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Abstract

We give an algorithm, that given an n-vertex graph G and an integer k, in time 2O(k)n
either outputs a tree decomposition of G of width at most 2k + 1 or determines that the
treewidth of G is larger than k. This is the first 2-approximation algorithm for treewidth that
is faster than the known exact algorithms. In particular, our algorithm improves upon both
the previous best approximation ratio of 5 in time 2O(k)n and the previous best approximation
ratio of 3 in time 2O(k)nO(1), both given by Bodlaender et al. [FOCS 2013, SICOMP 2016]. Our
algorithm is based on a local improvement method adapted from a proof of Bellenbaum and
Diestel [Comb. Probab. Comput. 2002].

∗Department of Computer Science, University of Helsinki, Finland. Email: tuukka.m.korhonen@helsinki.fi.
Homepage: https://tuukkakorhonen.com.

ar
X

iv
:2

10
4.

07
46

3v
2 

 [
cs

.D
S]

  3
 J

un
 2

02
1



1 Introduction

Treewidth is one of the most important graph parameters, playing a central role in multiple fields.
In particular, many graph problems that are intractable in general can be solved in time f(k)nO(1)

when the input includes also a tree decomposition of width k [Cou90]. For a large number of classical
problems there are in fact such algorithms with time complexity 2O(k)n [AP89, Bod88, BCKN15].
To use these algorithms, it is crucial to also have an algorithm for finding a tree decomposition with
near-optimal width. In particular, in order to truly obtain algorithms with time complexity 2O(k)n
for these problems, where k is the treewidth of the input graph, we need to be able to compute
a tree decomposition of width ck, for some constant c, in time 2O(k)n. Moreover, lowering the
constant c directly speeds up all of these algorithms.

There is a long history of algorithms for finding tree decompositions with different kinds of
guarantees on the width of the decomposition and on the running time of the algorithm. See Table 1
for an overview of the most relevant of these results. The first constant-factor approximation
algorithm with running time of type f(k)nO(1) was given by Robertson and Seymour in their
graph minors series [RS95]. The dependency on n in this algorithm was improved to n log n by
Reed [Ree92], with the cost of a worse approximation ratio and dependency on k. Bodlaender
introduced the first algorithm for treewidth with a linear dependency on n [Bod93, Bod96]. The
algorithm of Bodlaender in fact computes a tree decomposition of optimal width, but with a running
time dependency of 2O(k3) on the width k.

While after the first half of the 1990s multiple improvements to treewidth approximation were
given [FHL08, Ami10], the problem of constant-factor approximating treewidth in 2O(k)n time
stood until 2013, when Bodlaender, Drange, Dregi, Fomin, Lokshtanov, and Pilipczuk gave a
2O(k)n time 5-approximation algorithm for treewidth [BDD+13, BDD+16]. The same authors also
gave a 3-approximation algorithm with running time 2O(k)n log n. The 3-approximation algorithm
of Bodlaender et al. has currently the best approximation ratio achieved by other than the exact
algorithms.

Table 1: Overview of treewidth algorithms with time complexity f(k) ·g(n), each either outputting
a tree decomposition of width at most α(k) or determining that the treewidth of the input graph
is larger than k. Most of the rows are based on a similar table in [BDD+16].

Reference Approximation α(k) f(k) g(n)

Arnborg, Corneil, and Proskurowski [ACP87] exact O(1) nk+2

Robertson and Seymour [RS95] 4k + 3 O(33k) n2

Lagergren [Lag96] 8k + 7 2O(k log k) n log2 n

Reed [Ree92] 8k +O(1) 2O(k log k) n log n

Bodlaender [Bod96] exact 2O(k3) n

Amir [Ami10] 4.5k O(23kk3/2) n2

Amir [Ami10] (3 + 2/3)k O(23.6982kk3) n2

Amir [Ami10] O(k log k) O(k log k) n4

Feige, Hajiaghayi, and Lee [FHL08] O(k
√

log k) O(1) nO(1)

Fomin, Todinca, and Villanger [FTV15] exact O(1) 1.7347n

Fomin et al. [FLS+18] O(k2) O(k7) n log n

Bodlaender et al. [BDD+16] 3k + 4 2O(k) n log n

Bodlaender et al. [BDD+16] 5k + 4 2O(k) n

This paper 2k + 1 2O(k) n
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In this paper we improve upon both of the algorithms given in [BDD+16].

Theorem 1.1. There is an algorithm, that given an n-vertex graph G and an integer k, in time
2O(k)n either outputs a tree decomposition of G of width at most 2k + 1 or determines that the
treewidth of G is larger than k.

