Normal polytopes and ellipsoids

Joseph Gubeladze

Department of Mathematics
San Francisco State University
1600 Holloway Ave.
San Francisco, CA 94132, U.S.A.
soso@sfsu.edu

Submitted: Mar 27, 2021; Accepted: Sep 25, 2021; Published: Oct 8, 2021
© The author. Released under the CC BY-ND license (International 4.0).

Abstract

We show that: (1) unimodular simplices in a lattice 3-polytope cover a neighborhood of the boundary of the polytope if and only if the polytope is very ample, (2) the convex hull of lattice points in every ellipsoid in \mathbb{R}^{3} has a unimodular cover, and (3) for every $d \geqslant 5$, there are ellipsoids in \mathbb{R}^{d}, such that the convex hulls of the lattice points in these ellipsoids are not even normal. Part (c) answers a question of Bruns, Michałek, and the author.

Mathematics Subject Classifications: 52B20, 11H06

1 Introduction

1.1 Main result

A convex polytope $P \subset \mathbb{R}^{d}$ is normal if it is lattice, i.e., has vertices in \mathbb{Z}^{d}, and satisfies the condition

$$
\forall c \in \mathbb{N} \quad \forall x \in(c P) \cap \mathbb{Z}^{d} \quad \exists x_{1}, \ldots, x_{c} \in P \cap \mathbb{Z}^{d} \quad x_{1}+\cdots+x_{c}=x
$$

A necessary condition for P to be normal is that the subgroup

$$
\operatorname{gp}(P):=\sum_{x, y \in P \cap \mathbb{Z}^{d}} \mathbb{Z}(x-y) \subset \mathbb{Z}^{d}
$$

must be a direct summand. Also, a face of a normal polytope is normal.
Normality is a central notion in toric geometry and combinatorial commutative algebra [7]. A weaker condition for lattice polytopes is very ample; see Section 1.2 for the definition. Normal polytopes define projectively normal embeddings of toric varieties whereas very ample polytopes correspond to normal projective varieties [3, Proposition 2.1].

A sufficient condition for a lattice polytope P to be normal is the existence of a unimodular cover, which means that P is a union of unimodular simplices. Unimodular covers play an important role in integer programming through their connection to the Integral Carathéodory Property [8, 12, 15].

There exist normal polytopes in dimensions $\geqslant 5$ without unimodular cover [6]. It is believed that all normal 3-polytopes have unimodular cover. But progress in this direction is scarce. Recent works $[4,11]$ show that all lattice 3 -dimensional parallelepipeds and centrally symmetric 3-polytopes with unimodular corners have unimodular cover.

The normality of the convex hull of lattice points in an ellipsoid naturally comes up in [9]. We consider general ellipsoids, neither centered at 0 nor aligned with the coordinate axes. According to [9, Theorem 6.5(c)], the convex hull of the lattice points in any ellipsoid $E \subset \mathbb{R}^{3}$ is normal. [9, Question $\left.7.2(\mathrm{~b})\right]$ asks whether this result extends to higher dimensional ellipsoids.

Here we prove the following
Theorem. Let $P \subset \mathbb{R}^{3}$ be a lattice polytope, $E \subset \mathbb{R}^{d}$ an ellipsoid, and $P(E)$ the convex hull of the lattice points in E.
(a) The unimodular simplices in P cover a neighborhood of the boundary ∂P in P if and only if P is very ample.
(b) If $d=3$ then the polytope $P(E)$ is covered by unimodular simplices.
(c) For every $d \geqslant 6$, there exists E such that $\operatorname{gp}(P(E))=\mathbb{Z}^{d}$ and $P(E)$ is not normal.

If in (c) we drop the condition $\operatorname{gp}(P(E))=\mathbb{Z}^{d}$, then ellipsoids $E \subset \mathbb{R}^{d}$ with $P(E)$ non-normal already exist for $d=5$; see Remark 7 .

1.2 Preliminaries

\mathbb{Z}_{+}and \mathbb{R}_{+}denote the sets of non-negative integers and reals, respectively.
The convex hull of a set $X \subset \mathbb{R}^{d}$ is denoted by $\operatorname{conv}(X)$. The relative interior of a convex set $X \subset \mathbb{R}^{d}$ is denoted by int X. The boundary of X is denoted by $\partial X=X \backslash \operatorname{int} X$.

