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Rigidity is the property of a structure that does not flex. It is well studied in discrete 
geometry and mechanics, and has applications in material science, engineering and 
biological sciences. A bar-and-joint framework is a pair (G, p) of graph G together with 
a map p of the vertices of G into a Euclidean space. We view the edges of (G, p) as 
bars and the vertices as universal joints. The vertices can move continuously as long as 
the distances between pairs of adjacent vertices are preserved. The framework is rigid if 
any such motion preserves the distances between all pairs of vertices. In 1970, Laman 
obtained a combinatorial characterization of rigid graphs in the Euclidean plane. In 1982, 
Lovász and Yemini discovered a new characterization and proved that every 6-connected 
graph is rigid. Combined with a combinatorial characterization of global rigidity given by 
Jackson and Jordán in 2009, it is actually proved that every 6-connected graph is globally 
rigid. Consequently, if the algebraic connectivity of a graph is greater than 5, then it is 
globally rigid. In this paper, we improve this bound and show that for a graph G with 
minimum degree δ ≥ 6, if its algebraic connectivity is greater than 2 + 1

δ−1 , then G is 
rigid and if its algebraic connectivity is greater than 2 + 2

δ−1 , then G is globally rigid. 
Our results imply that every connected regular Ramanujan graph with degree at least 8
is globally rigid. We also prove a more general result giving a sufficient spectral condition 
for the existence of k edge-disjoint spanning rigid subgraphs. The same condition implies 
that a graph contains k edge-disjoint spanning 2-connected subgraphs. This result extends 
previous spectral conditions for packing edge-disjoint spanning trees.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider finite undirected simple graphs. Throughout the paper, k denotes a positive integer and G
denotes a simple graph with vertex set V (G) and edge set E(G).

Rigidity is the property of a structure that does not flex. Arising from mechanics, rigidity has been studied in discrete 
geometry and combinatorics (see, among others, [15,26]) and has applications in material science, engineering and biological 
sciences (see [10,12,35] for example). A d-dimensional framework is a pair (G, p), where G is a graph and p is a map from 
V (G) to Rd . Roughly speaking, it is a straight line realization of G in Rd . Two frameworks (G, p) and (G, q) are equivalent
if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for every edge uv ∈ E(G), where ‖ · ‖ denotes the Euclidean norm in Rd . Two 
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S.M. Cioabă, S. Dewar and X. Gu Discrete Mathematics 344 (2021) 112527
frameworks (G, p) and (G, q) are congruent if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for every u, v ∈ V (G). A framework 
(G, p) is generic if the coordinates of its points are algebraically independent over the rationals. The framework (G, p) is
rigid if there exists an ε > 0 such that if (G, p) is equivalent to (G, q) and ‖p(u) −q(u)‖ < ε for every u ∈ V (G), then (G, p)

is congruent to (G, q). As observed in [1], a generic realization of G is rigid in Rd if and only if every generic realization of 
G is rigid in Rd . Hence the generic rigidity can be considered as a property of the underlying graph. A graph is called rigid
in Rd if every/some generic realization of G is rigid in Rd .

A d-dimensional framework (G, p) is globally rigid if every framework that is equivalent to (G, p) is congruent to (G, p). 
In [14] it was proven that if there exists a generic framework (G, p) in Rd that is globally rigid, then any other generic 
framework (G, q) in Rd will also be globally rigid. Following from this, we define a graph G to be globally rigid in Rd if 
there exists a globally rigid generic framework (G, p) in Rd . A closely related concept to global rigidity is redundant rigidity. 
A graph G is redundantly rigid in Rd if G −e is rigid in Rd for every edge e ∈ E(G). It was proven by Hendrickson [21] that 
any globally rigid graph in Rd with at least d + 2 vertices is (d + 1)-connected and redundantly rigid in Rd . Hendrickson 
[21] also conjectured the converse. It can be shown easily that it is true for d = 1, however the conjecture is not true for 
d ≥ 3 [8]. The final case d = 2 of the conjecture was confirmed to be true by [9] and [23].