To further compare our algorithm to the results of Bodlaender et al., we remark that our al-
gorithm has significantly smaller exponential dependency on k hidden in the 2O(k) factor than
what the techniques of [BDD+16] yield, although we note that the main goal of neither our work
nor their work was to optimize this factor. Our algorithm also makes progress in that it is the
first treewidth approximation algorithm to significantly deviate from the basic shape introduced
by Robertson and Seymour [RS95]. In particular, all of the previous treewidth approximation al-
gorithms [RS95, Lag96, Ree92, Ami10, FHL08, BDD+16, FLS+18] follow the same basic structure
of recursively finding a separator that splits the previously found separator (and in some cases
also the component) in a balanced manner. Our algorithm is instead based on iteratively making
local improvements to a tree decomposition, with the method of improvement based on the work
of Bellenbaum and Diestel [BD02]. To the best of my knowledge, our algorithm is the first to apply
the technique of Bellenbaum and Diestel in the context of computing treewidth. The technique
of Bellenbaum and Diestel has been applied before [CKL+21, LSS20] for optimizing a different
criterion on tree decompositions, with applications to improved parameterized algorithms for min-
imum bisection, Steiner cut, and Steiner multicut [CKL+21], and for obtaining a parameterized
approximation scheme for minimum k-cut [LSS20].

Before describing our algorithm we further mention some related work. There are multiple
refinements of the 2O(k3)n time exact treewidth algorithm of Bodlaender [Bod96], including in
particular the version of Perkovic and Reed [PR00] that has applications to the disjoint paths
problem and the logarithmic space version of Elberfeld, Jakoby, and Tantau [EJT10]. Also, re-
cently Bodlaender, Jaffke, and Telle gave additional structural insights on the technique of typical
sequences used in the algorithm [BJT21]. While exact computing of treewidth is known to be NP-
complete [ACP87], currently the strongest hardness result against constant-factor approximation
is that by Wu, Austrin, Pitassi, and Liu, assuming the small set expansion conjecture, there is no
polynomial-time c-approximation algorithm for treewidth for any constant c [WAPL14]. Recently,
Groenland, Joret, Nadara, and Walczak gave a polynomial-time (k + 1)-approximation algorithm
for pathwidth, where k is the width of a tree decomposition given as an input [GJNW21].

1.1 Outline of The Algorithm

Our algorithm is based on a proof of Bellenbaum and Diestel, in particular, on the proof of Theo-
rem 3 in [BD02]. The proof of Bellenbaum and Diestel shows that if a tree decomposition has a bag
that is not “lean”,1 then this bag can be split in a manner that improves the tree decomposition.
In particular, if we split a bag of size w + 1 in a tree decomposition of width w, then the splitting
does not increase the width of the decomposition and decreases the number of bags of size w + 1.

It follows that when starting with an initial tree decomposition of width O(k), we can obtain a
tree decomposition whose largest bag is lean by applying O(nk) splitting operations, each of which
can be implemented in 2O(k)nO(1) time. A lean vertex set has at most 3k + 3 vertices [HW17],
where k is the treewidth, so this directly gives a 2O(k)nO(1) time 3-approximation algorithm for
treewidth. However, for each k there are graphs that have lean vertex sets of size 3k − 3, so this
technique does not directly give a better approximation ratio than 3.

1We omit the definition of “lean” because it is ultimately not used in our algorithm.
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Algorithm 1: Treewidth 2-approximation

Input : Graph G, integer k, and a tree decomposition T of G of width O(k).
Output : A tree decomposition of G of width at most 2k + 1 or tw(G) > k.
Runtime: 2O(k)n

1 while True do
2 W ← the largest bag of T
3 if |W | ≤ 2k + 2 then
4 return T
5 else if there is (C1, C2, C3, X) that splits W then
6 T 1 ← T [W,C1, X]
7 T 2 ← T [W,C2, X]
8 T 3 ← T [W,C3, X]
9 T ← Merge(T 1, T 2, T 3, X)

10 else
11 return tw(G) > k

To improve the approximation ratio, we show that if we generalize the bag splitting operation
from 2-way splits to 3-way splits, then we can improve the tree decomposition by splitting the
largest bag as long as its size is larger than 2k+ 2. In particular, we say that a bag W is splittable
if the vertices of the graph can be partitioned into (C1, C2, C3, X) so that |(Ci ∩W ) ∪ X| < |W |
for each i and there are no edges between Ci and Cj for i 6= j. Algorithm 1 gives a high-level
presentation of the algorithm as pseudocode.

A straightforward implementation of the algorithm with standard techniques yields time com-
plexity 2O(k)nO(1). To optimize the dependency on n to be linear, we first show that the improve-
ments to the tree decomposition can be implemented so that over the course of the algorithm,
in total 2O(k)n bag edits are made, and the bag edits of each improvement step are limited to
a connected subtree around the split bag W . We implement computing the splits by dynamic
programming over the tree decomposition that we are also editing at the same time.

Our algorithm depends on having an initial tree decomposition of width O(k) as an input. By
the compression technique of Bodlaender [Bod96] (Lemma 2.7 in [BDD+16]), any approximation
algorithm for treewidth that outputs a tree decomposition of width α(k) can be assumed to have
a tree decomposition of width at most 2α(k) + 1 as an input, incurring an overhead of factor kO(1)

to the running time. In particular, in our algorithm we can assume a tree decomposition of width
4k+ 3 as an input. Our algorithm does not depend on black-box use of any other results than this
compression technique.

2 Preliminaries

2.1 Notation

We use the convention that a partition of a set may contain empty parts.
The vertices of a graph G are denoted by V (G) and edges by E(G). The subgraph induced by

a vertex set X ⊆ V (G) is denoted by G[X] and the subgraph induced by a vertex set V (G) \X is
denoted by G \X.