Polytopes are assumed to be convex. For a polytope $P \subset \mathbb{R}^{d}$, its vertex set is denoted by vert (P).

A lattice n-simplex $\Delta=\operatorname{conv}\left(x_{0}, \ldots, x_{n}\right) \subset \mathbb{R}^{d}$ is unimodular if $\left\{x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right\}$ is a part of a basis of \mathbb{Z}^{d}.

A unimodular pyramid over a lattice polytope Q is a lattice polytope $P=\operatorname{conv}(v, Q)$, where the point v is not in the affine hull of Q and the lattice height of v above Q inside the affine hull of P equals 1 .

Cones C are assumed to be pointed, rational, and finitely generated, which means $C=\mathbb{R}_{+} x_{1}+\cdots+\mathbb{R}_{+} x_{k}$, where $x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}$ and C does not contain a nonzero linear subspace. For a cone $C \subset \mathbb{R}^{d}$, the smallest generating set of the additive submonoid $C \cap \mathbb{Z}^{d} \subset \mathbb{Z}^{d}$ consists of the indecomposable elements of this monoid. This is a finite set, called the Hilbert basis of C and denoted by $\operatorname{Hilb}(C)$. See [7, Chapter 2] for a detailed
discussion on Hilbert bases. For a lattice polytope $P \subset \mathbb{R}^{d}$, we have the inclusion of finite subsets of \mathbb{Z}^{d+1} :

$$
\left(P \cap \mathbb{Z}^{d}, 1\right) \subset \operatorname{Hilb}\left(\mathbb{R}_{+}(P, 1)\right) .
$$

This inclusion is an equality if and only if P is normal.
A lattice polytope P is very ample if $\operatorname{Hilb}\left(\mathbb{R}_{+}(P-v)\right) \subset P-v$ for every vertex $v \in \operatorname{vert}(P)$. All normal polytopes are very ample, but already in dimension 3 there are very ample non-normal polytopes [7, Exercise 2.24]. For a detailed analysis of the discrepancy between the two properties see [3].

For a cone $C \subset \mathbb{R}^{d}$, we say that C has a unimodular Hilbert triangulation (cover) if C can be triangulated (resp., covered) by cones of the form $\mathbb{R}_{+} x_{1}+\cdots+\mathbb{R} x_{n}$, where $\left\{x_{1}, \ldots, x_{n}\right\}$ is a part of a basis of \mathbb{Z}^{d} as well as of $\operatorname{Hilb}(C)$.

An ellipsoid $E \subset \mathbb{R}^{d}$ is a set of the form

$$
\left\{x \in \mathbb{R}^{d} \mid\left(l_{1}(x)-a_{1}\right)^{2}+\cdots+\left(l_{d}(x)-a_{d}\right)^{2}=1\right\} \subset \mathbb{R}^{d}
$$

where l_{1}, \ldots, l_{d} is a full-rank system of real linear forms and $a_{1}, \ldots, a_{d} \in \mathbb{R}^{d}$.
For a lattice polytope P, the union of unimodular simplices in P will be denoted by $U(P)$.

2 Unimodular covers close to the boundary

The following result of Sebő was later rediscovered in $[1,5]$ in a refined form in the context of toric varieties.

Theorem 1. ([16]) Every 3-dimensional cone C has a unimodular Hilbert triangulation.
Notice. There exist 4-dimensional cones without unimodular Hilbert triangulation [5] and it is not known whether all 4- and 5 -dimensional cones have unimodular Hilbert cover. According to [6], in all dimensions $\geqslant 6$ there are cones without unimodular Hilbert cover.

If $P \subset \mathbb{R}^{3}$ is very ample, then by Theorem 1 , for every $v \in \operatorname{vert}(P)$, the cone $\mathbb{R}_{+}(P-v)$ has a unimodular Hilbert triangulation:

$$
\mathbb{R}_{+}(P-v)=\bigcup_{T(v)} C_{t}
$$

where $T(v)$ is a finite index set, depending on v. In particular, the following unimodular simplices form a neighborhood of v in P :

$$
\Delta_{v, t}=\operatorname{conv}\left(\operatorname{Hilb}\left(C_{t}\right), 0\right)+v, \quad t \in T(v) .
$$

Also, lattice polygons have unimodular triangulation [7, Corollary 2.54]. Therefore, the following lemma completes the proof of Theorem (a):

Lemma 2. For a lattice polytope P of an arbitrary dimension, the following conditions are equivalent:
(a) $\mathrm{U}(P)$ is a neighborhood of ∂P within P;
(b) $\mathrm{U}(P)$ is a neighborhood within P of every vertex of P and $\partial P \subset \mathrm{U}(P)$.