In the following, we will focus on rigidity and global rigidity only in R2, unless otherwise stated. For a subset X ⊆ V (G), 
let G[X] be the subgraph of G induced by X and E(X) denote the edge set of G[X]. A graph G is sparse if |E(X)| ≤ 2|X | − 3
for every X ⊆ V (G) with |X | ≥ 2. By definition, any sparse graph is simple. If in addition |E(G)| = 2|V (G)| − 3, then G is 
called (2, 3)-tight. Laman [28] proved that a graph G is rigid in R2 if G contains a spanning (2, 3)-tight subgraph. Thus a 
(2, 3)-tight graph is also called a minimally rigid graph. In history, it was first discovered by Pollaczek-Geiringer [32] who 
made notable progress on the properties of minimally rigid graphs, but her work was forgotten. Laman [28] rediscovered 
the characterization of minimally rigid graphs in R2. Since then, a minimally rigid graph is known as a Laman graph.

Lovász and Yemini [30] gave a new characterization of rigid graphs using matroid theory and showed that 6-connected 
graphs are rigid. They also constructed infinitely many 5-connected graphs that are not rigid, showing that their sufficient 
condition was indeed tight. In fact they proved a stronger result; that every 6-connected graph is rigid even with the 
removal of any three edges. This result, together with the combinatorial characterization of global rigidity given by Jackson 
and Jordán [23], implies that 6-connected graphs are also globally rigid (Theorem 7.2 of [23]).

We will study rigidity and global rigidity from spectral graph theory viewpoint. We describe the matrices and the 
eigenvalues of our interest below. If G is an undirected simple graph with V (G) = {v1, v2, · · · , vn}, its adjacency matrix
is the n by n matrix A(G) with entries aij = 1 if there is an edge between vi and v j and aij = 0 otherwise, for 1 ≤ i, j ≤ n. 
Let D(G) = (dij)1≤i, j≤n be the degree matrix of G , that is, the n by n diagonal matrix with dii being the degree of vertex 
vi in G for 1 ≤ i ≤ n. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G . For 1 ≤ i ≤ n, we use μi(G) to 
denote the i-th smallest eigenvalue of L(G). It is not difficult to see that μ1(G) = 0. The second smallest eigenvalue of L(G), 
μ2(G), is known as the algebraic connectivity of G .

Fiedler [11] proved that the vertex-connectivity of G is at least μ2(G). Thus, the theorem of Lovász and Yemini [30] that 
every 6-connected graph is rigid (and also globally rigid by Jackson and Jordán [23]) implies that if μ2(G) > 5, then G is 
(globally) rigid. In this paper, we will improve this sufficient condition to “μ2(G) > 2 + 1

δ−1 ” for rigidity (Corollary 1.4) and 
to “μ2(G) > 2 + 2

δ−1 ” for global rigidity (Corollary 1.6). Actually we obtain more general sufficient spectral conditions for 
the existence of k edge-disjoint spanning rigid subgraphs in Theorem 1.1 and Corollary 1.2.

Theorem 1.1. Let G be a graph with minimum degree δ(G) ≥ 6k. If

(1) μ2(G) >
6k − 1

δ(G) + 1
,

(2) μ2(G − u) >
4k − 1

δ(G − u) + 1
for every u ∈ V (G), and

(3) μ2(G − v − w) >
2k − 1

δ(G − v − w) + 1
for every v, w ∈ V (G),

then G contains at least k edge-disjoint spanning rigid subgraphs.

Theorem 1.1 has the following weaker, but neater, corollary.

Corollary 1.2. Let G be a graph with minimum degree δ ≥ 6k. If

μ2(G) > 2 + 2k − 1

δ − 1
,

then G contains at least k edge-disjoint spanning rigid subgraphs.

When k = 1, we obtain the following spectral condition for rigid graphs.

Corollary 1.3. Let G be a graph with minimum degree δ(G) ≥ 6. If

(1) μ2(G) >
5

,

δ(G) + 1

2
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(2) μ2(G − u) >
3

δ(G − u) + 1
for every u ∈ V (G), and

(3) μ2(G − v − w) >
1

δ(G − v − w) + 1
for every v, w ∈ V (G),

then G is rigid.

This result is similar in spirit and motivated by the work of Jackson and Jordán [24], in which they proved that a simple 
graph G is (globally) rigid if G is 6-edge-connected, G − u is 4-edge-connected for every vertex u and G − {v, w} is 2-
edge-connected for any vertices v, w ∈ V (G). Corollary 1.3 involves several conditions and we can show that the condition 
“μ2(G) > 5

δ(G)+1 ” is essentially best possible. A family of examples will be constructed in a later section.
As before, we can also obtain the following weaker, but easier to state and verify, condition for a graph to be rigid.

