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Abstract

Storing a counter incremented N times would naively consume O(logN) bits of memory. In 1978
Morris described the very first streaming algorithm: the “Morris Counter” [Mor78]. His algorithm has
been shown to useO(log logN+log(1/ε)+log(1/δ)) bits of memory to provide a (1+ε)-approximation
with probability 1− δ to the counter’s value. We provide a new simple algorithm with a simple analysis
showing that O(log logN + log(1/ε) + log log(1/δ)) bits suffice for the same task, i.e. an exponentially
improved dependence on the inverse failure probability. We then provide a more technical analysis
showing that the original Morris Counter itself, after a minor but necessary tweak, actually also enjoys
this same improved upper bound. Lastly, we prove a new lower bound for this task showing optimality of
our upper bound. We thus completely resolve the asymptotic space complexity of approximate counting.
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1 Introduction

Suppose one wishes to maintain an integer N , initialized to zero, subject to a sequence of increment oper-
ations. Maintaining this counter exactly can be accomplished using dlog2Ne bits. In the first example of
a non-trivial streaming algorithm, Morris gave a Monte Carlo randomized “approximate counter”, which
lets one report a constant factor approximation to N with large probability while using o(logN) bits of
memory. His algorithm, the “Morris Counter”, uses O(log logN) bits [Mor78]. The Morris Counter was
later analyzed in more detail [Fla85, GS09], where it was shown that O(log logN + log(1/ε) + log(1/δ))
bits of memory is sufficient to return a (1 + ε) approximation with success probability 1− δ.

Our main contribution is a new, simple improved algorithm and matching lower bound. In particular, we
show that the correct dependence on the inverse failure probability is only doubly and not singly logarithmic.
This implies for example thatO(log logN) memory suffices to have failure probability 1/ poly(N), whereas
previous Morris Counter analyses only guaranteed failure probability 1/ poly(logN) in such space.

Theorem 1.1. For any ε, δ ∈ (0, 1/2) there is a randomized algorithm for approximate counting which
outputs N̂ satisfying

P
(∣∣∣N − N̂ ∣∣∣ > εN

)
< δ. (1)

The memory in bits is a random variable M such that for any S > C(log logN + log(1/ε) + log log(1/δ)),

P(M > S) < exp(−C ′ exp(C ′′S)). (2)

Furthermore, our algorithm is asymptotically optimal up to a constant factor: any randomized algo-
rithm which is promised that the final counter is in the set {1, . . . , n} and which satisfies Eq. (1) must use
Ω(min{log n, log logn+ log(1/ε) + log log(1/δ)}) bits of memory with high probability.

Note the first term in the min of the lower bound of Theorem 1.1 is matched by a deterministic counter.
We further note the space usage of the Morris Counter is also a random variable which satisfies a bound
similar to Eq. (2) as long as the counter N is sufficiently large, i.e. at least some value Nδ = Ω(log(1/δ)).
A trivial fix though is to simply maintain a deterministic counter in parallel to the Morris Counter up to the
value Nδ + 1. Then to answer queries, if the counter is at most Nδ, we return it; else if it equals Nδ + 1,
we return the estimator based on the Morris Counter. As we show in the appendix, this minor tweak is
necessary; without it, the Morris Counter would not achieve success probability 1− δ in the desired space.
We call this slight tweak “Morris+”, which is similar to a method used in [GS09]. Our next theorem provides
an improved analysis of Morris+.

Theorem 1.2. For any ε, δ ∈ (0, 1/2) Morris+, instantiated with appropriate parameters, usesO(log logN+
log(1/ε) + log log(1/δ)) bits of memory with high probability and outputs N̂ satisfying

P
(∣∣∣N − N̂ ∣∣∣ > εN

)
< δ. (3)

Given that most modern machines have much more than logN bits of memory for any reasonable value
of N , one might wonder whether approximate counting is of real importance or merely a purely intellectual
pursuit. An application to keep in mind is not that there is merely one counter, but an analytics system
may maintain many such counters (for example, the number of visits to each page on Wikipedia). In a real
such application the number of approximate counters could thus be very large, and so cutting the number
of bits per counter by even a constant factor could be of value. This motivating perspective also reveals
that typically the memory requirement to calculate the state transition of the approximate counter after an
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increment, or to answer a query, is much less important; rather, minimizing the number of bits required to
maintain program state is of higher practical relevance, as that affects total storage. Furthermore, if we are
maintaining M counters then it is natural to want δ � 1/M so that each counter is approximately correct
with high probability. If M is very large, then requiring log(1/δ) ≥ logM bits per counter may provide no
benefit over a naive logN bit counter for realistic values of N .

In addition to potential practical relevance, from a theoretical perspective “maintaining a counter” is a
natural problem and as such the Morris Counter has found applications to other streaming problems. For
example, Jayaram and Woodruff showed that for p ∈ (0, 1] an approximate counter can be used effectively
as a subroutine in an algorithm for approximating the pth moment of an insertion-only stream up to 1 + ε in
Õ(1/ε2 + log n) bits of space [JW19], improving over a derandomization of an algorithm of Indyk that uses
O(ε−2 log n) bits [Ind06, KNW10]. Approximate counting also finds use in approximating large frequency
moments [AMS99, GS09], approximate reservoir sampling [GS09], approximating the number of inversion
when streaming over a permutation [AJKS02], and `1 heavy hitters in insertion-only streams [BDW19].

