Note

A new proof of Balinski's theorem on the connectivity of polytopes

Guillermo Pineda-Villavicencio*
Centre for Informatics and Applied Optimisation, Federation University, Australia
School of Information Technology, Deakin University, Geelong, Australia

ARTICLE INFO

Article history:

Received 10 September 2020
Accepted 26 March 2021
Available online 13 April 2021

Keywords:

Polytope
Connectivity
Separator
Balinski's theorem
Boundary complex
Link

Abstract

Balinski (1961) proved that the graph of a d-dimensional convex polytope is d-connected. We provide a new proof of this result. Our proof provides details on the nature of a separating set with exactly d vertices; some of which appear to be new.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A (convex) polytope is the convex hull of a finite set X of points in \mathbb{R}^{d}; the convex hull of X is the smallest convex set containing X. The dimension of a polytope in \mathbb{R}^{d} is one less than the maximum number of affinely independent points in the polytope; a set of points $\vec{p}_{1}, \ldots, \vec{p}_{k}$ in \mathbb{R}^{d} is affinely independent if the $k-1$ vectors $\vec{p}_{1}-\vec{p}_{k}, \ldots, \vec{p}_{k-1}-\vec{p}_{k}$ are linearly independent. A polytope of dimension d is referred to as a d-polytope.

A polytope is structured around other polytopes, its faces. A face of a polytope P in \mathbb{R}^{d} is P itself, or the intersection of P with a hyperplane in \mathbb{R}^{d} that contains P in one of its closed halfspaces. A face of dimension 0,1 , and $d-1$ in a d-polytope is a vertex, an edge, and a facet, respectively. The set of vertices and edges of a polytope or a graph are denoted by V and E, respectively. The graph $G(P)$ of a polytope P is the abstract graph with vertex set $V(P)$ and edge set $E(P)$.

A graph with at least $d+1$ vertices is d-connected if removing any $d-1$ vertices leaves a connected subgraph. Balinski [1] showed that the graph of a d-polytope is d-connected. His proof considers a hyperplane in \mathbb{R}^{d} passing through a set of $d-1$ vertices of a d-polytope, and so do the proofs of Grünbaum [9, Thm. 11.3.2], Ziegler [12, Thm. 3.14], and Brøndsted [4, Thm. 15.6]. Such proofs yield a geometric structure of separators in the graph of the polytope (Lemma 1). A set X of vertices in a graph G separates two vertices x, y if every path in G between x and y contains an element of X, and $x, y \notin X$. And X separates G if it separates two vertices of G. A separating set of vertices is a separator and a separator of cardinality r is an r-separator.

Lemma 1. Let P be a d-polytope in \mathbb{R}^{d} and let H be a hyperplane in \mathbb{R}^{d}. If X is a proper subset of $H \cap V(P)$, then removing X does not disconnect $G(P)$. In particular, a separator of $G(P)$ with exactly d vertices must form an affinely independent set in \mathbb{R}^{d}.

[^0]

Fig. 1. The link of a vertex in the four-dimensional cube, the convex hull of the 2^{4} vectors $(\pm 1, \pm 1, \pm 1, \pm 1)$ in \mathbb{R}^{4}. (a) The four-dimensional cube with a vertex x highlighted. (b) The link of the vertex x in the cube. (c) The link of the vertex x as the boundary complex of the rhombic dodecahedron (Proposition 2).

Other proofs with a geometric flavour were given by Brøndsted and Maxwell [5] and Barnette [3]. Our proof has a more combinatorial nature, relying on certain polytopal complexes in a polytope. Another combinatorial proof, based on a different idea, can be found in [2].

The boundary complex of a polytope P is the set of faces of P other than P itself. And the link of a vertex x in P, denoted $\operatorname{lk}(x)$, is the set of faces of P that do not contain x but lie in a facet of P that contains x (Fig. 1(b)). We require a result from Ziegler [12].

Proposition 2 (Ziegler [12, Ex. 8.6]). Let P be a d-polytope. Then the link of a vertex in P is combinatorially isomorphic to the boundary complex of $a(d-1)$-polytope. In particular, for each $d \geqslant 3$, the graph of the link of a vertex is isomorphic to the graph of a $(d-1)$-polytope.

We proved Proposition 2 in Bui et al. [6, Prop. 12] and exemplified it in Fig. 1. In this paper, we prove the following. The part about links appears to be new.

Theorem 3. For $d \geqslant 1$, the graph of d-polytope P is d-connected. Besides, for each $d \geqslant 3$, each vertex x in a d-separator X of $G(P)$ lies in the link of every other vertex of X, and the set $X \backslash\{x\}$ is a separator of the link of x.

As a corollary, we get a known result on d-separators in simplicial d-polytopes [8, p. 509]; see Corollary 4. A polytope is simplicial if all its facets are simplices, and a d-simplex is a d-polytope whose $d+1$ vertices form an affinely independent set in \mathbb{R}^{d}. An empty $(d-1)$-simplex in a d-polytope P is a set of d vertices of P that does not form a face of P but every proper subset does. An empty $(d-1)$-simplex is also called a missing $(d-1)$-simplex.