We treat paths as sequences of vertices and all paths in this paper are required to be simple,
i.e., have no repetitions. Let X and Y be possibly overlapping vertex sets. A vertex set S separates

3



X from Y if any path that intersects both X and Y intersects also S.
A tree is a connected acyclic graph. A subtree is a connected induced subgraph of a tree. To

distinguish trees from graphs, vertices of a tree are called nodes. A rooted tree has one node r
chosen as a root. A node j of a rooted tree is a descendant of a node i if i separates j from r.
Conversely, such i is an ancestor of such j. If i 6= j the ancestor/descendant relation may be called
strict and if i and j are adjacent they may be called parent/child. A rooted subtree of a rooted
tree is a subtree that consists of all descendants of some node.

2.2 Tree Decompositions

A tree decomposition of a graph G is a tree T whose each node i ∈ V (T ) is associated with a bag
Bi ⊆ V (G) such that

1. V (G) =
⋃

i∈V (T )Bi,

2. for each {u, v} ∈ E(G) there is Bi with {u, v} ⊆ Bi, and

3. for each v ∈ V (G) the set of nodes {i ∈ V (T ) | v ∈ Bi} forms a subtree of T .

The width of a tree decomposition is maxi∈V (T ) |Bi|−1. We will often abuse notation by talking
about a bag Bi instead of the node i. In our algorithm we usually treat a tree decomposition T as
rooted on some selected root node, whose bag is usually denoted with W . With respect to a root
bag W , the home bag Bx of a vertex x ∈ V (G) is the bag with x ∈ Bx that is the closest to W in
T . Note that all bags containing x are descendants of Bx in T .

We will use the following standard lemma implicitly throughout the paper.

Lemma 2.1. Let T1, T2 be subtrees of a tree decomposition T of a graph G that are separated by
a node i of T . The vertex sets V1 =

⋃
j∈V (T1)

Bj and V2 =
⋃

j∈V (T2)
Bj are separated by Bi in G.

Let W ⊆ V (G) be any vertex set of G. A balanced separator of W is a vertex set X such
that for each connected component Ci of G \X it holds that |W ∩ Ci| ≤ |W |/2. The existence of
balanced separators with size bounded by treewidth is a classical lemma from Graph Minors II.

Lemma 2.2 ([RS86]). Let G be a graph of treewidth k and W ⊆ V (G) a vertex set of G. There is
a balanced separator X of W of size |X| ≤ k + 1.

2.3 Bodlaender’s Compression Technique

The only black-box result that our algorithm relies on is the compression technique of Bodlaender,
introduced in [Bod96] and also exploited in [BDD+16]. Now we briefly discuss on how we use the
technique. For more details on the technique we refer to [Bod96] and on its application to treewidth
approximation to [BDD+16].

Proposition 2.3 ([Bod96]). There is an algorithm, that given an n-vertex graph G and an integer
k, in kO(1)n time either

1. determines that the treewidth of G is larger than k,

2. returns a matching in G with at least n/O(k6) edges, or

3. returns a graph G′ with at most n − n/O(k6) vertices so that the treewidth of G′ is at most
the treewidth of G if the treewidth of G at most k, and furthermore, any tree decomposition
of G′ of width ≤ k can be turned into a tree decomposition of G of width ≤ k in kO(1)n time.
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In particular, in our case Proposition 2.3 is exploited in the following way (which is very similar
to [BDD+16]; we include a proof for the convenience of the reader).

Lemma 2.4. Suppose there is an algorithm A, that given an n-vertex graph G, integer k, and a
tree decomposition of G of width at most 4k+ 3, in time f(k)n either outputs a tree decomposition
of G of width at most 2k + 1 or determines that the treewidth of G is larger than k. Then there is
an algorithm that in time f(k)kO(1)n does the same, but without requiring a tree decomposition as
an input.

Proof. We use a recursive procedure, which is always called with parameters G and k, where k is
the original input k and G is a graph whose treewidth is at most k if the treewidth of the input
graph is at most k. Each recursive call either determines that the treewidth of G (and thus also
the treewidth of the input graph) is larger than k, or returns a tree decomposition of G of width
at most 2k + 1.

The base case of the recursion is a trivial edgeless graph with treewidth 0. In the start of each
recursive call we use the algorithm of Proposition 2.3 with parameters (G, 2k + 1). In case 1, we
can return immediately. In case 3, we call the procedure recursively with the graph G′, and in
case of a positive answer construct the tree decomposition of G of width at most 2k+ 1 and return
it. In case 2, we contract the edges of the matching to obtain a graph GM and call the algorithm
recursively on GM . Contracting edges does not increase treewidth, so the treewidth of GM is at
most the treewidth of G. Also, in particular, we can obtain a tree decomposition T of G of width
4k + 3 from a tree decomposition of GM of width 2k + 1 by expanding the bags according to the
matching. Then we use the algorithm A with T to either get a tree decomposition of width 2k+ 1
or to determine that the treewidth of G is larger than k.

In each recursive call the number of vertices of G shrinks by a factor 1/O(k6), and therefore
the total time complexity is T (n, k) = kO(1)n+ f(k)n+ T (n− n/O(k6), k), which can be bounded
by T (n, k) = f(k)kO(1)n.