Corollary 1.4. Let G be a graph with minimum degree δ ≥ 6. If

μ2(G) > 2 + 1

δ − 1
,

then G is rigid.

Using the same method as used in Theorem 1.1 when k = 1, we can prove the following similar results for redundant 
rigidity and global rigidity.

Theorem 1.5. Let G be a graph with minimum degree δ(G) ≥ 6. If

(1) μ2(G) >
6

δ(G) + 1
,

(2) μ2(G − u) >
4

δ(G − u) + 1
for every u ∈ V (G), and

(3) μ2(G − v − w) >
2

δ(G − v − w) + 1
for every v, w ∈ V (G),

then G is redundantly rigid.

Corollary 1.6. Let G be a graph with minimum degree δ ≥ 6. If

μ2(G) > 2 + 2

δ − 1
,

then G is globally rigid.

In the next section, we will present some preliminaries that will be used in our proofs. The proofs of the main results 
will be presented in Section 3. A family of examples will be constructed in Section 4 to show the best possible bound of 
μ2(G) in Corollary 1.3. In the last section, we will make some concluding remarks and give some applications of our results 
on rigidity and global rigidity of pseudo-random graphs and Ramanujan graphs, as well as a spectral sufficient condition for 
the existence of edge-disjoint spanning 2-connected graphs. Some questions are posted.

2. Preliminaries

The following theorem obtained by Lovász and Yemini [30] plays a very important role in graph rigidity in R2.

Theorem 2.1 (Lovász and Yemini [30]). A graph G is rigid if and only if 
∑

X∈G(2|V (X)| − 3) ≥ 2|V (G)| − 3 for every collection G of 
induced subgraphs of G whose edges partition E(G).

A characterization of global rigidity in R2 came from the combination of a result of Connelly [9] and a result of Jackson 
and Jordán [23].

Theorem 2.2 (Connelly [9], Jackson and Jordán [23]). A graph G is globally rigid if and only if G is 3-connected and redundantly rigid, 
or G is a complete graph on at most three vertices.

Sufficient conditions for the existence of edge-disjoint spanning rigid subgraphs have also been well studied. Jordán [25]
showed that every 6k-connected graph contains k edge-disjoint spanning rigid subgraphs. Cheriyan, Durand de Gevigney 
and Szigeti [3] proved that a simple graph G contains k edge-disjoint spanning rigid subgraphs if G − Z is (6k − 2k|Z |)-
edge-connected for every Z ⊂ V (G). In fact, they proved a stronger result of packing spanning rigid subgraphs and spanning 
3
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trees in [3]. The results were extended to a more general case in [17]. Motivated by the spanning tree packing theorem of 
Nash-Williams [31] and Tutte [34], the third author [18] obtained a partition condition for packing spanning rigid subgraphs, 
described below.

For any partition π of V (G), eG(π) denotes the number of edges of G whose ends lie in two different parts of π . A 
part of π is trivial if it consists of a single vertex. Let Z ⊂ V (G) and π be a partition of V (G − Z) with n0 trivial parts 
u1, u2, · · · , un0 . We define nZ (π) to be 

∑
1≤i≤n0

|Zi | where Zi is the set of vertices in Z that are adjacent to ui for 1 ≤ i ≤ n0. 
If Z = ∅, then nZ (π) = 0.

Theorem 2.3 (Gu [18]). A graph G contains k edge-disjoint spanning rigid subgraphs if for every Z ⊂ V (G) and every partition π of 
V (G − Z) with n0 trivial parts and n′

0 nontrivial parts,

eG−Z (π) ≥ k(3 − |Z |)n′
0 + 2kn0 − 3k − nZ (π).

Now we introduce some useful tools for Laplacian eigenvalues. Fiedler [11] applied Cauchy interlacing to the Laplacian 
matrix and obtained the following result (see also [2, Section 1.7] and [13, Thm. 13.5.1]).

Theorem 2.4 (Fiedler [11]). If S is a subset of vertices of the graph G, then

μ2(G) ≤ μ2(G − S) + |S|.

For any subset U ⊂ V (G), ∂G(U ) or simply ∂(U ) denotes the set of edges in G , each of which has one end in U and the 
other end in V (G)\U . We will also need the following result.