Proof. The implication $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ is obvious.
For the opposite implication, let:
. $x \in \partial P$;
. F be the minimal face of P containing x;

- $v \in \operatorname{vert}(F) ;$
- T_{F} be a unimodular cover of F with $\operatorname{dim}(F)$-simplices, contained in F;
. T_{v} be a unimodular cover of a neighbourhood of v in P;
- $T_{v, F}$ be the sub-family of T_{v}, consisting of simplices that have a $\operatorname{dim}(F)$-dimensional intersection with F;
. T_{v} / F be the collection of faces of simplices in $T_{v, F}$, opposite to F (that is, from each simplex in $T_{v, F}$ remove the $\operatorname{dim}(F)+1$ vertices that lie in F, so that one is left with a $(\operatorname{dim}(P)-\operatorname{dim}(F))$-simplex).

Then, the collection of $\operatorname{conv}\left(T_{v} / F, T_{F}\right)$ covers a neighbourhood of x in P and consists of unimodular simplices.

3 Unimodular covers inside ellipsoids

3.1 Proof of Theorem (b)

The set of normal polytopes $P \subset \mathbb{R}^{d}$ carries a poset structure, where the order is generated by the elementary relation

$$
P \leqslant Q \text { if } P \subset Q \text { and } \#\left(Q \cap \mathbb{Z}^{d}\right)=\#\left(P \cap \mathbb{Z}^{d}\right)+1 .
$$

In [9] this poset is denoted by $\operatorname{NPol}(d)$. The trivial minimal elements of $\operatorname{NPol}(d)$ are the singletons from \mathbb{Z}^{d}. It is known that $\operatorname{NPol}(d)$ has nontrivial minimal elements for $d \geqslant 4[7$, Exercise 2.27] and the first maximal elements for $d=4,5$ were found in [9]. It is possible that $\operatorname{NPol}(d)$ has isolated elements for some d.

Computer searches so far have found neither maximal nor nontrivial minimal elements in $\mathrm{NPol}(3)$ [9]. The next lemma is yet another evidence that all normal 3-polytopes have unimodular cover.

Lemma 3. Let P be a normal 3-polytope. If $* \leqslant P$ in $\operatorname{NPol}(3)$ for a singleton $* \in \mathbb{Z}^{3}$ then $P=\mathrm{U}(P)$.

Proof. If $Q \leqslant P$ is an elementary relation in $\operatorname{NPol}(d)$ and $\operatorname{dim} Q<\operatorname{dim} P$ then P is a unimodular pyramid over Q. In this case every full-dimensional unimodular simplex $\Delta \subset P$ is the unimodular pyramid over a unimodular simplex in Q and with the same apex as P. On the other hand, lattice segments and polygons are unimodularly triangulable. Therefore, it is enough to show that a polytope $P \in \mathrm{NPol}(3)$ has a unimodular cover if there is a 3 -polytope $Q \in \operatorname{NPol}(3)$, such that Q has a unimodular cover and $Q \leqslant P$ is an elementary relation in $\operatorname{NPol}(3)$. Assume $\{v\}=\operatorname{vert}(P) \backslash Q$. By Theorem (a) we have the inclusion $P \backslash \mathrm{U}(P) \subset Q$. Since $Q=\mathrm{U}(Q)$ we have $P=\mathrm{U}(P)$.

Call a subset $\mathcal{E} \subset \mathbb{Z}^{d}$ ellipsoidal and a point $v \in \mathcal{E}$ extremal if there is an ellipsoid $E \subset \mathbb{R}^{d}$, such that $\mathcal{E}=\operatorname{conv}(E) \cap \mathbb{Z}^{d}$ and $v \in E$.

Lemma 4. Let $\mathcal{E} \subset \mathbb{R}^{d}$ be an ellipsoidal set. Then \mathcal{E} has an extremal point and $\mathcal{E} \backslash\{v\}$ is also ellipsoidal for every extremal point $v \in \mathcal{E}$.