3 Main Concepts of The Algorithm

In this section we give a description of our algorithm and prove its correctness, but do not op-
timize the time complexity. In particular, after this section it should be clear that we have a
2-approximation algorithm that can be implemented in time 2O(k)nO(1). In Section 4 we optimize
the dependency on n to be linear.

Many proof ideas of this section are based on [BD02], but all of the proofs have been generalized
or adapted in some ways.

3.1 Splittable Vertex Sets

A vertex set W ⊆ V (G) is splittable if V (G) can be partitioned into (C1, C2, C3, X) such that there
are no edges between Ci and Cj for i 6= j and |(W ∩ Ci) ∪ X| < |W | for all i. We refer to such
4-tuple as a split of W .

Lemma 3.1. Let G be a graph of treewidth ≤ k. Any vertex set W ⊆ V (G) of size |W | ≥ 2k + 3
is splittable.

Proof. By Lemma 2.2, there is a balanced separator X of W of size |X| ≤ k + 1. Now, as each
connected component Ci of G \ X has |Ci ∩W | ≤ |W |/2, we can combine two such components
with the smallest sizes of Ci∩W until we obtain a partition (C1, C2, C3, X) of V (G), where it holds
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that |W ∩ Ci| ≤ |W |/2, and there are no edges between Ci and Cj for distinct i, j. This is indeed
a split of W because |(W ∩ Ci) ∪X| ≤ |W |/2 + k + 1 < |W |.

Let W be a root bag of a tree decomposition T . A split (C1, C2, C3, X) is a minimum split
of W if the split minimizes |X| among all splits of W , and among splits minimizing |X| the split
minimizes d(X) =

∑
x∈X d(x), where d(x) is the distance from the home bag Bx of x to W in T .

3.2 The Splitting Operation

Let T be a tree decomposition, W a root bag of T , and (C1, C2, C3, X) a minimum split of W . We
obtain a tree decomposition T [W,Ci, X] of G[Ci ∪X] by removing all other vertices than (Ci ∪X)
from each bag of T , and inserting each vertex x ∈ X to all bags in the path from the root W to the
home bag Bx of x. In other words, for each bag B of T , we have a bag Bi = (B ∩ (Ci ∪X)) ∪BX

in T [W,Ci, X], where the set BX is defined as BX = {x ∈ (X \B) | Bx is a descendant of B in T}.
Note that the insertions BX can be seen as first adding X to the root bag, and them “fixing” the
subtree condition by adding vertices x ∈ X to bags in a minimal way.

Now T [W,Ci, X] is a tree decomposition of G[Ci ∪ X] because we removed only vertices not
in Ci ∪ X from bags and we inserted vertices x ∈ X to paths touching Bx, maintaining the
subtree condition. Note also that the root bag W i of T [W,Ci, X] has X ⊆ W i, so the tree
decompositions T [W,C1, X], T [W,C2, X], and T [W,C3, X] can be merged into a tree decomposition
T ′ of G by adding an additional bag X connected to each W i. We refer to T ′ as the improved tree
decomposition.

The following Lemma gives the main argument to show that the improved tree decomposition
is indeed improved.

Lemma 3.2. Consider the construction given above and let B be any bag of T . If BX is non-empty
then |BX | < |B ∩ (Ci ∪ Cj)| for any pair of distinct i, j.

Proof. For simplicity w.l.o.g. let i = 1, j = 2. Suppose that |BX | ≥ |B ∩ (C1 ∪ C2)|. We claim
that there is a split (C ′1, C

′
2, C

′
3, X

′) of W with X ′ = (X \BX) ∪ (B ∩ (C1 ∪C2)). This split would
contradict the minimality of the original split because |X ′| ≤ |X| and the home bags of vertices
in BX are strict descendants of B and thus strict descendants of the home bags of vertices in
B ∩ (C1 ∪ C2), implying d(y) < d(x) for all y ∈ B ∩ (C1 ∪ C2) and x ∈ BX .

To show that there is indeed such a split (C ′1, C
′
2, C

′
3, X

′), first note that BX does not intersect
W because B separates it from W and B ∩ BX = ∅, so W ∩ X ⊆ W ∩ X ′. Next we prove that
the vertex sets (W ∩ C1) \ X ′, (W ∩ C2) \ X ′, and (W ∩ C3) \ X ′ are in different components of
G \X ′. Suppose that there is a path from (W ∩ Ck) \X ′ to (W ∩ Cl) \X ′, with k 6= l, in G \X ′,
and by symmetry assume that k ∈ {1, 2}. The path must intersect BX before intersecting other
vertices of V (G) \Ck because X ′ ∪BX ⊇ X separates W ∩Ck from V (G) \Ck. Therefore we have
a path from W ∩ Ck to BX that is contained in (Ck ∪BX) \X ′. This path must have a vertex in
B because B separates W from BX . However B ∩ (Ck ∪BX) = B ∩ Ck ⊆ X ′, so this path cannot
have a vertex in B.