1.1 Comparison with previous bounds from [Fla85]

As we discuss in Subsection 1.2, the Morris Counter works by storing a counter X and incrementing it
with probability 1/(1 + a)X per update for some parameter a > 0. The work [Fla85] characterized the
behavior of the Morris algorithm exactly when a = 1. Unfortunately, the Morris Counter for a = 1,
which uses O(log logN) bits of memory with high probability (which is O(log logN + log log(1/δ)) for
δ = 1/ poly(N)), does not enjoy constant factor approximation with success probability any better than a
constant even for large N , let alone with probability 1 − 1/ poly(N). This failure of the Morris Counter
to achieve very high success probability for a = 1 is implied by the exact characterization of the algorithm
given in [Fla85] itself; Proposition 3 of that work implies that the probability thatX fails to be in the interval
[log2N − C, log2N + C] equals a constant (depending on C), and X being in that interval is required for
the Morris Counter to provide a 2C-approximation. Thus, the failure probability when a = 1 is not even
o(1). Our Theorem 1.2 reveals though that the Morris Counter with a = Θ(1/ logN) does achieve failure
probability 1/ poly(N), which is “for free” (up to a constant factor) compared with a = 1 since this smaller
setting of a still only requires the Morris Counter to use O(log logN) bits of memory with high probability.

[Fla85] does have some discussion on using smaller a. Specfically, [Fla85, Section 5] mentions that
if one wants error better than the case a = 1 to estimate N , one can either average independent counters
or change base, and that the former has “an effect similar to” the latter. A variance bound is then given
for estimating N when using arbitrary a. This variance bound seems to reveal though that the effects
of averaging versus changing base are not similar from a computational complexity perspective: the former
requires averaging Ω(1/ε2) copies of the counter, blowing up the space complexity by 1/ε2. The latter leads
to a space bound depending only on O(log(1/ε)). Both yield O(log(1/δ)) space dependence on the failure
probability δ. Equation (46) of [Fla85] does give an explicit sum-product formula for the exact probabilities
Pn,` that the counter exactly equals ` after n increments, but this formula is not readily prescriptive for how
a should be set in order to achieve relative error 1 + ε with failure probability δ.

1.2 Overview of approach

We first explain the idea behind the Morris Counter. The traditional, deterministic and exact counter stores
an integer X , initialized to zero. After every increment to N , we increment X with probability 1.0X ,
i.e. we always increment it. Thus we can “estimate” N as X , and this estimator has zero variance and
is unbiased, at the cost of using logN memory. Morris instead increments X with probability 0.5X ; this
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trades off variance for memory. Specifically, one can show that E[2X − 1] = N , though the variance
only satisfies Var[2X − 1] = N(N − 1)/2. A natural idea of Morris is then to change the base of the
exponential when deciding the probability to increment X , which turns out to provide a smooth tradeoff
between memory and space consumption. Specifically, for any a > 0 if incrementing X with probability
1/(1 + a)X , the expression a−1((1 + a)X − 1) is an unbiased estimator of N with variance aN(N − 1)/2
(we call the Morris Counter with this parameterization “Morris(a)”). Setting a = 2ε2δ, one obtains the
guarantee Eq. (1) via Chebyshev’s inequality. Note that the space consumption S := dlog2Xe is a random
variable, but is at mostO(log logN+log(1/ε)+log(1/δ)) with high probability. This is because forC > 2,
once X > Z := (logN/(2ε2δ))C , by a union bound the probability that any of the remaining at most N
increments causes X to increment even once more is at most N(1 + 2ε2δ)−Z < e−(logN/(2ε2δ))C−1

<
N−ω(1) (using that (1 − r)1/r < 1/e for r > 0). Thus, with high probability the Morris Counter uses at
most O(logZ) = O(log logN + log(1/ε) + log(1/δ)) bits of memory.

We now describe our new algorithm, which is more complicated than the Morris algorithm, but is en-
gineered specifically to have a simple analysis. First, we consider a promise decision problem: given some
T > 1 and ε ∈ (0, 1), decide whether N < (1 − ε/10)T or N > (1 + ε/10)T when promised that one of
the two holds. We can solve this decision problem as follows. We store a counter Y in memory, initialized
to 0. Set α = min{1, C log(1/η)/(ε2T )}. For each increment to N , if Y ≤ αT then increment Y with
probability α; else do nothing. At query time, we declare N > (1 + ε/10)T iff Y > αT . A Chernoff bound
shows that this procedure is correct with probability at least 1 − η. Furthermore the memory consumed is
guaranteed to be O(log(αT )) = O(log(1/ε) + log log(1/η)).

Now to solve the full approximate counting problem, and not just the decision problem, we solve mul-
tiple instantiations of the above promise problem in sequence, where in iteration j we use the threshold
Tj = (1+ε)j and increment probability αj = min{1, C log(1/ηj)/(ε

3Tj)} for ηj < Cδ/j2 (chosen so that
by a union bound, the probability that we ever fail to solve the promise problem in any iteration j is at most∑

j ηj ≤ δ). When Y reaches the value αjTj , we increase j and correspondingly set Y ← bY · αj+1/αjc
(which is “correct in expectation”, since the number of increments we would have done in expectation with
parameter αj+1 is an αj/αj+1 ≈ 1 + ε factor less). To answer a query for N , we simply return Tj . The
adjustment from ε2 to ε3 in αj is for technical reasons (see the proof of Theorem 2.1).