Lemma 2.5 (Liu et al. [29]). Suppose that X, Y ⊂ V (G) with X ∩ Y = ∅. Let e(X, Y ) denote the number of edges with one end in X
and the other in Y . If μ2(G) ≥ max{ |∂(X)|

|X | , |∂(Y )|
|Y | }, then

[e(X, Y )]2 ≥ |X ||Y |
(
μ2(G) − |∂(X)|

|X |
)(

μ2(G) − |∂(Y )|
|Y |

)
.

The following combinatorial lemma is well known. It was used in [20,27] for example. For the sake of completeness, we 
include a short proof below.

Lemma 2.6. Let G be a graph with minimum degree δ and U be a non-empty proper subset of V (G). If |∂(U )| ≤ δ−1, then |U | ≥ δ+1.

Proof. We argue by contradiction and assume that |U | ≤ δ. Then |U |(|U | −1) +|∂(U )| ≥ |U |δ by counting the total degrees of 
vertices in U . But |U |(|U | −1) +|∂(U )| ≤ δ(|U | −1) + (δ −1) ≤ |U |δ −1, contrary to the fact that |U |(|U | −1) +|∂(U )| ≥ |U |δ. 
Thus |U | ≥ δ + 1. �
3. The proofs of the main results

In this section, we present the proofs of Theorem 1.1, Corollary 1.2, Theorem 1.5 and Corollary 1.6. We first restate 
Theorem 1.1 below and present its proof.

Theorem 3.1. Let G be a graph with minimum degree δ(G) ≥ 6k. If

μ2(G − Z) >
6k − 2k|Z | − 1

δ(G − Z) + 1

for every Z ⊂ V (G) with |Z | ≤ 2, then G has at least k edge-disjoint spanning rigid subgraphs.

Proof. Let H = G − Z . By Theorem 2.3, it suffices to show that for any partition π of V (H) with n0 trivial parts and n′
0

nontrivial parts,

eH (π) ≥ k(3 − |Z |)n′
0 + 2kn0 − 3k − nZ (π), (1)

for every Z ⊂ V (G).
We first prove that if |Z | ≥ 3, then (1) is always true. Actually, for every trivial part (a single vertex) u j , its degree dH (u j)

in H must satisfy the inequality dH (u j) ≥ δ(G) − |Z j | ≥ 6k − |Z j |, where Z j is the set of neighbors of u j in Z . Recall that 
nZ (π) = ∑

1≤ j≤n |Z j |. If |Z | ≥ 3, then

0

4
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eH (π) ≥ 1

2

∑
1≤ j≤n0

dH (u j)

≥ 1

2

∑
1≤ j≤n0

δ(G) − 1

2

∑
1≤ j≤n0

|Z j|

≥ 3kn0 − 1

2
nZ (π)

≥ k(3 − |Z |)n′
0 + 2kn0 − 3k − nZ (π).

We assume that |Z | ≤ 2 from now on. If V 1, V 2, · · · , Vn′
0

are the nontrivial parts in the partition π of H and 
u1, u2, · · · , un0 are the trivial parts of π , then∑

1≤ j≤n0

dH (u j) ≥
∑

1≤ j≤n0

(δ(G) − |Z j|) ≥ 6kn0 − nZ (π). (2)

Without loss of generality, we may assume that |∂H (V 1)| ≤ |∂H (V 2)| ≤ · · · ≤ |∂H (Vn′
0
)|. For convenience, we will use ∂

for ∂H in the following. If |∂(V 2)| ≥ 6k − 2k|Z |, then

eH (π) = 1

2

⎛
⎝ ∑

1≤i≤n′
0

|∂(V i)| +
∑

1≤ j≤n0

dH (u j)

⎞
⎠

≥ 1

2

(
(6k − 2k|Z |)(n′

0 − 1) + 6kn0 − nZ (π)
)

≥ k(3 − |Z |)n′
0 + 2kn0 − 3k − nZ (π),

and we are done. Thus, we assume that n′
0 ≥ 2 and |∂(V 2)| ≤ 6k − 2k|Z | − 1.