Proof. Let $\mathcal{E}=\operatorname{conv}(E) \cap \mathbb{Z}^{d}$ for an ellipsoid $E \subset \mathbb{R}^{d}$. Applying an appropriate homothetic contraction, centered at the center of E, we can always achieve $\mathcal{E} \cap E \neq \emptyset$. In particular, \mathcal{E} has an extremal point. For $v \in \mathcal{E} \cap E$, after changing E to its homothetic image with factor $(1+\varepsilon)$ and centered at v, where ε is a sufficiently small positive real number, we can further assume $\mathcal{E} \cap E=\{v\}$. Finally, applying a parallel translation to E by $\delta(z-v)$, where z is the center of E and $\delta>0$ is a sufficiently small real number, we achieve $\operatorname{conv}(E) \cap \mathbb{Z}^{d}=\mathcal{E} \backslash\{v\}$.

Next we complete the proof of Theorem (b). It follows from Lemma 3.2 that, for any natural number d and an ellipsoidal set $\mathcal{E} \subset \mathbb{Z}^{d}$, there is a descending sequence of ellipsoidal sets of the form

$$
\mathcal{E}=\mathcal{E}_{k} \supset \mathcal{E}_{k-1} \supset \cdots \supset \mathcal{E}_{1}, \text { with } \# \mathcal{E}_{i}=i \text { for } i=1, \ldots, k
$$

By [9, Theorem $6.5(\mathrm{c})$], for $d=3$, the $\operatorname{conv}\left(\mathcal{E}_{i}\right)$ are normal polytopes. Therefore, $* \leqslant \operatorname{conv}(\mathcal{E})$ in $\operatorname{NPol}(3)$ for some $* \in \mathbb{Z}^{3}$. Thus Lemma 3 applies.

3.2 Alternative algorithmic proof in symmetric case

For the ellipsoids E with center in $\frac{1}{2} \mathbb{Z}^{3}$, there is a different proof of Theorem (b). It yields a simple algorithm for constructing a unimodular cover of $P(E)$.

Instead of Theorem 1 and [9, Theorem 6.5] this approach uses Johnson's 1916 Circle Theorem [13, 14]. We only need Johnson's theorem to derive the following fact, which does not extend to higher dimensions: for any lattice $\Lambda \subset \mathbb{R}^{2}$ and any ellipse $E^{\prime} \subset \mathbb{R}^{2}$, such that $\operatorname{conv}\left(E^{\prime}\right)$ contains a triangle with vertices in Λ, every parallel translate conv $\left(E^{\prime}\right)+v$, where $v \in \mathbb{R}^{2}$, meets Λ.

Assume an ellipsoid $E \subset \mathbb{R}^{3}$ has center in $\frac{1}{2} \mathbb{Z}^{3}$ and $\operatorname{dim}(P(E))=3$ (notation as in the theorem). Assume $\mathrm{U}(P(E)) \varsubsetneqq P(E)$. Because $\partial P(E)$ is triangulated by unimodular
triangles, there is a unimodular triangle $T \subset P(E)$, not necessarily in $\partial P(E)$, and a point $x \in \operatorname{int} T$, such that the points in $[0, x]$, sufficiently close to x, are not in $\mathrm{U}(P(E))$. For the plane, parallel to T on lattice height 1 above T and on the same side as 0 , the intersection $E^{\prime}=\operatorname{conv}(E) \cap H$ is at least as large as the intersection of $\operatorname{conv}(E)$ with the affine hull of T : a consequence of the fact that $P(E) \cap \mathbb{Z}^{3}$ is symmetric relative to the center of E. The mentioned consequence of Johnson's theorem implies that $\operatorname{conv}\left(E^{\prime}\right)$ contains a point $z \in \mathbb{Z}^{3}$. In particular, all points in $[x, 0]$, sufficiently close to x are in the unimodular simplex $\operatorname{conv}(T, z) \subset P(E)$, a contradiction.

4 High dimensional ellipsoids

For a lattice $\Lambda \subset \mathbb{R}^{d}$, define a Λ-polytope as a polytope $P \subset \mathbb{R}^{d}$ with $\operatorname{vert}(P) \subset \Lambda$. Using Λ as the lattice of reference instead of \mathbb{Z}^{d}, one similarly defines Λ-normal polytopes and Λ-ellipsoidal sets.

