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Abstract

We present a new algorithm for approximating the number of triangles in a graph G whose edges
arrive as an arbitrary order stream. If m is the number of edges in G, T the number of triangles,
∆E the maximum number of triangles which share a single edge, and ∆V the maximum number
of triangles which share a single vertex, then our algorithm requires space:

Õ
(m
T
·
(
∆E +

√
∆V

))

Taken with the Ω
(
m∆E

T

)
lower bound of Braverman, Ostrovsky, and Vilenchik (ICALP 2013),

and the Ω
(

m
√

∆V

T

)
lower bound of Kallaugher and Price (SODA 2017), our algorithm is optimal

up to log factors, resolving the complexity of a classic problem in graph streaming.

1 Introduction

Triangle counting is a fundamental problem in the study of graph algorithms, and one of the
best studied in the field of graph streams. It arises in the analysis of social networks [BHLP11],
web graphs [EM02], and spam detection [BBCG08], among other applications. From a theoretical
perspective, it is of particular interest as the simplest subgraph counting problem that cannot be
solved by considering only local information about individual vertices. In other words, counting
triangles requires one to aggregate information between pairs of non-incident edges.

In this paper, we present an optimal algorithm for counting triangles in the graph streaming
setting, settling a long line of work on this problem.

Graph Streaming. In the (insertion-only) graph streaming setting, a graph G = (V,E) is re-
ceived as a stream of edges (σt)

m
t=1 from its edge set E in an arbitrary order, and an algorithm is

required to output the answer to some problem at the end of the stream, using as little space as
possible1. Variants on this model include turnstile streaming (in which edges may be deleted as
well as inserted), and models that restrict what kind of state the algorithm may maintain.

Triangle Counting in Graph Streams. The theoretical study of graph streaming was initiated
by [BKS02], who studied the problem of triangle counting—the problem of estimating the number
of three-cliques in a graph. They demonstrated that, in general, sublinear space algorithms cannot

1Other properties, such as update time, are also of interest, but space has been the primary object of study in the
theory of streaming.
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exist for this problem; namely, in the worst case any algorithm for triangle counting in a stream
must use Ω

(
n2
)

bits of space. On the other hand, they also showed that, if one parameterizes in
terms of the number of triangles T , one can often beat this pessimistic lower bound. In particular,
they gave an algorithm that uses Õ

(
(mn

T )3
)

space to count triangles in a graph with m edges, n
vertices, and T triangles, based on streaming algorithms for approximating frequency moments.2

Of course, it is unreasonable to assume that an algorithm knows the number of triangles T in
advance, as this would make counting superfluous. Instead, it will suffice to have constant factor
bounds on the parameters in question.3

Several years later, the upper bound for this problem was improved to Õ
(
mn
T

)
by [BFL+06],

while [JG05] gave a (non-comparable) algorithm that samples edges and stores neighborhoods of

their endpoints in order to find triangles, achieving Õ
(
md2

T

)
space in graphs with maximum degree

d. Both algorithms were later subsumed by the Õ
(
md
T

)
space algorithm of [PTTW13].

Additional Graph Parameters for Triangle Counting. Despite the large strides made by the
aforementioned algorithms, none of them can achieve sublinear space, even for graphs guaranteed
to have as many as Ω(m) triangles, without bounding parameters of the graph other than m and
T . This feature was shown to be necessary by [BOV13], who constructed a family of graphs with
either 0 or Ω(m) triangles such that distinguishing between the two requires Ω(m) space. However,
this “hard instance” is an unusual graph—every triangle in it shares a single edge. This motivated
the introduction of a new graph parameter ∆E , defined as the maximum number of triangles which
share a single edge in G. When one parameterizes in terms of ∆E, the lower bound of [BOV13]

becomes Ω
(
m∆E
T

)
. As it happens, the maximum degree of graphs in this family is also ∆E, so in

particular this proves [PTTW13] to be optimal among algorithms parametrized by only m,d, and
T .

The first algorithm to directly take advantage of the new parameter ∆E was given by [TKMF09].
Their algorithm is simple: keep each edge in the stream independently with probability p, count
the number of triangles T ′ in the resulting graph, and output T ′p−3. They show that setting

p = O
(

1
T 1/3 + ∆E

T

)
suffices for an accurate count, and thereby achieve Õ

(
m
(

1
T 1/3 + ∆E

T

))
space.