We next provide an improved analysis of Morris’ original algorithm. To do so, we define the random
variable Zi to be the number of increments that Morris(a), run for an infinite number of increments, would
have X = i before incrementing to X = i + 1. Then Zi is a geometric random variable with parameter
1/(1 + a)i, and we are able to show the desired behavior of Morris(a) by proving concentration bounds on
prefix sums of the Zi via analyzing its moment-generating function.

Our new lower bound comes from showing that a randomized approximate counter using space S can
be made deterministic with no increased space cost at the cost of increasing its failure probability by factors
that grow with S. If S is smaller than a certain threshold (the lower bound we are trying to prove), this
argument leads to a correct space-o(log n) deterministic algorithm for the problem, which is impossible,
and thus the space-S algorithm for S so small could not have existed.

1.3 Notation

We use C,C ′, C ′′ to denote universal positive constants, which may change from line to line. We also use
A±B to denote a value in the interval [A−B,A+B], with D = A±B signifying D ∈ [A−B,A+B].
As mentioned, we also use “Morris(a)” to refer to the Morris Counter parameterized to increment X with
probability 1/(1 + a)X .
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2 Improved upper bound for approximate counting

In Subsection 2.1 we describe and analyze our new algorithm for approximate counting with space com-
plexity O(log logN + log(1/ε) + log log(1/δ)). We then show that this upper bound is achieved by the
original Morris Counter itself in Subsection 2.2

2.1 New algorithm description and analysis

Algorithm 1 Approximate counting algorithm.
1: procedure ApproxCount(ε, δ)
2: Init():
3: η ← δ,X0 ← dln1+ε(C ln(1/η)/ε3)e
4: Y ← 0, X ← X0, α← 1, T ← d(1 + ε)Xe

5: Increment():
6: with probability α, update Y ← Y + 1
7: if Y > αT then
8: X ← X + 1
9: T ← d(1 + ε)Xe, η ← δ

X2

10: αnew ← C ln(1/η)
ε3T

11: Y ← bY · αnew/αc
12: α← αnew
13: end if

14: Query():
15: if X = X0 then
16: return Y
17: else
18: return T
19: end if
20: end procedure

We describe our full approximate counting algorithm in Algorithm 1. The counter is initialized via the
Init() procedure, and each increment to N and query for an estimate of N are described in the pseudocode,
following the ideas set forth in Subsection 1.2. Theorem 2.1 shows that the relative error of the output of
Algorithm 1 is 1 + O(ε) with probability 1 − O(δ). Eq. (1) follows by adjusting ε, δ by a constant factor.
Our variable X is quite similar to that of the Morris Counter: it represents (an approximation to) log1+εN .
The main difference is that whereas the Morris Counter decides to increment X based on flipping a number
of coins depending on X itself, we use an auxiliary counter Y to guide when X should be incremented.

First we define some notation that will be useful for the proof. We divide the algorithm’s execution into
epochs k = 0, 1, 2, . . . , corresponding to the value of X −X0. We mark the end of an epoch immediately
before line 8 is about to execute, and the beginning of the new epoch immediately after line 13 has completed
executing. During a given epoch, we let Tk, αk, ηk be the corresponding values of T, α, η set in lines 7–12
of Algorithm 1. For example, T0 = 1, α0 = 1, η0 = δ. We also define Yk to be the value of Y when epoch k
begins, so that Y0 = 0 and Yk for k > 0 is set in line 11 of Algorithm 1. To be precise, a particular epoch is
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said to begin after line 4 or 12 of Algorithm 1 completes, and it ends at line 6 when the if statement triggers.
We say that N becomes a certain value once Increment() has been called that number of times, and the
most recent call completed.

Theorem 2.1. ∀ε, δ ∈ (0, 1/2), the output N̂ of Query() in Algorithm 1 satisfies P(|N̂−N | > CεN) < Cδ.

Proof. We first note that while remaining in epoch 0, i.e. as long as 1 ≤ N ≤ T0, Y stores N exactly and
thus our output is exactly correct. Our focus is thus on the case of larger N .

For k ≥ 0, define the event Ek that once we enter epoch k, the number of increments to N before we
advance to the next epoch is Tk − Tk−1 ± ε2Tk−1 (where we use the convention T−1 = 0). We henceforth
condition on the event ∧k≥0Ek. Since the Tr are in geometric series with base 1 + ε (up to ±1 due to
rounding), we have

∑k
r=0(Tr − Tr−1 ± ε2Tr−1) ⊆ (1 ± 1.5ε)Tk, i.e., only after (1 ± 1.5ε)Tk increments

to N , could the algorithm possibly be in epoch k. Thus, if k∗ is the final epoch when Query() is called, we
have N̂ = Tk∗ and N = (1 ± 1.5ε)Tk∗ . That is, N̂ = 1

1±1.5εN , which implies |N̂ − N | ≤ CεN when
ε < 1/2.