Consider the lattice $\Lambda(d)=\mathbb{Z}^{d}+\mathbb{Z}\left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \subset \mathbb{R}^{d}$. We have $\left[\mathbb{Z}^{d}: \Lambda(d)\right]=2$. Consider the $\Lambda(d)$-polytope $P(d)=\operatorname{conv}(\mathrm{B}(d) \cap \Lambda(d))$, where $\mathrm{B}(d)=\left\{\left(\xi_{1}, \ldots, \xi_{d}\right) \mid \sum_{i=1}^{d}\left(\xi_{i}-\right.\right.$ $\left.\left.\frac{1}{2}\right)^{2} \leqslant \frac{d}{4}\right\} \subset \mathbb{R}^{d}$, i.e., $\partial(\mathrm{B}(d))$ is the circumscribed sphere for the cube $[0,1]^{d}$.

Consider the d-dimensional $\Lambda(d)$-polytope and the $(d-1)$-dimensional $\Lambda(d)$-simplex:

$$
\begin{aligned}
& Q(d)=\operatorname{conv}\left((P(d) \cap \Lambda(d)) \backslash\left\{\mathbf{e}_{1}+\cdots+\mathbf{e}_{d}\right\}\right), \\
& \Delta(d-1)=\operatorname{conv}\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{i-1}+\mathbf{e}_{i+1}+\cdots+\mathbf{e}_{d} \mid i=1, \ldots, d\right),
\end{aligned}
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d} \in \mathbb{R}^{d}$ are the standard basic vectors.
Notice. Although $P(d) \cap \mathbb{Z}^{d}=\{0,1\}^{d}$ for all d, yet $[0,1]^{d} \varsubsetneqq P(d)$ for all $d \geqslant 4$. In fact, $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)+k \mathbf{e}_{i} \in P(d) \cap \Lambda(d)$ for $1 \leqslant i \leqslant d$ and $-\left\lceil\frac{\sqrt{d}}{2}\right\rceil \leqslant k \leqslant\left\lfloor\frac{\sqrt{d}}{2}\right\rfloor$.

Lemma 5. If $d \geqslant 5$ then $\Delta(d-1)$ is a facet of $Q(d)$ and $\Delta(d-1) \cap \Lambda(d)=\operatorname{vert}(\Delta(d-1))$.
Proof. Assume $x=\left(\xi_{1}, \ldots, \xi_{d}\right) \in P(d) \cap \Lambda(d)$ satisfies $\xi_{1}+\cdots+\xi_{d} \geqslant d-1$. We claim that there are only two possibilities: either $x=\mathbf{e}_{1}+\cdots+\mathbf{e}_{d}$ or $x=\mathbf{e}_{1}+\cdots+\mathbf{e}_{i-1}+\mathbf{e}_{i+1}+\cdots+\mathbf{e}_{d}$ for some index i. Since $P(d) \cap \mathbb{Z}^{d}=\{0,1\}^{d}$, only the case $x \in\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)+\mathbb{Z}^{d}$ needs to be ruled out. Assume $\xi_{i}=\frac{1}{2}+a_{i}$ for some integers a_{i}, where $i=1, \ldots, d$. Then we have the inequalities

$$
\sum_{i=1}^{d} a_{i}^{2} \leqslant \frac{d}{4} \quad \text { and } \quad \sum_{i=1}^{d} a_{i} \geqslant \frac{d}{2}-1 .
$$

Since the a_{i} are integers we have $\frac{d}{4} \geqslant \frac{d}{2}-1$, a contradiction because $d \geqslant 5$.
Lemma 6. For every even natural number $d \geqslant 6$, there exists a point in $\left(\frac{d}{2} \cdot Q(d)\right) \cap \Lambda(d)$ which does not have a representation of the form $x_{1}+\cdots+x_{\frac{d}{2}}$ with $x_{1}, \ldots, x_{\frac{d}{2}} \in Q(d) \cap \Lambda(d)$. In particular, $Q(d)$ is not $\Lambda(d)$-normal.