This algorithm has another important feature: it is a non-adaptive sampling algorithm—
whether it keeps an edge it sees does not depend on the contents of the stream before the edge
arrives. This means it can naturally handle turnstile streams, streams in which edges may be
deleted as well as inserted. In fact, through the use of sketches for ℓ0 sampling (see e.g. [CJ19])
such algorithms may be converted into linear sketches, which are algorithms that store only a linear

function of their input (when considered as a vector in {0, 1}(
|V |
2
)).

An improved non-adaptive sampling algorithm was given in [PT12], which used the technique
of coloring vertices with one of k colors, and keeping all monochromatic edges. This improved the

space usage of the algorithm to Õ
(
m
(

1√
T
+ ∆E

T

))
. In [KP17], it was shown (in combination with

the existing lower bound of [BOV13]) that this is optimal, even for insertion-only algorithms—for

2Here we assume the desired approximation is a multiplicative (1± ε) with success probability δ for some positive
constants ε, δ. For most algorithms mentioned here, including our own, the dependence on non-constant ε, δ will go
as ε−2 log δ−1. We use Õ(·) to suppress logarithmic or polylogarithmic factors in the argument.

3One might hope to use these parameters adaptively, giving an algorithm that uses more space the smaller T

is without needing a lower bound at the start. However, this is in general impossible, as a graph stream with few
triangles and a graph stream with many triangles may be indistinguishable until the last few updates.
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Paper Space Model

[PTTW13] Õ
(
md
T

)
Insertion-only

[BOV13] Ω
(
m∆E
T

)
Insertion-only

[KP17] Ω
(
m
√
∆V
T

)
Insertion-only

[PT12] Õ
(
m
(

1√
T
+ ∆E

T

))
Linear Sketching

[KP17] Õ
(
m
(

1
T 2/3 +

√
∆V
T + ∆E

T

))
Linear Sketching

[KKP18] Ω
(

m
T 2/3

)
Linear Sketching

This work Õ
(
m
T (
√
∆V +∆E)

)
Insertion-only

Figure 1: Best known upper and lower bounds for triangle counting for insertion-only and linear
sketching algorithms. m is the number of edges, T the number of triangles, d the maximum degree,
and ∆E, ∆V are the maximum number of triangles sharing an edge or a vertex respectively. Note
that linear sketching upper bounds imply insertion-only upper bounds, while lower bounds are the
opposite.

every T up to Ω(m), a family of graphs exist with ∆E ≤ 1 and either 0 or T triangles, such that

Ω
(

m√
T

)
space is required to distinguish the two.

However, as with the lower bound of [BOV13], the hard instance from [KP17] is a rather
strange graph: this time every triangle shares a single vertex. Also similarly to the lower bound
of [BOV13], the bound from [KP17] weakens as the maximum number of triangles sharing a single
vertex, a parameter denoted by ∆V , is restricted. In this case, when parameterized by ∆V , the

lower bound becomes Ω
(
m
√
∆V
T

)
. This was accompanied in [KP17] by an algorithm that achieves

Õ
(
m
(

1
T 2/3 +

√
∆V
T + ∆E

T

))
space, improving on [PT12] for graphs with ∆V = o(T ).

Subsequently, it was shown in [KKP18] that any linear sketching algorithm for counting triangles

requires Ω
(

m
T 2/3

)
space, even if every triangle is disjoint from every other and therefore ∆E =

∆V ≤ 1, and so the [KP17] algorithm is optimal among linear sketches. By the turnstile streaming-
linear sketching equivalence of [LNW14], this suggests that [KP17] is also optimal among turnstile
streaming algorithms.4

However, this leaves open the question of how hard triangle counting is for algorithms that
are not required to handle deletions (i.e., the standard “insertion-only” model). We resolve this
question (up to a log factor, as with previous optimality results), by giving an optimal algorithm
for triangle counting in insertion-only streams.

Our Algorithm. We give a new algorithm for counting triangles in insertion-only graph streams.