We finally bound

P

( ∞∧
k=0

Ek

)
= 1− P

( ∞∨
k=0

¬Ek

)
≤ 1−

∞∑
k=0

P(¬Ek).

P(¬E0) = 0, so we focus on k ≥ 1. Note Yk = b(bαk−1Tk−1c+ 1) · (αk/αk−1)c, which is αkTk−1±O(1).
The new threshold for Y to enter epoch k + 1 is bαkTkc + 1, which thus requires αk(Tk − Tk−1) ± O(1)
more increments to Y , which is

εαkTk−1 ±O(1), (4)

since Tk − Tk−1 = εTk−1 ±O(1) and α ≤ 1. After calling Increment() t1 := Tk − Tk−1 − ε2Tk−1 times,
the expected number of times Y is incremented is

αkt1 = εαkTk−1 − ε2αkTk−1 ±O(1),

which is Θ(ln(1/ηk)/ε
2). Advancing to the next epoch thus implies deviating from the expectation by more

than ε2αkTk−1 ± O(1), i.e., ε times the expectation. The Chernoff bound implies that the probability of
this occurring is at most ηk. A similar calculation shows that the probability that we have not advanced to
the next epoch after calling Increment() t2 := Tk − Tk−1 + ε2Tk−1 times. Thus P(¬Ek) ≤ 2ηk. Thus
P(∨k≥0¬Ek) ≤ 2

∑
k ηk = 2

∑
k δ/(k + 1)2 = O(δ).

Remark 2.2. Before we give the space analysis, the astute reader may notice that T itself is ideally approx-
imately N and thus should require Θ(logN) bits to store. A similar statement could be made about the
Morris Counter: the output is ultimately given as a−1((1 + a)X − 1) (see Subsection 1.2), which is also
Θ(logN) bits. The key is that in implementation, we never actually store T : we only store X . Then our
answer to a query is only to return X , which will be an additive O(1) approximation to log1+εN with high
probability, which is enough for the querying party to specify an approximation to N . Similarly, δ is never
stored or even given to the algorithm, but rather the input should be ∆ such that δ = 2−∆, and only ∆ is
ever stored. Also, the correctness analysis only requires that α be at least the value in line 10 and not exactly
that (to apply the Chernoff bound effectively). Thus α can be rounded up to the nearest inverse power of 2
so that α = 2−t and only t need be stored consuming only log t = log log(1/α) bits. We can then generate
a Bernoulli(α) random variable (line 6) by flipping a fair coin t times and returning 1 iff all flips were heads;
this takes 1 bit to keep track of the AND and log t bits to keep track of the number of flips made so far. η
also need not be stored explicitly since its value is implicit from other stored values (namely X , ε, and ∆).
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Of course the situation is even simpler in models of computation other than word RAM, such as a finite
automaton or branching program: then program constants need not be stored in memory (they only affect
the transitions), and only the variables X,Y contain program state that needs to be stored. Furthermore,
what is most important from the perspective of the practical motivation in Section 1 when running a system
storing many approximate counters is the number of bits required to maintain program state; it is reasonable
to assume in practical applications that O(logN) bit registers are available to be used temporarily while
processing updates and queries, which could lead to faster and simpler implementation.

Theorem 2.3. There exist constants C1, C2 > 0 such that for any ε, δ ∈ (0, 1/2) and integer S ≥
C1(log logN + log(1/ε) + log log(1/δ)), the probability that Algorithm 1 uses more than S bits of memory
after N increments is at most exp(− exp(C2S)).

Proof. As described in Remark 2.2, the actual space complexity, which is a random variable, is O(logX +
log Y + log log(1/α)) bits, and we have log log(1/α) = O(logX). We also have log Y = O(log(1/ε) +
log logX + log log(1/δ)). Let C1 be a sufficiently large constant. If we use more than S bits of space for
S ≥ C1(log logN + log(1/ε) + log log(1/δ)), we must have logX ≥ Ω(S). Thus, we only need to show
that the final logX is small with high probability.

We will show that once we reach an epoch k for k large (corresponding to X being equal to X0 + k),
with high probability we will never advance to epoch k + 1. Indeed, the probability that we do advance
is the probability that Y increments at least εαkTk−1 ± O(1) times over the at most N remaining calls to
Increment() (see Eq. (4)). By a union bound over these at most N remaining increments, the probability of
this occurring is at most(

N

εαkTk−1 ±O(1)

)
· αεαkTk−1±O(1)

k ≤
(

2eN

εTk−1

)εαkTk−1±O(1)

≤
(

C ′N

ε(1 + ε)X0+k

)Θ(log((X0+k)2/δ)/ε2)

≤
(

C ′N

(1 + ε)k

)Θ(log((X0+k)2/δ)/ε2)

Now since log k = Θ(logX) ≥ Ω(S), we have (1 + ε)k � N2. Thus, we use more than S except with
probability at most (

C ′N

(1 + ε)k

)Θ(log((X0+k)2/δ)/ε2)

≤
(

1

(1 + ε)k

)Ω(1/ε2)

≤ (e−Θ(εk))Ω(1/ε2)

≤ e−Ω(k)

≤ e−eC2S
,

for some constant C2 > 0.

