1/100, v joins the MIS. Moreover,
in each type-2 golden round, with probability at least 1/100, a neighbor of v joins the MIS. Hence,
the probability that v has not been removed (due to joining or having a neighbor in MIS) during
the first β(log deg + log 1/ε) rounds is at most ε. These statements hold even if the coin tosses
outside N+

2 (v) are determined adversarially.
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