Theorem 1.1. For every ε, δ ∈ (0, 1), there is an algorithm for insertion-only graph streams that

4However, the [LNW14] equivalence depends on rather stringent conditions that a turnstile algorithm must satisfy.
In [KP20], it was shown that relaxing these conditions allows turnstile streaming algorithms for triangle counting
that are closer to the result of [JG05].
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approximates the number of triangles in a graph G to εT accuracy with probability 1− δ, using

O

(
m

T

(
∆E +

√
∆V

)
log n

log 1
δ

ε2

)

bits of space, where m is the number of edges in G, T the number of triangles, ∆E the maximum
number of triangles which share a single edge, and ∆V the maximum number of triangles which
share a single vertex.

This matches, up to a log factor (and for constant ε, δ), the lower bounds of [BOV13] and [KP17].
It subsumes both the algorithm of [KP17] and the Õ

(
md
T

)
algorithm of [PTTW13], as in any graph

with max degree d, we have ∆E ≤ d and ∆V ≤
(d
2

)
. This closes the line of work discussed above

on the complexity of triangle counting in insertion-only streams.

Other Related Work In the multi-pass streaming setting, an algorithm is allowed to pass over

the input stream more than once. [CJ14] shows multipass algorithms take Θ̃
(
m/
√
T
)

space for

arbitrary graphs, giving an algorithm for two passes and a lower bound for a constant number of
passes. [KMPT12] shows a three pass streaming algorithm using O(

√
m+m3/2/T ) space. [BC17]

gave a O
(
m3/2/T

)
four pass algorithm.

In the adjacency-list model, in which each vertex’s list of neighbors is received as a block (and

so in particular every edge is seen twice), [MVV16] gave a O
(
m/
√
T
)

space one-pass algorithm,

while [KMPV19] gave O
(
m/T 2/3

)
space 2-pass algorithm, as well as tight (but conditional on open

communication complexity conjectures) lower bounds for both.

The problem has also been studied in the query model, in which case rather than space the
concern is minimizing time or query count. While this is a very different setting, similar concerns
around mitigating the impact of “heavy” vertices or edges arise. [ELRS15] considered triangle
counting in this setting, which was extended by [ERS18] to general cliques and [AKK19] to arbitrary
constant-size subgraphs.

2 Overview of the Algorithm

At a high-level, many triangle counting algorithms in the literature adhere to the following template:
(1) design a sampling scheme to sample triangles, (2) count the number of triangles which survive
after this sampling process, (3) rescale the number of empirically sampled triangles by the expected
fraction of surviving triangles to obtain an unbiased estimator for T .

As an example, one could sample each edge uniformly with probability q (this is the approach
taken in [TKMF09]). Since for a triangle to survive all three of its edges must be sampled, the
expected number of triangles that survive is Tq3. Thus, rescaling the number of empirically sampled
triangles by 1/q3 yields an unbiased estimator. How large must q be to make this estimator
accurate? In order to sample even a single triangle we need Tq3 ≥ 1, so clearly q must be at least
1/T 1/3. Moreover, if ∆E is the largest number of triangles that share an edge, there might be as
few as T/∆E “heavy” edges such that sampling a triangle requires sampling at least one of them,
and so q must be at least ∆E/T . It turns out that, up to constant factors, this is also sufficient,

and so the space needed by this algorithm is Õ
(
m
(

1
T 1/3 + ∆E

T

))
bits.
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The starting point for our algorithm is the following simple observation, which can be seen
as an optimization to the sampling algorithm above. Given three edges uv, vw,wu ∈ E arriving
in a stream in that order, once the first two edges uv, vw have been sampled and stored, upon
seeing the “completing” edge wu, we will know that the triangle uvw exists in G, and may count
it immediately—we get the closing edge of each triangle “for free”. Now for a single triangle to
be sampled, we only need to sample the first two edges, and so the probability of finding any

given triangle improves to q2, allowing a space complexity of Õ
(
m
(

1√
T
+ m∆E

T

))
. However, when

∆V = o(T ), this is still weaker than allowed by the Ω
(
m
T (
√
∆V +∆E)

)
lower bound that results

from combining the results of [BOV13, KP17].