Let q be the largest index such that |∂(Vq)| ≤ 6k − 2k|Z | − 1. Then 2 ≤ q ≤ n′
0. Therefore,

|∂(V i)| ≥ 6k − 2k|Z | for q < i ≤ n′
0, (3)

whenever such an i exists.
For 1 ≤ i ≤ q, since |∂(V i)| ≤ 6k − 2k|Z | − 1 ≤ δ(G) − 2k|Z | − 1 ≤ δ(G − Z) − 1 = δ(H) − 1, Lemma 2.6 implies that 

|V i| ≥ δ(H) + 1. As μ2(H) > 6k−2k|Z |−1
δ(H)+1 , it follows that |V i |μ2(H) > 6k − 2k|Z | − 1 for 1 ≤ i ≤ q. By Lemma 2.5, for 2 ≤ i ≤ q,

[e(V 1, V i)]2 ≥ |V 1||V i|
(
μ2(H) − |∂(V 1)|

|V 1|
)(

μ2(H) − |∂(V i)|
|V i |

)

= (|V 1|μ2(H) − |∂(V 1)|) (|V i |μ2(H) − |∂(V i)|)
> (6k − 2k|Z | − 1 − |∂(V 1)|) (6k − 2k|Z | − 1 − |∂(V i)|)
≥ (6k − 2k|Z | − 1 − |∂(V i)|)2 .

Thus e(V 1, V i) > 6k − 2k|Z | − 1 − |∂(V i)|, and so e(V 1, V i) ≥ 6k − 2k|Z | − |∂(V i)|. We get that

|∂(V 1)| ≥
∑

2≤i≤q

e(V 1, V i) ≥ (6k − 2k|Z |)(q − 1) −
∑

2≤i≤q

|∂(V i)|,

and thus∑
1≤i≤q

|∂(V i)| = |∂(V 1)| +
∑

2≤i≤q

|∂(V i)| ≥ (6k − 2k|Z |)(q − 1). (4)

Using (2), (3) and (4), we obtain that

eH (π) = 1

2

⎛
⎝ ∑

1≤i≤n′
0

|∂(V i)| +
∑

1≤ j≤n0

dH (u j)

⎞
⎠

= 1

2

⎛
⎝ ∑

1≤i≤q

|∂(V i)| +
∑

q<i≤n′
0

|∂(V i)| +
∑

1≤ j≤n0

dH (u j)

⎞
⎠

≥ 1

2

(
(6k − 2k|Z |)(q − 1) + (6k − 2k|Z |)(n′

0 − q) + 6kn0 − nZ (π)
)

≥ k(3 − |Z |)n′ + 2kn0 − 3k − nZ (π),
0

5
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which completes the proof. �
Corollary 1.2 follows directly from Theorem 1.1 and the following lemma.

Lemma 3.2. Let G be a graph with minimum degree δ ≥ 6k. If μ2(G) > 2 + 2k−1
δ−1 , then μ2(G − Z) > 6k−2k|Z |−1

δ(G−Z)+1 for every Z ⊂ V (G)

with |Z | ≤ 2.

Proof. Notice that δ(G − u) ≥ δ − 1 for every u ∈ V (G) and δ(G − v − w) ≥ δ − 2 for every v, w ∈ V (G). It suffices to show 
that μ2(G) > 6k−1

δ+1 , μ2(G −u) > 4k−1
δ

and μ2(G − v − w) > 2k−1
δ−1 . Because δ ≥ 6k, it is not hard to verify that 2 + 2k−1

δ−1 > 6k−1
δ+1

and 1 + 2k−1
δ−1 > 4k−1

δ
. Thus μ2(G) > 2 + 2k−1

δ−1 > 6k−1
δ+1 . By Theorem 2.4, μ2(G − u) ≥ μ2(G) − 1 > 1 + 2k−1

δ−1 > 4k−1
δ

and 
μ2(G − v − w) ≥ μ2(G) − 2 > 2k−1

δ−1 . �
The proofs of Theorem 1.5 and Corollary 1.6 are quite similar to the above. We first restate Theorem 1.5 as below and 

give a quick proof.

Theorem 3.3. Let G be a graph with minimum degree δ(G) ≥ 6. If

μ2(G − Z) >
6 − 2|Z |

δ(G − Z) + 1

for every Z ⊂ V (G) with |Z | ≤ 2, then G is redundantly rigid.