It follows that |Bi| ≤ |B| for all Bi, and that |Bi| < |B| if B intersects at least two of C1, C2, C3.
This shows that the width of the improved tree decomposition T ′ is at most the width of T , and
that the number of bags of size |W | in T ′ is smaller than in T if W is a largest bag of T . In
particular, note that by the definition of a split we that |W i| < |W | for the root bag W and all i,
and by Lemma 3.2 the only case when |Bi| = |B| can hold for multiple i is when B ⊆ X.
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We note that already at this point, our arguments coupled with applying standard techniques to
compute minimum splits in time 2O(k)nO(1) lead to an 2O(k)nO(1) time 2-approximation algorithm
for treewidth. What remains is to optimize the dependency on n.

3.3 Local Splitting

We define the potential function φ on a tree decomposition T as a sum φ(T ) =
∑

i∈V (T ) 7|Bi| over
the bags Bi of T . In this subsection we will give a slightly modified splitting operation for which
it will hold that φ(T ′′) < φ(T ), where T ′′ is the tree decomposition obtained by splitting a tree
decomposition T , and this splitting operation can be implemented by modifying a subtree of T
consisting of O(φ(T )− φ(T ′′)) nodes and containing W .

We say that a bag B of T is editable with respect to a split (C1, C2, C3, X) of the root bag W
if B intersects at least two of C1, C2, C3 and each bag in the path in T from B to W is editable.
The root bag W is editable in any split of W , so the editable bags form a non-empty subtree of
T containing W . Note also that because the root W is in the subtree of editable bags, the non-
editable bags form a collection of rooted subtrees of T . It follows from Lemma 3.2 that if B is a
non-editable bag in a minimum split, then BX = ∅.

Next we provide a construction of the tree decomposition T ′′ similar to the construction of T ′ in
Section 3.2. The tree decomposition T ′′ is essentially the same as T ′, except that some components
of G \X that do not intersect W have been re-assigned to a different part Ci of the split, and some
rooted subtrees whose bags contain only vertices in X have been pruned. This allows to construct
T ′′ by only modifying the subtree of editable bags of T . We also maintain an invariant that the
maximum degree of the tree decomposition is at most 3.

Lemma 3.3. Let T be a degree-3 tree decomposition of a graph G of width w with a root bag W
with |W | = w + 1, (C1, C2, C3, X) a minimum split of W , and t the number of editable bags of
T with respect to the split. We can obtain a degree-3 tree decomposition T ′′ of G by removing the
editable bags from T and inserting at most 3t+4 bags in place of them. Moreover, φ(T ′′) ≤ φ(T )−t
and all of the new bags inserted have size < |W |.

Proof. We start the construction of T ′′ similarly as T ′ in Section 3.2, but limited only to editable
bags. In particular, for each editable bag B of T we have bags Bi = (B ∩ (Ci ∪ X)) ∪ BX for
i ∈ {1, 2, 3} in T ′′. Then we add a bag X and connect the bags W i to X. The nodes of bags W i

may become degree-4 here but we will handle that later.
The non-editable bags of T form at most 3t rooted subtrees of T . We remove the editable bags

of T and connect the non-editable subtrees of T to T ′′. In particular, let B be a non-editable bag
of T whose parent bag P is editable. The bag B intersects at most one component Ci. We connect
B to P i such that B ⊆ Ci ∪X. Note that the rooted subtree of non-editable bags rooted at B may
contain bags that contain vertices that have been assigned to some other components Cj , j 6= i, of
the split. However, B separates all vertices in the subtree of B from W and B ⊆ Ci ∪ X, so we
can assign all vertices in the subtree of B that are not in X to Ci without affecting Ck ∩W for
any k. With this re-assignment, the subtree of B is the same as the subtree of Bi would be in the
original construction T ′. Now it suffices to show that it is safe to not include the subtrees of Bj ,
j 6= i at all in T ′′. Such subtrees would contain only vertices of X, so they can be pruned because
we anyway have a bag X in T ′′.

Some W i may have become degree-4, in particular, it might have children W i
a, W i

b , W i
c and

parent X. In this case we add a new bag W i
d = W i connected to W i, W i

a, and W i
b , and remove the

edges between W i and W i
a, W i

b . The degree of any other node does not change, so applying this to
each W i makes T ′′ degree-3.
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Let E be the set of editable bags of T . By Lemma 3.2 we have for B ∈ E that |Bi| =
|B| − |B ∩ (Cj ∪ Ck)| + |BX | < |B|, where i, j, k are distinct. We also have that |B| ≥ 2 for all
B ∈ E and |X| ≤ |W | − 2. Let E′ = E \ {W}. The potential of T ′′ is

φ(T ′′) ≤φ(T )− 7|W | −

(∑
B∈E′

7|B|

)
+ 7|X| +

∑
i∈{1,2,3}

(
7|W

i| + 7|W
i
d| +

∑
B∈E′

7|B
i|

)

≤φ(T ) + 6 · 7|W |−1 − 7|W | + 7|X| +
∑
B∈E′

(3 · 7|B|−1 − 7|B|)

≤φ(T )− 7|W |−1 + 7|W |−2 − 4(t− 1) ≤ φ(T )− t.

Because the value of the potential function of the initial tree decomposition is 2O(k)n, our
algorithm will terminate after editing 2O(k)n bags.

4 Implementation in Linear Time

In this section we show that our algorithm can be implemented in 2O(k)n time. In particular, this
requires showing that finding a split can be done in amortized 2O(k) time and that the local splitting
of Section 3.3 can be implemented in 2O(k)t time, where t is the number of editable bags.