Remark 2.4. Our approximate counter is fully mergeable [ACH+13]. That is, given two counters (X1, Y1)
and (X2, Y2), which approximate two (unknown) numbers N1 and N2 respectively, they can be merged into
a single data structure (X,Y ) that follows the same distribution as if it was incremented exactly N1 + N2

times so that nothing is lost in the parameters ε and δ (the Morris Counter enjoys this same benefit [CY20,
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Section 2.1]). To see this, observe that each epoch of our algorithm uses sampling, and the sampling rate is
non-increasing. AssumingX1 ≤ X2, we can simulateN1 extra increments to the second counter by another
subsampling with the correct probabilities. More specifically, the first counter is in epoch k1 = X1 −X0,
and we know the sampling probabilities α0, . . . , αk1 , and the exact number of increments that survived the
sampling (caused Y1 to increment) in each epoch. We are going to insert all the survivors to the second
counter, which currently have sampling probability αk2 for k2 = X2−X0. For each survivor in epoch i (for
0 ≤ i ≤ k1), we increment Y2 with probability αk2/αi. Then effectively, we increment Y2 with probability
αk2 for each of the original N1 increments. Whenever Y2 reaches the threshold αT , we increment X2,
update Y2, and adjust the probabilities. Hence, the final (X2, Y2) has the same distribution as if it was
incremented a total of N1 +N2 times.

2.2 Morris Counter improved analysis

Here we analyze Morris(a) for some a ∈ (0, 1), in which X is incremented with probability (1 + a)−X and
we output N̂ = ((1 + a)X − 1)/a. When the total number of increments N is at most 8/a, the value of
the counter can be explicitly maintained in addition to the Morris Counter, which costs at most O(log(1/a))
bits of extra space. In the following, we assume N is at least 8/a; this is not a serious limitation since we
can maintain a separate counter exactly, deterministically up until this value (the “Morris+” modification
described in Section 1).

Let us consider Morris(a) on an infinite sequence of increments. For any i ≥ 0, X exceeds i with
probability 1. Let Zi ≥ 1 be the random variable denoting the number of increments it takes for X to
increase from i to i + 1. Since when X = i, each increment causes X to increase with probability pi =
(1 + a)−i, Zi follows the geometric distribution

P[Zi = l] = (1− pi)l−1pi.

Therefore, we have
E[Zi] = 1/pi = (1 + a)i,

and

E[etZi ] =
∑
l≥1

etl(1− pi)l−1pi =
etpi

1− et(1− pi)
,

for any t such that et(1− pi) < 1.
Next, let ε < 1/2, we bound

P

[
k∑
i=0

Zi ≥ (1 + ε)

k∑
i=0

1/pi

]
. (5)

Following the proof of Chernoff bound, for t such that et(1− pk) < 1, we have

E
[
et

∑k
i=0 Zi

]
=

k∏
i=0

E
[
etZi

]
=

e(k+1)t
∏k
i=0 pi∏k

i=0(1− et(1− pi))

=
e(k+1)t(1 + a)−k(k+1)/2∏k

i=0(1− et(1− pi))
.
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By Markov’s inequality,

(5) ≤
E
[
et

∑k
i=0 Zi

]
et(1+ε)

∑k
i=0 1/pi

=
E
[
et

∑k
i=0 Zi

]
et(1+ε)((1+a)k+1−1)/a

=
e(k+1)t(1 + a)−k(k+1)/2

et(1+ε)((1+a)k+1−1)/a
∏k
i=0(1− et(1− (1 + a)−i))

.

Now set t = ln
(

1
1− 1

2
ε(1+a)−k

)
, which satisfies et(1− pk) < 1, we have

(5) ≤ (1 + a)−k(k+1)/2 ·
(

1− 1

2
ε(1 + a)−k

)−(k+1)+(1+ε)((1+a)k+1−1)/a

·
k∏
i=0

1

1− 1−(1+a)−i

1− 1
2
ε(1+a)−k

= (1 + a)−k(k+1)/2 ·
(

1− 1

2
ε(1 + a)−k

)−(k+1)+(1+ε)((1+a)k+1−1)/a

·
k∏
i=0

1− 1
2ε(1 + a)−k

(1 + a)−i − 1
2ε(1 + a)−k

= (1 + a)−k(k+1)/2 ·
(

1− 1

2
ε(1 + a)−k

)(1+ε)((1+a)k+1−1)/a

·
k∏
i=0

1

(1 + a)−i(1− 1
2ε(1 + a)−k+i)

≤ e−
1
2
ε(1+a)−k(1+ε)((1+a)k+1−1)/a ·

k∏
i=0

1

1− 1
2ε(1 + a)−k+i

.

By the fact that 1/(1− z) ≤ ez+z2 for all 0 < z < 1/2,

(5) ≤ e−
1
2
ε(1+a)−k(1+ε)((1+a)k+1−1)/a · e

∑k
i=0( 1

2
ε(1+a)−k+i+ 1

4
ε2(1+a)−2k+2i)

= e−
1
2
ε(1+a)−k((1+ε)((1+a)k+1−1)/a−

∑k
i=0((1+a)i+ 1

2
ε(1+a)−k+2i))

≤ e−
1
2
ε(1+a)−k((1+ε)((1+a)k+1−1)/a−(1+ 1

2
ε)((1+a)k+1−1)/a))

= e−
1
4
ε2(1+a)−k((1+a)k+1−1)/a.