While the aforementioned algorithm is sub-optimal in general, notice that it does match the
lower bounds in the extreme case when ∆V = T , and all triangles share a single vertex. On the other
hand, when ∆V is smaller, there are more ‘fully disjoint” triangles in the graph. Consequentially, we
can afford to subsample by vertices, as now dropping a single vertex cannot lose too large a fraction
of our triangles. We may sample vertices uniformly with some probability p, and deterministically
store all edges adjacent to at least one sampled vertex, again counting a triangle whenever we
observe an edge wu closing a sampled pair uv, vw. Each such triangle will be counted iff the “first”
vertex v of the triangle is sampled, and these may be divided among as few as T/∆V “heavy”
vertices, so p must be at least ∆V /T . This again turns out to be sufficient, for a space usage of

Õ
(
m∆V
T

)
(note that any pair of edges sharing an edge also share a vertex, so ∆E ≤ ∆V , and thus

this does not violate the known lower bounds). While this is an improvement on the aforementioned
adaptive edge-sampling scheme for small ∆V , it becomes worse once ∆V >

√
T .

The crucial insight behind our algorithm is to merge the two aforementioned algorithms with a
careful choice of parameterization. Specifically, we sample both edges and vertices, before counting
triangles that we see closing our sampled wedges. Specifically, we sample vertices v ∈ V in the
graph with probability p ∈ (0, 1], and then “activate” each edge e ∈ E with probability q ∈ (0, 1].
When an edge uv ∈ E arrives in the stream, we store it iff uv is active and at least one of the
vertices u or v was sampled. We denote by S the set of all edges stored by the algorithm. Finally,
when a closing edge wu arrives that completes a triangle with edges uv, vw that were previously
added to S, we check if the vertex v at the center of the wedge uv, vw was sampled, and if so we
deterministically increment a counter C.

Now observe that, for any given triangle uvw, the probability that uvw causes C to be incre-
mented is exactly pq2. Thus, if we output the quantity C/(pq2) at the end of the stream, we obtain
an unbiased estimator for the number of triangles in G.

Notice that when p = 1 our algorithm reduces to the simpler edge-sampling algorithm stated
above. At the other extreme, when q = 1 our algorithm reduces to the vertex sampling algorithm.
Intuitively, our choice of the parameters p and q are subject to the same constraints faced by the
aforementioned edge- and vertex-sampling algorithms. Firstly, p must be at least ∆V /T , otherwise
the algorithm could miss a “heavy” vertex. Furthermore, the product pq must be at least ∆E/T ,
to avoid missing “heavy” edges, and pq2 must be at least 1/T to find any triangles at all. Putting

these bounds together, it follows that q must be at least max
{

∆E
∆V

, 1√
∆V

}
.

As with all the algorithms discussed so far, this turns out to also be sufficient—we demonstrate

5



that by fixing the sampling parameters5

p =
∆V

T
, q ≥ max

{
∆E

∆V
,

1√
∆V

}

we obtain an algorithm using space O
(
m
T

(
∆E +

√
∆V

)
log n

)
which yields an O

(
T 2
)

variance esti-
mator. We may therefore obtain a (1 ± ε) multiplicative estimate with probability 1 − δ by using
O
(

1
ε2 log

1
δ

)
copies of this algorithm.

Consequentially one obtains an algorithm matching, up to a log factor, the lower bounds of
[BOV13, KP17], with optimal space usage in terms of m,T,∆E ,∆V .

3 The Triangle Counting Algorithm

Let G = (V,E) be a graph on n vertices, received as a stream of undirected edges, adversarially
ordered. Let m be the number of edges in the stream. We write the stream as σ = (σi)

m
i=1, with

each σi ∈ E. We use T to refer to the number of triangles in G, ∆E to refer to the maximum
number of them sharing a single edge, and ∆V the maximum number sharing a single vertex.

Remark 1. As with all streaming triangle counting algorithms, our algorithm will need to be
parametrized by statistics of the graph that cannot be known exactly without trivializing the problem—
in our case T , ∆E, and ∆V . However, it will not be necessary to know these exactly—an upper
bound on ∆E, ∆V and a lower bound on T will be sufficient. If these bounds are tight up to a
constant, the complexity of our algorithm will be unchanged, otherwise replace the parameters T ,
∆E, ∆V with the respective upper and lower bounds.