Proof. Consider the baricenter $\beta(d)=\frac{d-1}{d} \cdot\left(\mathbf{e}_{1}+\cdots+\mathbf{e}_{d}\right)$ of $\Delta(d-1)$. The point $\frac{d}{2} \cdot \beta(d)$ is the baricenter of the dilated simplex $\frac{d}{2} \cdot \Delta(d-1)$ and, simultaneously, a point in $\Lambda(d)$. Assume $\frac{d}{2} \cdot \beta=x_{1}+\cdots+x_{\frac{d}{2}}$ for some $x_{1}, \ldots, x_{\frac{d}{2}} \in Q(d) \cap \Lambda(d)$. Lemma 5 implies $x_{1}, \ldots, x_{\frac{d}{2}} \in \Delta(d-1) \cap \Lambda(d)=\operatorname{vert}(\Delta(d-1))$. But this is not possible because the dilated $\left({ }^{2} d-1\right)$-simplex $c \Delta(d-1)$ has an interior point of the form $z_{1}+\cdots+z_{c}$ with $z_{1}, \ldots, z_{c} \in \operatorname{vert}(\Delta(d-1))$ only if $c \geqslant d$.

Proof of Theorem (c). Since $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d},\left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \in Q(d)$ we have the equality $\operatorname{gp}(Q(d))=$ $\Lambda(d)$. By Lemmas 4 and 5 , the set $Q(d) \cap \Lambda(d)$ is $\Lambda(d)$-ellipsoidal for $d \geqslant 5$. By applying a linear transformation, mapping $\Lambda(d)$ isomorphically to \mathbb{Z}^{d}, Lemma 6 already implies Theorem (c) for d even.

One involves all dimensions $d \geqslant 6$ by observing that (i) if $\mathcal{E} \subset \mathbb{R}^{d}$ is an ellipsoidal set then $\mathcal{E} \times\{0,1\} \subset \mathbb{R}^{d+1}$ is also ellipsoidal and (ii) the normality of $\operatorname{conv}(\mathcal{E} \times\{0,1\})$ implies that of $\operatorname{conv}(\mathcal{E})$. While (ii) is straightforward, for (i) one applies an appropriate affine transformation to achieve $\mathcal{E}=\operatorname{conv}\left(S^{d-1}\right) \cap \Lambda$, where $S^{d-1} \subset \mathbb{R}^{d}$ is the unit sphere, and $\Lambda \subset \mathbb{R}^{d}$ is a shifted lattice. In this case the ellipsoid $E=\left\{\left(\xi_{1}, \ldots, \xi_{d}\right) \left\lvert\, \frac{\xi_{1}^{2}}{a^{2}}+\right.\right.$ $\left.\cdots+\frac{\xi_{d-1}^{2}}{a^{2}}+\frac{\xi_{d}^{2}}{a^{2}}+\frac{\left(\xi_{d+1}-\frac{1}{2}\right)^{2}}{b^{2}}=1\right\} \subset \mathbb{R}^{d+1}$ with $b>\frac{1}{2}$ and $a=\frac{2 b}{\sqrt{4 b^{2}-1}}$, is within the $\left(b-\frac{1}{2}\right)$-neighborhood of the region of \mathbb{R}^{d+1} between the hyperplanes $\left(\mathbb{R}^{d}, 0\right)$ and $\left(\mathbb{R}^{d}, 1\right)$ and satisfies the following conditions: $E \cap\left(\mathbb{R}^{d}, 0\right)=\left(S^{d-1}, 0\right)$ and $E \cap\left(\mathbb{R}^{d}, 1\right)=\left(S^{d-1}, 1\right)$. In particular, when $\frac{1}{2}<b<\frac{3}{2}$ we have $\operatorname{conv}(E) \cap(\Lambda \times \mathbb{Z})=\mathcal{E} \times\{0,1\}$.
Remark 7. The definition of a normal polytope in the introduction is stronger than the one in [7, Definition 2.59]: the former is equivalent to the notion of an integrally closed polytope, whereas 'normal' in the sense of $[7]$ is equivalent to $\mathrm{gp}(P)$-normal. Examples of $\mathrm{gp}(P)$-normal polytopes, which are not normal, are lattice non-unimodular simplices, whose only lattice points are the vertices. Lemma 5 and the proof of Lemma 6 show that the 5 -simplex $\Delta(5)$ is not $\Lambda(6)$-unimodular. Applying an appropriate affine transformation we obtain a lattice non-unimodular simplices $\Delta^{\prime} \subset \mathbb{R}^{5}$ with vert $\left(\Delta^{\prime}\right)$ ellipsoidal. Such examples in \mathbb{R}^{5} have been known sine the 1970s: a construction of Voronoi [2] yields a lattice $\Lambda \subset \mathbb{R}^{5}$ and a 5 -simplex $\Delta \subset \mathbb{R}^{5}$ of Λ-multiplicity 2 , whose circumscribed sphere does not contain points of Λ inside except vert(Δ).