Proof. We need to show that for any edge f ∈ E(G), G − f is rigid. By Theorem 2.3, it suffices to show that for any partition 
π of V (G − f − Z) with n0 trivial parts and n′

0 nontrivial parts,

eG− f −Z (π) ≥ (3 − |Z |)n′
0 + 2n0 − 3 − nZ (π),

for every Z ⊂ V (G). If π consists of exactly one part, then n0 = 0, n′
0 = 1, eG− f −Z (π) = 0, and clearly the above inequality 

holds. Thus we may assume that π contains at least two parts in the following.
Notice that eG− f −Z (π) ≥ eG−Z (π) − 1, and it suffices to show that

eG−Z (π) ≥ (3 − |Z |)n′
o + 2n0 − 2 − nZ (π). (5)

First, (5) will hold if |Z | ≥ 3. The proof is the same as that of Theorem 3.1 for k = 1, and thus will be omitted here. We 
assume that |Z | ≤ 2 in the remaining proof.
Case 1: n′

0 ≤ 1. As δ(G) ≥ 6, we have 2eG−Z (π) ≥ δ(G − Z)n0 ≥ (6 − |Z |)n0. If (5) does not hold then

(3 − |Z |)n′
o + 2n0 − 2 − nZ (π) > eG−Z (π) ≥ 1

2
(6 − |Z |)n0,

which yields

(6 − 2|Z |)n′
0 − 4 − 2nZ (π) > (2 − |Z |)n0.

Given that n′
0 ≤ 1 and |Z | ≤ 2, the above inequality holds only when |Z | = 0, n0 = 0 and n′

0 = 1. However this implies that 
π consists of exactly one part, violating our assumption. Hence (5) must hold.
Case 2: n′

0 ≥ 2. This case is similar to the proof of Theorem 3.1, and thus will be omitted. �
Lemma 3.4. Let G be a graph with minimum degree δ ≥ 6. If μ2(G) > 2 + 2

δ−1 , then μ2(G − Z) > 6−2|Z |
δ(G−Z)+1 for every Z ⊂ V (G)

with |Z | ≤ 2.

Proof. Notice that δ(G − u) ≥ δ − 1 for every u ∈ V (G) and δ(G − v − w) ≥ δ − 2 for every v, w ∈ V (G). It suffices to show 
that μ2(G) > 6

δ+1 , μ2(G − u) > 4
δ

and μ2(G − v − w) > 2
δ−1 . Because δ ≥ 6, it is not hard to verify that 2 + 2

δ−1 > 6
δ+1 and 

1 + 2
δ−1 > 4

δ
. Thus μ2(G) > 2 + 2

δ−1 > 6
δ+1 . By Theorem 2.4, μ2(G − u) ≥ μ2(G) − 1 > 1 + 2

δ−1 > 4
δ

and μ2(G − v − w) ≥
μ2(G) − 2 > 2

δ−1 . �
The proof of Corollary 1.6. By Theorem 3.3 and Lemma 3.4, G is redundantly rigid. Since μ2(G) > 2, the vertex-connectivity 
of G is at least 3. Hence G is globally rigid by Theorem 2.2. �
6



S.M. Cioabă, S. Dewar and X. Gu Discrete Mathematics 344 (2021) 112527
Fig. 1. An example of Hd when d = 10.

4. Examples

In this section, we construct a family of graphs to show that the condition “μ2(G) > 5
δ(G)+1 ” in Corollary 1.3 is essentially 

best possible.
This family of graphs was initially constructed in [7]. Let d ≥ 6 be an integer and let H1, H2, H3, H4, H5 be 5 vertex-

disjoint copies of a graph obtained from Kd+1 by deleting two disjoint edges. Suppose that the deleted edges are aibi and 
ui vi in Hi for 1 ≤ i ≤ 5. Let Hd be the d-regular graph whose vertex set is 

⋃5
i=1 V (Hi) and whose edge set is the union 

of 
⋃5

i=1 E(Hi) with the set F = {b1a2, b2a3, b3a4, b4a5, b5a1, u1 v3, u3 v5, u5 v2, u2 v4, u4 v1}. An example is shown in Fig. 1
when d = 10. By the computation in [7], it follows that 5

d+3 < μ2(Hd) ≤ 5
d+1 for d ≥ 6. However, we can show that Hd is 

not rigid as below.
Let Xi = V (Hi) for 1 ≤ i ≤ 5, and for 6 ≤ i ≤ 15, Xi be the vertex set induced by a single edge in F . Let G = {Xi : 1 ≤ i ≤

15}. Clearly {E(X), X ∈ G} partitions E(G). Then
∑
X∈G

(2|X | − 3) = 5(2(d + 1) − 3) + 10(2 × 2 − 3) = 10d + 5.