4.1 Overview

We treat our algorithm in the form that we are given a graph G, an integer k, and a degree-3
tree decomposition T of G of width w, where 2k + 2 ≤ w ≤ 4k + 3, where the upper bound is by
Lemma 2.4. The algorithm either outputs a tree decomposition of width at most w−1, or concludes
that the treewidth of G is larger than k. Note that given a tree decomposition T of width w, we
can obtain a tree decomposition of maximum degree 3, width w, and O(n) bags in wO(1)(n+ |T |)
time by standard techniques [Klo94].

During the algorithm we maintain a degree-3 tree decomposition T and a pointer to a node r
of T . We treat T as rooted on node r and we denote by W the bag of r. We implement a data
structure that supports the following operations.

1. Init(T , r) – Initializes the data structure with a degree-3 tree decomposition T of width w
and a node r ∈ V (T ) in time 2O(w)n.

2. Move(s) – Moves the pointer from r to an adjacent node s in time 2O(w).

3. Split() – Returns ⊥ if the bag W of r is not splittable, otherwise sets the internal state to a
minimum split (C1, C2, C3, X) of W and returns >. Works in 2O(w) time.

4. State() – Returns the internal state of the data structure restricted to the bag W of r, i.e.,
the partition (C1∩W,C2∩W,C3∩W,X ∩W ) of W . Works in wO(1) time. Valid only if there
has been a successful Split query after the previous Init or Edit query.

5. Edit(T1, T2, p, r
′) – Replaces a subtree T1 of T with a given subtree T2, where r ∈ V (T1),

r′ ∈ V (T2), and p is a function from the nodes of T \ T1 whose parents are in T1 to the nodes
of T2, specifying how T \ T1 will be connected to T2. The pointer r will be set to r′. Works
in 2O(w)(|T1|+ |T2|) time. Assumes the new T to have degree-3 and width at most w.

We defer the description on how the operations are implemented to Section 4.3.
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4.2 Splitting With The Data Structure

We describe how the data structure is used to implement the local splitting of Section 3.3 to split
all bags of size w + 1 in a tree decomposition of width w in time 2O(w)n, or to report that there is
a bag of size w + 1 that cannot be split.

We traverse the tree decomposition in depth-first order with the Move operations. Each time
we reach a bag W of size |W | = w + 1, we apply the Split operation, returning tw(G) > k if
it returns ⊥. If the Split operation returns >, we use the Move and State operations to explore
the subtree of editable bags and the non-editable children of them. As our tree decomposition
has maximum degree 3, the number of non-editable children of t editable bags is bounded by 3t.
We determine the sets BX for each editable bag B recursively, in particular noting that BX = ∅
for non-editable bags by Lemma 3.2, and that if B1, B2, and B3 are the children of B, then
BX = BX

1 ∪ BX
2 ∪ BX

3 ∪ (X ∩ (B1 ∪ B2 ∪ B3) \ B). Then we can implement the construction of
Lemma 3.3 with the Edit operation in 2O(w)t time, where t is the number of editable bags.

Now what is left is to show that the depth-first search visiting all nodes can indeed be im-
plemented with 2O(w)n Move operations despite the edits to the tree decomposition during the
search. For simplicity we add an extra starting node h with empty bag and degree 1 to the tree
decomposition and set r = h initially. Note that an empty bag cannot be editable. Now, for all
nodes there are three states – unseen, open, and closed. At start the node h is open and other
nodes are unseen. Let W denote the bag of the node r. There are the following cases:

1. The node r is open and has an unseen neighbor s – Move(s) and set s open.

2. The node r is open and has no unseen neighbors:

(a) It holds that r = h – We are done, set r as closed and return T .

(b) It holds that |W | ≤ w – Set r as closed and Move(s) to an open neighbor s of r.

(c) It holds that |W | = w + 1 and W is not splittable – Return tw(G) > k.

(d) It holds that |W | = w + 1 and W is splittable – Split W , set the new bags as unseen,
and move r to a node that is adjacent to the new bags and is open.

Now, every time we use the Move operation in cases 1 and 2a-c we advance a state of a node
and in case 2d we create new nodes. Therefore, the number of moves is bounded by some constant
times the number of nodes that appear in the tree decomposition over the course of the algorithm,
which is 2O(w)n by the potential function. To finish the argument it suffices to prove the correctness
of the just described depth-first search implementation.

Lemma 4.1. The above described procedure maintains the invariant that the open nodes form a
path from the starting node h to r. Also, at the end of the procedure all nodes are closed.

Proof. Cases 1 and 2a-c clearly maintain the invariant. For 2d, the removed subtree contained r
but not h because the bag of h is empty, so the first node on the path from r to h that was not
editable is the only node adjacent to the new nodes that is open. To see that at the end all nodes
are closed note that we also maintain an invariant that if a node i is closed and is in the path from
a node j to h then j is also closed.

4.3 The Data Structure

We explain how to implement the data structure. The data structure is essentially a dynamic
programming table on the underlying tree decomposition T , directed towards the root node r. The
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main ideas are that moving r to an adjacent node s changes the dynamic programming tables of r
and s only, and that we do not need to store any extra information on how the solution intersects
with the query set because the query set is equal to the root bag. We note that all of the 2O(w)

factors in the running times of the data structure operations are 4wwO(1).