For k > 1
a , we have (5) ≤ e−ε2/8a.

Similarly, we next bound

P

[
k∑
i=0

Zi ≤ (1− ε)
k∑
i=0

1/pi

]
. (6)

By Markov’s inequality,

(6) = P
[
e−t

∑k
i=0 Zi ≥ e−t(1−ε)

∑k
i=0 1/pi

]
≤

E
[
e−t

∑k
i=0 Zi

]
e−t(1−ε)

∑k
i=0 1/pi

=
e−t(k+1)(1 + a)−k(k+1)/2

e−t(1−ε)((1+a)k+1−1)/a
∏k
i=0(1− e−t(1− pi))

.

8



Now set t = ln(1 + 1
2ε(1 + a)−k), we have

(6) ≤ (1 + a)−k(k+1)/2 ·
(

1 +
1

2
ε(1 + a)−k

)−(k+1)+(1−ε)((1+a)k+1−1)/a

· 1∏k
i=0

(
1− 1−(1+a)−i

1+ 1
2
ε(1+a)−k

)
= (1 + a)−k(k+1)/2 ·

(
1 +

1

2
ε(1 + a)−k

)−(k+1)+(1−ε)((1+a)k+1−1)/a

· 1∏k
i=0

(
(1+a)−i+ 1

2
ε(1+a)−k

1+ 1
2
ε(1+a)−k

)
= (1 + a)−k(k+1)/2 ·

(
1 +

1

2
ε(1 + a)−k

)(1−ε)((1+a)k+1−1)/a

· 1∏k
i=0(1 + a)−i

(
1 + 1

2ε(1 + a)−k+i
)

=

(
1 +

1

2
ε(1 + a)−k

)(1−ε)((1+a)k+1−1)/a

· 1∏k
i=0

(
1 + 1

2ε(1 + a)−k+i
) .

By the fact that 1/(1 + z) ≤ e−z+z2 for z ≥ 0, we have

(6) ≤ e
1
2
ε(1+a)−k(1−ε)((1+a)k+1−1)/a · e

∏k
i=0(−

1
2
ε(1+a)−k+i+ 1

4
ε2(1+a)−2k+2i)

= e
1
2
ε(1+a)−k((1−ε)((1+a)k+1−1)/a+

∏k
i=0(−(1+a)i+ 1

2
ε(1+a)−k+2i))

≤ e−
1
4
ε2(1+a)−k((1+a)k+1−1)/a.

When k > 1
a , this is at most e−ε

2/8a.
Therefore, for any k > 1/a, with probability at least 1− e−ε2/8a, we have∣∣∣∣∣

k∑
i=0

Zi − ((1 + a)k+1 − 1)/a

∣∣∣∣∣ ≤ ε((1 + a)k+1 − 1)/a.

Now fix any N > 8/a, let k1 be the largest k such that (1 + ε)((1 + a)k+1 − 1)/a < N , k2 be the smallest
k such that (1− ε)((1 + a)k+1 − 1)/a ≥ N . We have k1, k2 > 1/a, then we apply the above inequality to
k1 and k2, and by union bound, with probability at least 1− 2e−ε

2/8a, we have both

k1∑
i=0

Zi ≤ (1 + ε)((1 + a)k1+1 − 1)/a < N,

i.e., X > k1 after N increments, and

k2∑
i=0

Zi ≥ (1− ε)((1 + a)k2+1 − 1)/a ≥ N,

i.e., X ≤ k2 after N increments. Therefore, ((1 + a)X − 1)/a is a (1 ± 2ε) approximation of N with
probability 1− 2e−ε

2/8a.
By setting a = ε2/(8 ln(1/δ)), the space usage of Morris(a) isO(log logN+log(1/a)) = O(log logN+

log(1/ε) + log log(1/δ)) bits with high probability, and outputs a (1± 2ε) approximation with probability
1− 2/δ. By reparameterizing, we prove Theorem 1.2.
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3 Space lower bound

Here we prove the matching lower bound for approximate counters. Our lower bound states that even if the
algorithm’s memory usage is a random variable which only has a small chance of being small (i.e. we allow
it to use arbitrarily large memory with large probability 1−

√
δ), it still cannot satisfy Eq. (1).

Theorem 3.1. Fix ε, δ ∈ (0, 1/2) and integer n. Let C be an approximate counter which outputs N̂ satisfying

P(|N − N̂ | > εN) < δ,

for all N ∈ {1, . . . , n}, and uses no more than S bits of space with probability at least
√
δ. We must have

S ≥ Ω(min{log n, log log n+ log(1/ε) + log log(1/δ)}).

The first observation is that conditioned on using no more than S bits of space, we have

P(|N − N̂ | > εN | use at most S bits) < δ/P(use at most S bits) ≤
√
δ.

Hence, we may assume that C always uses at most S bits of space, at the cost of increasing the failure
probability to

√
δ, which is inconsequential since the dependence on δ in the space bound is log log(1/δ).