We do not know whether there are ellipsoidal subsets $\mathcal{E} \subset \mathbb{R}^{5}$ with $\operatorname{conv}(\mathcal{E})$ non-normal and $\operatorname{gp}(\operatorname{conv}(\mathcal{E}))=\mathbb{Z}^{5}$. For instance, $Q(5)$ is $\Lambda(5)$-normal, as checked by Normaliz [10].

Acknowledgments

We thank the referees for the streamlined version of the original proof of Theorem (a), bringing [2] to our attention, and spotting several inaccuracies.

References

[1] Stefano Aguzzoli and Daniele Mundici. An algorithmic desingularization of 3dimensional toric varieties. Tohoku Math. J. (2), 46(4):557-572, 1994. DOI: 10.2748/tmj/1178225680.
[2] E. P. Baranovskiǐ. Volumes of L-simplexes of five-dimensional lattices. Mat. Zametki, 13:771-782, 1973. DOI: $10.1007 /$ BF01147478.
[3] Matthias Beck, Jessica Delgado, Joseph Gubeladze, and Mateusz Michałek. Very ample and Koszul segmental fibrations. J. Algebraic Combin., 42(1):165-182, 2015. DOI: 10.1007/s10801-014-0577-7.
[4] Matthias Beck, Christian Haase, Akihiro Higashitani, Johannes Hofscheier, Katharina Jochemko, Lukas Katthän, and Mateusz Michałek. Smooth centrally symmetric polytopes in dimension 3 are IDP. Ann. Comb., 23(2):255-262, 2019. DOI: 10.1007/s00026-019-00418-x.
[5] Catherine Bouvier and Gérard Gonzalez-Sprinberg. Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques. Tohoku Math. J. (2), 47(1):125-149, 1995. DOI: $10.2748 / \mathrm{tmj} / 1178225640$.
[6] Winfried Bruns and Joseph Gubeladze. Normality and covering properties of affine semigroups. J. Reine Angew. Math., 510:161-178, 1999. DOI: 10.1515/crll. 1999. 044.
[7] Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and K-theory. Springer Monographs in Mathematics. Springer-Verlag, New York, 2009. DOI: 10.1007/b105283.
[8] Winfried Bruns, Joseph Gubeladze, Martin Henk, Alexander Martin, and Robert Weismantel. A counterexample to an integer analogue of Carathéodory's theorem. J. Reine Angew. Math., 510:179-185, 1999. DOI: 10.1515/crll.1999.045.
[9] Winfried Bruns, Joseph Gubeladze, and Mateusz Michałek. Quantum Jumps of Normal Polytopes. Discrete Comput. Geom., 56(1):181-215, 2016. DOI: 10.1007/s00454-016-9773-7.
[10] Winfried Bruns, Bogdan Ichim, Tim Römer, and Christof Söger. Normaliz. Available from http://www.math.uos.de/normaliz/.
[11] Giulia Codenotti and Francisco Santos. Unimodular covers of 3-dimensional parallepipeds and Caley sums. Preprint, arXiv:1907.12312.
[12] William Cook, Jean Fonlupt, and Alexander Schrijver. An integer analogue of Carathéodory's theorem. J. Combin. Theory Ser. B, 40(1):63-70, 1986. DOI: 10.1016/0095-8956(86) 90064-X.
[13] Frank Jackson and Eric W. Weisstein. Johnson circles. https://mathworld. wolfram.com/JohnsonCircles.html.
[14] Roger A. Johnson. A Circle Theorem. Amer. Math. Monthly, 23(5):161-162, 1916. DOI: 10.1080/00029890.1916.11998200.
[15] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathematics. John Wiley \& Sons, Ltd., Chichester, 1986. A WileyInterscience Publication.
[16] Andras Sebő. Hilbert bases, Carathéodory's theorem and combinatorial optimization. Proc. of the IPCO conference (Waterloo, Canada), pages 431-455, 1990.