4.3.1 Stored Information

Let i be a node of T with a bag Bi, and G[Ti] be the subgraph of G induced by vertices in the
bags of the rooted subtree of T rooted at i. For each partition (C1 ∩Bi, C2 ∩Bi, C3 ∩Bi, X ∩Bi)
of Bi and integer 0 ≤ h ≤ w we have a table entry U [i][(C1 ∩Bi, C2 ∩Bi, C3 ∩Bi, X ∩Bi)][h]. This
table entry stores ⊥ if there is no partition (C1, C2, C3, X) of V (G[Ti]) such that |X| = h and there
are no edges between C1, C2, C3. If there is such a partition, then we store the minimum possible
integer d(X) over all such partitions, defined as d(X) =

∑
x∈X d(x), where d(x) = 0 if x ∈ Bi and

otherwise d(x) is the distance in T between Bi and the closest descendant bag of Bi that contains
x. In particular if Bi is the root bag then d(X) is the function that is minimized on a minimum
split.

4.3.2 Transitions

Let Bi be a bag with at most 3 child bags Ba, Bb, Bc. We now describe how to compute in 2O(w)

time the table entries U [i][. . .][. . .] given the table entries of U [{a, b, c}][. . .][. . .].
First, we edit the stored distances in the entries U [{a, b, c}][. . .][. . .] to correspond to distances

from Bi. In particular, for an entry U [j][(C1 ∩Bj , C2 ∩Bj , C3 ∩Bj , X ∩Bj)][h] 6= ⊥ we increment
the stored distance d(X) by h − |X ∩ Bj ∩ Bi|. Then we do the transition by first decomposing
it into O(w) “nice” transitions of types introduce, forget, and join. In an introduce transition we
have a bag Bi with a single child bag Bj with Bj ⊆ Bi and |Bi \Bj | = 1, in a forget transition we
have a bag Bi with a single child bag Bj with Bi ⊆ Bj and |Bj \ Bi| = 1, and in a join transition
we have a bag Bi with two child bags Bj ,Bk with Bj = Bk = Bi. The decomposition is done by
first forgetting every vertex not in Bi, then introducing every vertex in Bi, and then joining.

The transitions that we have are standard and can be done as follows in time 2O(k). We define
U [. . .][. . .][h] = ⊥ for all h < 0 and for all h > w.

• Introduce: Let {v} = Bi \ Bj . We set U [i][(C1 ∩ Bi, C2 ∩ Bi, C3 ∩ Bi, X ∩ Bi)][h] =
U [j][(C1 ∩Bj , C2 ∩Bj , C3 ∩Bj , X ∩Bj)][h− |{v} ∩X|] if there are no edges between C1∩Bi,
C2 ∩Bi, C3 ∩Bi and otherwise to ⊥.

• Forget: Let {v} = Bj \ Bi. We set U [i][(C1 ∩ Bi, C2 ∩ Bi, C3 ∩ Bi, X ∩ Bi)][h] to be the
minimum value over the values U [j][(C1 ∩Bi ∪ {v}, C2 ∩Bi, C3 ∩Bi, X ∩Bi)][h], U [j][(C1 ∩
Bi, C2 ∩Bi ∪ {v}, C3 ∩Bi, X ∩Bi)][h], U [j][(C1 ∩Bi, C2 ∩Bi, C3 ∩Bi ∪ {v}, X ∩Bi)][h], and
U [j][(C1 ∩ Bi, C2 ∩ Bi, C3 ∩ Bi, X ∩ Bi ∪ {v})][h], where ⊥ is treated as a larger value than
any integer.

• Join: Let Bj , Bk be the child bags of Bi. We set U [i][(C1∩Bi, C2∩Bi, C3∩Bi, X ∩Bi)][h] =
minh1+h2=h+|X∩Bi| U [j][(C1 ∩Bi, C2 ∩Bi, C3 ∩Bi, X ∩Bi)][h1] +U [k][(C1 ∩Bi, C2 ∩Bi, C3 ∩
Bi, X ∩Bi)][h2], where ⊥+ n = ⊥ for any integer n. Note that we do not double count d(x)
for any x ∈ X because if x is in both subtrees of j and k then it is also in Bi and therefore
has d(x) = 0.
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4.3.3 Split Query

Now the Split query on the node r with bag W amounts to iterating over all integers 0 ≤ h ≤ w and
partitions (C1∩W,C2∩W,C3∩W,X∩W ) such that |(W ∩Ci)|+h < |W | for all i, and returning ⊥
if the entries of all of them contain ⊥ and otherwise returning >. Also the internal state of r will be
set to a pair ((C1∩W,C2∩W,C3∩W,X∩W ), h) such that U [r][(C1∩W,C2∩W,C3∩W,X∩W )][h]
is not ⊥, primarily minimizes h, and secondarily minimizes the stored integer d(X). In particular,
a split minimizing primarily |X| and secondarily d(X) is a minimum split. We also invalidate the
internal states of other nodes by e.g. incrementing a global counter.