3.1 Description of the Algorithm

We begin by choosing two hash functions f : V → {0, 1} and g : E → {0, 1}, which will serve
as our “vertex sampling” and “edge sampling” functions, respectively. We choose f to be pair-wise
independent. g will only be evaluated at most once for each edge, and so we may choose it to be
fully independent. We pick the two functions f ,g such that

E[f(v)] = p

for each v ∈ V and
E[g(e)] = q

for each e ∈ E, where p, q are parameters to be set later. Such a hash function f can be generated
by taking a two-wise independent function h : V → [M ], where M = poly(n) is a sufficiently large
multiple of 1/p, and setting f(v) = 1 whenever h(v) ≤ pM (one can construct g similarly using
a four-wise independent hash function). Such functions can be generated and stored in at most
O(log n) bits of space [CW79].

The algorithm will be simple: sample vertices with probability p, sample incident edges with
probability q. The formal description is given below in Algorithm 1.

5As mentioned earlier, ∆E ≤ ∆V , while ∆V ≤ T holds trivially. Thus p, q are valid probabilities.
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Algorithm 1 Triangle Counting Algorithm

1: procedure TriangleCounting(p, q)
2: S ← ∅
3: T← 0
4: for each update wv do
5: for u ∈ V do
6: if f(u) > 0 ∧ uv, uw ∈ S then
7: T += 1/pq2

8: end if
9: end for

10: if g(wv)(f(w) + f(v)) > 0 then
11: S ← S ∪ {wv}
12: end if
13: end for
14: return T.
15: end procedure

3.2 Analysis of the Algorithm

Lemma 2. This algorithm uses O(mpq log n) bits of space.

Proof. Besides an O(log n) sized counter and the hash function f (g is never evaluated more than
once for an edge and thus does not need to be stored), the algorithm maintains a set of edges.
Each edge will be kept with probability at most 2pq and takes O(log n) space to store, so the result
follows.

We will write Tuvw for the variable that is 1 if uvw is a triangle in G with its edges arriving in
the order (uv, uw, vw), and 0 otherwise, and so

T =
∑

(u,v,w)∈V 3

Tuvw.

We will write Tuvw for the random variable that is 1/pq2 if Tuvw = 1 and f(u)g(uv)g(uw) = 1, and
0 otherwise. We will therefore have

T =
∑

(u,v,w)∈V 3

Tuvw.

Lemma 3.
E
[
T
]
= T .

Proof. For any (u, v, w), f(u)g(uv)g(uw) = 1 with probability pq2, so E
[
Tuvw

]
= Tuvw. Therefore,

E
[
T
]
=

∑

(u,v,w)∈V 3

E
[
Tuvw

]

=
∑

(u,v,w)∈V 3

Tuvw

= T

7



Lemma 4.
Var
(
T
)
≤ T/pq2 + T∆E/pq + T∆V /p.

Proof. Consider any (ordered) pair of triples (u, v, w), (x, y, z) ∈ V 3 such that TuvwTxyz = 1.

If (u, v, w) = (x, y, z), TuvwTxyz = 1/p2q4 with probability pq2 and 0 otherwise, so

E
[
TuvwTxyz

]
= E

[
T

2
uvw

]
= 1/pq2.

At most T such pairs of triples can exist.

Now, if |{uv, uw} ∩ {xy, xz}| = 1, then u = x and so TuvwTxyz = 1/p2q4 iff f(u) = 1 and
g(e) = 1 for all e in the size-3 set {uv, uw, xy, xz}, which happens with probability pq3, and so

E
[
TuvwTxyz

]
= 1/pq.

Each triangle has at most ∆E other triangles it shares an edge with, so there are at most T∆E

such pairs.

If {uv, uw} ∩ {xy, xz} = ∅ but u = x, then TuvwTxyz = 1/p2q4 iff f(u) = 1 and g(e) = 1 for all
e in the size-4 set {uv, uw, xy, xz}, which happens with probability pq4, and so

E
[
TuvwTxyz

]
= 1/p.

Each triangle has at most ∆V other triangles it shares a vertex with, so there are at most T∆V

such pairs.

Finally, if {u, v, w}∩{x, y, z} = ∅, then TuvwTxyz = 1/p2q4 iff f(u) = 1, f(x) = 1, and g(e) = 1
for all e in the size-4 set {uv, uw, xy, xz}, which happens with probability p2q4, and so

E
[
TuvwTxyz

]
= 1.