In the following, we assume that C never uses more than S bits.
Let T = bmin{n/4,

√
log(1/δ)}c. Then for every N = 1, . . . , T/2, C outputs N̂ that is less than T

with probability 1−δ, and for everyN = 2T, 2T+1, . . . , 4T , C outputs N̂ that is at least T with probability
1−δ. In particular, C distinguishesN ∈ [1, T/2] andN ∈ [2T, 4T ] with probability 1−δ. In the following,
we show that any C that distinguishes the two cases with probability 1− δ must use Ω(log T ) bits of space.
We assume for contradiction that S ≤ 1

2 log T .
First, let us consider the following “derandomization” of C. C uses no more than S bits of space, hence,

it has at most 2S different memory states. When Init() is called, the algorithm generates a (possibly random)
initial memory state. Each time Increment() is called, the algorithm examines the current state and updates
the memory to a possibly different state (and possibly randomly). Let the “deterministic” version of the
algorithm Cdet have the same query algorithm as C, but when Init() or Increment() is called, it examines
the current state and the distribution of the new state (or the initial state) according to C; instead of updating
the memory according to this distribution, Cdet always updates it to the state with the highest probability in
this distribution (in case of tie, pick the lexicographically smallest).

Now let us analyze the error probability of Cdet. The initialization and increment algorithms are called
exactly N + 1 times in total. Since Cdet picks the state with the highest probability each time, which has
probability at least 2−S , the probability that the execution of C follows the exact same path as Cdet is at least(

2−S
)N+1

.

Therefore, conditioned on the execution of C following the same path, its error probability is at most

δ ·
(
2S
)N+1

.

When N ≤ 4T , it is at most

δ · T 2T+1/2 ≤ δ · (log(1/δ))
√

log(1/δ)+1/4 < 1/3.

That is, the error probability of Cdet is at most 1/3, for every N ∈ [1, T/2] ∪ [2T, 4T ].
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On the other hand, since both initialization and increment algorithms are deterministic, we may apply an
argument similar to the “pumping lemma” for DFAs. Since 2S ≤ T 1/2, there exists 1 ≤ N1 < N2 ≤ T/2
such that Cdet reaches the same memory state afterN1 orN2 increments. Again by the fact that the increment
algorithm is deterministic, Cdet must reach the same memory state after N1 + k(N2 −N1) increments, for
all integer k ≥ 0. In particular, there exists N3 ∈ [2T, 4T ] such that Cdet reaches this memory state after N3

increments. However, by the assumption of the algorithm, the query algorithm distinguishes between N1

increments and N3 increments with probability at least 2/3, which is impossible as the algorithm reaches
the same memory state in the two cases. This proves that S ≥ Ω(log T ), i.e.,

S ≥ Ω(min{log n, log log(1/δ)}). (7)

Finally, we show that S ≥ Ω(min{log n, log log n + log(1/ε)}) as long as δ ∈ (0,
√

1/2). Let Nj =⌈
(e16εj − 1)/ε

⌉
, and consider incrementing the counter Nj times for an unknown j. Observe that for j ≥ 0,

we have

(1− ε)Nj+1 − (1 + ε)Nj ≥ (1− ε)(e16ε(j+1) − 1)/ε− (1 + ε)(e16εj − 1)/ε− (1 + ε)

= ((1− ε)e16ε − (1 + ε))e16εj/ε− (3 + ε)

≥ ((1− ε)(1 + 16ε)− (1 + ε))/ε− (3 + ε)

= 11− 17ε

> 0.

Therefore, for every j ≥ 0 and j ≤ (1/16ε) ln(εn + 1) (hence, Nj ≤ n), C recovers j with probability
1 − δ > 1/5, if the counter is incremented Nj times. By fixing the random bits used by C, at least 1/5
fraction of such j is successfully recovered. The algorithm must reach a different final state for all such j,
implying that

2S ≥ 1

5
· (1/16ε) ln(εn+ 1) = Ω((1/ε) log(εn+ 1)).

When ε < 1/n, it is Ω((1/ε)(εn)) = Ω(n), and

S ≥ Ω(log n).

When ε ≥ 1/n, we have

S ≥ Ω(log(1/ε) + log log(εn)) = Ω(log(1/ε) + log log n).

In both cases, the bounds imply that

S ≥ Ω(min{log n, log logn+ log(1/ε)}). (8)

Finally, by combining (7) and (8), we conclude that

S ≥ Ω(min{log n, log log n+ log(1/ε) + log log(1/δ)}),

proving the claimed lower bound.

11



Figure 1: Results of experimental comparison of the Morris counter and a simplified version of the algorithm
of Subsection 2.1.