4.3.4 Move Query

Consider a move from a node r to an adjacent node s.
First, if r has an internal state and its children’s internal states have been invalided we use the

internal state ((C1 ∩W,C2 ∩W,C3 ∩W,X ∩W ), h) of W to compute the corresponding internal
states of its child nodes by implementing the dynamic programming transitions backwards. We
also do the same for s after r.

Then, when moving the root from a node r to an adjacent node s the only edge whose direction
towards the root changes is the edge between r and s. Therefore we first re-compute the table of
r and then the table of s.

4.3.5 Initialization

We initialize the tables with the already described transitions. For an empty subgraph V (G[Ti]) = ∅
we have U [i][(∅, ∅, ∅, ∅)][0] = 0 and U [i][(∅, ∅, ∅, ∅)][h] = ⊥ for h 6= 0.

4.3.6 State Query

With the move queries we have already pushed the internal state of the current node to be valid,
so we just return it.

4.3.7 Edit Query

Consider an edit query that replaces a subtree T1 with T2, where r ∈ T1. Because r ∈ T1, all
the dynamic programming tables are already oriented towards the subtree T1. Therefore we just
destroy the tables of T1. We construct the new tables by inserting the nodes of T2 one by one by
applying |T2| transitions.

5 Analysis of the 2O(k) Factor in the Time Complexity

In this section we briefly give an upper bound for the 2O(k) factor in the time complexity of our
algorithm, in order to support our claim that this factor in our algorithm is significantly smaller
than in the algorithms of [BDD+16].

First, we note that the potential function can be optimized. In particular, a potential function
of φ(T ) =

∑
i∈V (T )(2[|Bi| = w + 1] + 1)|Bi|3|Bi|, where [|Bi| = w + 1] denotes a value that is 1

if |Bi| = w + 1 and 0 otherwise, also works in Lemma 3.3 and has an upper bound of O(3wwn),
where w is the width of T .

Second, we note that if the width w of the given tree decomposition is at least 3k + 3, then we
can use 2-way splits instead of 3-way splits.
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Lemma 5.1. Let G be a graph of treewidth ≤ k. Any vertex set W ⊆ V (G) of size |W | ≥ 3k + 4
has a split of form (C1, C2, ∅, X).

Proof. Again, as in Lemma 3.1, let X be a balanced separator of W of size |X| ≤ k + 1, and let
us combine the two components Ci of G \ X with the smallest sizes of Ci ∩W until we obtain a
partition (C1, C2, X) of V (G). By considering the cases of whether there is a component Ci with
|W ∩Ci| ≥ |W |/3 or not, we notice that we will end up with |W ∩Ci| ≤ 2|W |/3 for both i ∈ {1, 2}.
Therefore (C1, C2, ∅, X) is a split of W because |(W ∩ Ci) ∪X| ≤ 2|W |/3 + k + 1 < |W |.

Now, if the width w of the input tree decomposition is w ≥ 3k + 3, we apply a version of the
algorithm that only considers 2-way splits, i.e., fixes C3 = ∅. This reduces the time complexity of
the data structure operations from 4wwO(1) to 3wwO(1). In this case also the factor 3|Bi| in the
potential function can be replaced by a factor 2|Bi|. Therefore, in the case that w ≥ 3k + 3, the
total time complexity is 2w3wwO(1)n, which by w ≤ 4k+ 3 is at most 1296kkO(1)n. In the case that
w ≤ 3k + 2, the total time complexity is 3w4wwO(1)n ≤ 1728kkO(1)n.

6 Conclusion

We gave a 2O(k)n time 2-approximation algorithm for treewidth. This is the first 2-approximation
algorithm for treewidth that is faster than the known exact algorithms, and improves the best
approximation ratio achieved in time 2O(k)n from 5 to 2 [BDD+16].

Our algorithm improves upon the algorithm of Bodlaender et al. [BDD+16] also in the running
time dependency on k hidden in the 2O(k) notation. Bodlaender et al. do not include an analysis
of this factor in their work, nor attempt to optimize this factor in any way, but we note that their
algorithm makes use of dynamic programming with time complexity Ω(9w) on a tree decomposition
of width w, where an upper bound for w is 30k, yielding a 29-digit number as the base of the
exponent. While our algorithm constitutes progress in improving the dependency on k, the problem
of finding a constant-factor treewidth approximation algorithm with running time ckn, where the
constant c is small, remains open. Nevertheless, we believe that despite somewhat impractical
worst-case bounds, our techniques are well applicable for practical implementations, and in fact,
the MSVS heuristic proposed in [KBvH01] already resembles our algorithm on some aspects.

An interesting feature of our algorithm is that the only place where the approximation ratio 2
appears is in Lemma 3.1. In particular, bags of size less than 2k + 3 can be splittable, and our
algorithm could continue to split bags even after reaching a tree decomposition of width 2k + 1.
An interesting direction for future work would be to further analyze the cases where our algorithm
actually gets stuck with a suboptimal tree decomposition, with the goal of either managing to avoid
these cases by using additional techniques or finding graph classes where they do not exist. For
this purpose, we note that the 3-way splits of our algorithm could well be generalized to r-way
splits for any r ≥ 2. Another natural direction for future work could be to extend our approach to
approximating also other graph parameters that can be defined via tree decompositions.
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