At most T 2 such pairs can exist. Therefore,

E

[
T

2
]
=

∑

(u,v,w)∈V 3

∑

(x,y,z)∈V 3

E
[
TuvwTxyz

]

=
∑

(u,v,w)∈V 3

E

[
T

2
uvw

]
+

∑

(u,v,w)∈V 3




∑

(x,y,z)∈V 3

|{uv,uw}∩{xy,xz}|=1

E
[
TuvwTxyz

]
+

∑

(x,y,z)∈V 3

{uv,uw}∩{xy,xz}=∅
u=x

E
[
TuvwTxyz

]
+

∑

(x,y,z)∈V 3

{u,v,w}∩{x,y,z}=∅

E
[
TuvwTxyz

]




≤ T/pq2 + T∆E/pq + T∆V /p + T 2

by adding the previously established bounds for all four kinds of pair. The lemma then follows

from the fact that Var
(
T
)
= E

[
T

2
]
− E

[
T
]2

= E

[
T

2
]
− T 2.
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We may now prove Theorem 1.1.

Theorem 1.1. For every ε, δ ∈ (0, 1), there is an algorithm for insertion-only graph streams that
approximates the number of triangles in a graph G to εT accuracy with probability 1− δ, using

O

(
m

T

(
∆E +

√
∆V

)
log n

log 1
δ

ε2

)

bits of space, where m is the number of edges in G, T the number of triangles, ∆E the maximum
number of triangles which share a single edge, and ∆V the maximum number of triangles which
share a single vertex.

Proof. We may assume ∆V (more specifically, the upper bound we have on it) is at least 1, as
otherwise we already know G to be triangle-free. By Lemmas 3 and 4, we can set p = ∆V /T ,
q = max

{
∆E/∆V , 1/

√
∆V

}
and run Algorithm 1 to obtain an estimator with expectation T and

variance at most 3T 2. (These will give valid probabilities, as ∆V ≤ T by definition, and ∆E is at
least ∆V , as any pair of triangles sharing an edge also share a vertex.) By Lemma 2, this will take
O
(
m
T

(
∆E +

√
∆V

)
log n

)
space.

Repeating this 36/ε2 times and taking the mean will give an estimator with expectation T and
variance at most εT 2/2. We can then repeat this O

(
log 1

δ

)
times and take the median to get an

estimator that will be within εT of T with probability 1− δ.

4 Conclusion

We resolve the complexity of triangle counting in the insertion-only streaming model, in terms of the
well-studied natural graph parameters m,T,∆E ,∆V . The results of [KKP18] resolved this problem
for the linear sketching model, and a result of [LNW14] states that, under certain conditions,
turnstile streaming algorithms are equivalent to linear sketches, suggesting that the algorithm
of [KP17] is optimal for turnstile streams as well. However, [KP20] showed that an insertion-
only algorithm of [JG05] can be converted into a turnstile streaming algorithm provided that,
for instance, the length of the stream is reasonably constrained (with the number of insertions
and deletions no more than O(1) times the final size of the graph). It remains open whether
this algorithm can be converted into a turnstile algorithm under such constraints, or whether the
bounded-stream turnstile complexity of triangle counting is somewhere between insertion-only and
linear sketching.

Another natural question is about the choice of parameters—the algorithm of [PT12] is optimal
in terms of m,T , and ∆E , but not when the parameter ∆V is considered. Are there natural
extensions of the parametrization that allow for better results? The results of [KP17] include a
proof of instance-optimality for a restricted subclass of non-adaptive sampling algorithms, but for
more general algorithms it is clear that there are at least unnatural extensions of the parametrization
that help. For instance, if all the edges of a graph are guaranteed to belong to high-degree vertices,
but all the triangles belong to low-degree vertices, a simple filtering strategy allows an improvement.

In particular, the lower bound instances of [BOV13, KP17] are both sparse graphs, and so
cannot be constructed if n is constrained to be small relative to m or T . For the most dense graphs
(with Θ

(
n2
)

edges and Θ
(
n3
)

triangles) our algorithm and the algorithm of [KP17] are already
trivially optimal up to log factors, since they use only polylog(n) bits. However, the complexity
landscape for more general dense graphs remains open.
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