Notice that |V (G)| = 5d + 5 and thus 2|V | − 3 = 10d + 7. By Theorem 2.1, Hd is not rigid.
Recently, the previous construction has been generalized in [6] where the authors prove that the condition (1) from 

Theorem 1.1 is tight.

5. Concluding remarks

In this paper, we discovered improved spectral conditions for rigid graphs and globally rigid graphs in R2 from Laplacian 
eigenvalues. Corollaries 1.4 and 1.6 give simple conditions for rigidity and global rigidity, respectively. However we do not 
know whether they are best possible. Corollary 1.6 might be close to best possible, as a necessary condition for globally 
rigid graphs in R2 is 3-connectedness. It would be interesting to see how large can μ2(G) be for non-rigid graphs. Another 
problem of interest would be obtaining a spectral condition for a graph to contain a spanning (a, b)-tight subgraph for other 
values of a and b.

One immediate application of our results is on packing spanning 2-connected subgraphs. Since every rigid graph with 
at least 3 vertices is 2-connected, by Corollary 1.2, we have the following result on edge-disjoint spanning 2-connected 
subgraphs. This result can be seen as a spectral analogue of Jordán’s combinatorial sufficient condition [25] for packing 
spanning rigid subgraphs and hence spanning 2-connected subgraphs. It also extends the spectral conditions for vertex-
connectivity of [11,27,5,19], and the spectral conditions for k edge-disjoint spanning trees of [7,5,16,20,29,22], to k edge-
disjoint spanning 2-connected subgraphs.
7
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Proposition 5.1. Let G be a graph with minimum degree δ ≥ 6k. If μ2(G) > 2 + 2k−1
δ−1 , then G has at least k edge-disjoint spanning 

2-connected subgraphs.

We may also consider eigenvalues of other matrices. The matrix Q (G) = D(G) + A(G) is called the signless Laplacian 
matrix of G . For 1 ≤ i ≤ n, we use λi := λi(G) and qi := qi(G) to denote the i-th largest eigenvalue of A(G) and Q (G), 
respectively. By Courant-Weyl inequalities (on page 29 of [2]), it is not hard to see that μ2 +λ2 ≥ δ and δ +λ2 ≤ q2. Thus all 
results involving μ2 in the paper will imply sufficient conditions using λ2 and q2. For example, by Corollary 1.6, it follows 
that for a graph G with minimum degree δ ≥ 6, if λ2(G) < δ − 2 − 2

δ−1 (or alternatively, if q2(G) < 2δ − 2 − 2
δ−1 ), then G is 

globally rigid. Other results of the paper can be modified in similar ways.
One reason to switch to eigenvalues of other matrices stems from pseudo-random graphs. Define λ(G) = max2≤i≤n |λi(G)| =

max{|λ2(G)|, |λn(G)|}. We call λ(G) the second largest absolute eigenvalue of G . It is known that a d-regular graph on n
vertices with small λ(G) (compared to d; for example, λ(G) = �(

√
d)) has edge distribution similar to the random graph 

of same edge density, namely it is a kind of pseudo-random graph (see [27] for more details). Clearly, the results in this 
paper imply sufficient conditions for the rigidity and global rigidity of pseudo-random graphs.

A connected d-regular graph G is called a Ramanujan graph if |λi(G)| ≤ 2
√

d − 1 for all λi(G) = ±d with 2 ≤ i ≤ n. 
By definition, if G is a d-regular Ramanujan graph, then μ2(G) ≥ d − 2

√
d − 1. The rigidity of Ramanujan graphs was 

investigated by Servatius [33]. By Corollary 1.6, we can easily obtain the following conclusion.

Proposition 5.2. Every connected d-regular Ramanujan graph with d ≥ 8 is globally rigid in R2 .

It is unknown whether this holds for smaller values of d, although as all cubic graphs (with the exception of K4, K3,3
and the Cartesian product K2�K3) are flexible, we know that the lowest value of d where it could hold is either 4, 5, 6 or 
7. We plan to focus on these specific graphs in more detail in future work [4].
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