4 Philosophical digression: the value of implementation

We share in this section a historical note on the development of this work, which may serve the reader as
evidence of the value of implementation. Chronologically, we first developed and analyzed the algorithm
of Subsection 2.1 and proved the lower bound in Section 3. In the days afterward, excited by the prospect
of having a new and improved algorithm for such a fundamental problem, we implemented the Morris
Counter as well as (a simplified version of) the algorithm of Subsection 2.1 (and this simplified algorithm
is itself similar to the algorithm of [Csu10]) to compare. We ran several experiments. In one, we did the
following 5,000 times for each algorithm, parameterized to use only 17 bits of memory: pick a uniformly
random integer N ∈ [500000, 999999] (thus a 20-bit number) and perform N increments. The results
of this experiment are in Fig. 1. The orange plot represents our algorithm, and the blue plot is the Morris
Counter. For each respective algorithm’s color, a dot plotted at point (x, y) means that in x% of the trial runs
(out of 5,000), the relative multiplicative error of the algorithm’s estimate was y% or less. In other words,
we plotted the empirical CDFs of the relative errors of each algorithm. For example, the plot indicates that
neither algorithm ever had relative error more than 2.37% in 5,000 runs. The experimental results are plainly
apparent: the two algorithms’ empirical performances are nearly identical! Witnessing this plot convinced
us that the previously known analyses of the Morris Counter, an algorithm that has been known for over
40 years and taught in numerous courses, were most likely suboptimal and that the Morris Counter itself is
most likely an optimal algorithm for the problem. With the confidence gained from the experimental results,
we sought a new and improved analysis of the Morris Counter and succeeded. Thus it seems from this
anecdote, implementation can sometimes be valuable even for purely theoretical work.
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A Tweaking the Morris Counter is necessary

In this section we show that the modification from the vanilla Morris Counter to “Morris+” described in
Section 1 is necessary. Recall the modification: when using Morris(a), we maintain a deterministic counter
X ′ in parallel. During increments, we process the increment both by Morris(a) and by deterministically
incrementing X ′, unless its value is Na+ 1 in which case we do not alter it. During queries, if X ′ ≤ Na, we
return X ′; otherwise we return the estimator from Morris(a) based on X . We set Na = 8/a, as suggested
by the analysis in Subsection 2.2.
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We now show that if one does not modify the Morris Counter but simply uses Morris(a) for a =
ε2/(8 ln(1/δ)) as suggested in Subsection 2.2, then when δ < ε8/3c2/16, ε < 1/4 and the counter value
equals N = N ′a := cε4/3/a ≥ 2 for a constant c ≤ 2−8, the probability that the Morris Counter outputs an
estimator N̂ < (1−ε)N is much larger than δ. Note that our analysis requires switching from a deterministic
counter to the Morris Counter whenN ≥ Ω(1/a) and not Ω(ε4/3/a), but the impact on memory complexity
is at most a factor of three (and less as N grows): using a deterministic counter up until N = r requires
an additional dlog2 re bits. Thus the difference between r = c1/a versus r = c2ε

4/3/a is the difference
between log r = log(c1)+3+log log(1/δ)+2 log(1/ε) versus log r = log(c2)+log log(1/δ)+ 2

3 log(1/ε);
i.e. the dependence on log(1/ε) differs by a factor of three. Thus our analysis here shows that for small δ,
our choice of transition point r = 8/a from a deterministic counter to using the Morris Counter is almost
optimal, up to affecting the memory by a multiplicative factor of at most three.

We now show why Morris(a) will fail with probability much larger than δ. Consider the event E that the
Morris Counter increments X in the first t increment operations, and its value remains equal to t in the last
N−t increments, for t = bln(1+(1−2ε)ε4/3c)/ ln(1+a)c. Recall the estimator is N̂ = a−1((1+a)X−1).
Thus conditioned on E ,

N̂ =
1

a
·
(
(1 + a)t − 1

)
≤ 1

a
·
(

1 + (1− 2ε)ε4/3c− 1
)

= (1− 2ε)N

< (1− ε)N

On the other hand, note that t ≥ ln(1 + (1− 2ε)ε4/3c)/ ln(1 + a)− 1 ≥ 1
a ln(1 + (1− 2ε)ε4/3c)− 1,

and t ≤ N . The probability of E is at least

P[E ] =
t−1∏
i=0

(1 + a)−i ·
(
1− (1 + a)−t

)N−t
≥ (1 + a)−t

2 ·
(

1− (1 + a)
(

1 + (1− 2ε)ε4/3c
)−1

)N− 1
a

ln(1+(1−2ε)ε4/3c)+1

= (1 + a)−t
2 ·

(
1 + (1− 2ε)ε4/3c− (1 + a)

1 + (1− 2ε)ε4/3c

) 1
a(cε4/3−ln(1+(1−2ε)ε4/3c))+1

≥ (1 + a)−N
2 ·

(
ε4/3c

4

) 1
a(cε4/3−ln(1+(1−2ε)ε4/3c))+1

,
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which by the fact that ln(1 + x) ≤ x and ln(1 + x) ≥ x− x2/2 for x < 1, is

≥ ε4/3c

4
· e−aN2 ·

(
ε4/3c

4

) 1
a(cε4/3−(1−2ε)ε4/3c+((1−2ε)ε4/3c)2/2)

=
ε4/3c

4
· e−

1
a

(ε4/3c)2 · e−
ln(4/(ε4/3c))

a (2ε7/3c+ε8/3c2/2)

≥ ε4/3c

4
· e−

ε2

32a · e−
ε2

a (4ε1/3c ln(4/(ε4/3c))

≥ ε4/3c

4
· e−

ε2

16a

=
ε4/3c

4
·
√
δ.

When δ < ε8/3c2/16, this is larger than δ. Therefore, Morris(a) fails to provide a (1−ε)-approximation
for N with probability at least δ.
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