Corollary 4. Let P be a simplicial d-polytope with $d \geqslant 2$. A d-separator of $G(P)$ forms an empty ($d-1$)-simplex of P.
We remark that the paragraph after Balinski's theorem in Goodman et al. [8, p. 509] is meant to concern only simplicial d-polytopes, and not d-polytopes in general. While it is true that a d-separator of the graph of a d-polytope must form an affinely independent set in \mathbb{R}^{d}, it is not true that it must form an empty simplex. Take, for instance, the neighbours of a vertex in a d-dimensional cube (Fig. 1(a)).

We follow [7] for the graph theoretical terminology that we have not defined.

2. Proofs of Theorem 3 and Corollary 4

A path between vertices x and y in a graph is an $x-y$ path, and two $x-y$ paths are independent if they share no inner vertex. For a path $L:=x_{0} \ldots x_{n}$ and for $0 \leqslant i \leqslant j \leqslant n$, we write $x_{i} L x_{j}$ to denote the subpath $x_{i} \ldots x_{j}$. We require a theorem of Whitney [11] and one of Menger [10].

Theorem 5 (Whitney [11]). Let G be a graph with at least one pair of nonadjacent vertices. Then there is a minimum separator of G disconnecting two nonadjacent vertices.

Theorem 6 (Menger [10]). Let G be a graph, and let x and y be two nonadjacent vertices. Then the minimum number of vertices separating x from y in G equals the maximum number of independent $x-y$ paths in G.

Proof of Theorem 3. Let P be a d-polytope and let G be its graph. Then G has at least $d+1$ vertices. If G is a complete graph, there is nothing to prove, and suppose otherwise. In this case, G has at least one pair of nonadjacent vertices. For
$d=2, G$ is d-connected. And so induct on d, assuming that $d \geqslant 3$ and that the theorem is true for $d-1$. Let X be a separator in G of minimum cardinality, and let y and z be vertices separated by X. Then $y, z \notin X$. According to Whitney's theorem (Theorem 5), there is a minimum separator of G disconnecting two nonadjacent vertices. Hence we may assume that y and z are nonadjacent, and by Menger's theorem (Theorem 6), that there are $|X|$ independent $y-z$ paths in G, each containing precisely one vertex from X. Let L be one such $y-z$ paths and let x be the vertex in $X \cap V(L)$; say that $L=u_{1} \ldots u_{m}$ such that $y=u_{1}, u_{j}=x$, and $u_{m}=z$.

The graph G_{x} of the link of x in P is isomorphic to the graph of a ($d-1$)-polytope (Proposition 2), and by the induction hypothesis it is ($d-1$)-connected. The neighbours of x are all part of $\operatorname{lk}(x)$, and so $u_{j-1}, u_{j+1} \in G_{x}$. Again, from Menger's theorem follows the existence of at least $d-1$ independent $u_{j-1}-u_{j+1}$ paths in G_{x}. We must have that $X \backslash\{x\}$ separates u_{j-1} from u_{j+1} in G_{x}, since X separates y from z. Hence $|X \backslash\{x\}| \geqslant d-1$, which establishes that G is d-connected.

Finally, let $d \geqslant 3$ and suppose X is a d-separator of G. As stated above, the set $X \backslash\{x\}$, of cardinality $d-1$, separates G_{x}, implying that $X \backslash\{x\} \subseteq V\left(G_{x}\right)$. The aforementioned path L was arbitrary among the $y-z$ paths separated by X, and each such path contains a unique vertex of X. It follows that every vertex in X is in the link of every other vertex of X, which concludes the proof of the theorem.

Proof of Corollary 4. Let P be a simplicial d-polytope and let G be its graph. Suppose that X is a d-separator of G, that x is a vertex of X, and that G_{x} is the graph of the link of x in P.

A simplicial 2-polytope is a polygon and a 2-separator in it satisfies the corollary. So assume that $d \geqslant 3$. From Theorem 3, it follows that every vertex in X is in the link of every other vertex of X, and that $X \backslash\{x\}$ is a ($d-1$)-separator of G_{x}. Consequently, the subgraph $G[X]$ of G induced by X is a complete graph, as the set of neighbours of each vertex in P coincides with the vertex set of the link of the vertex.

If $d=3$, then, from $G[X]$ being a complete graph, it follows that it is an empty 2 -simplex. And so an inductive argument on d can start. Assume that $d \geqslant 4$. From the definition of a link and Proposition 2, we obtain that $\operatorname{lk}(x)$ is combinatorially isomorphic to the boundary complex of a simplicial ($d-1$)-polytope.

By the induction hypothesis on $\operatorname{lk}(x)$, every proper subset of $X \backslash\{x\}$ forms a face F of $\operatorname{lk}(x)$. And from the definition of $\operatorname{lk}(x)$, that face F lies in a facet of P containing x, a $(d-1)$-simplex containing x. As a consequence, if F is a face of dimension k, then the set $\operatorname{conv}(F \cup\{x\})$ is a face of P of dimension $k+1$. Since the vertex x of X was taken arbitrarily, the corollary ensues.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M.L. Balinski, On the graph structure of convex polyhedra in n-space, Pac. J. Appl. Math. 11 (1961) 431-434.
[2] D.W. Barnette, Graph theorems for manifolds, Israel J. Math. 16 (1973) 62-72.
[3] D.W. Barnette, A short proof of the d-connectedness of d-polytopes, Discrete Math. 137 (1-3) (1995) 351-352.
[4] A. Brøndsted, An Introduction to Convex Polytopes, in: Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983.
[5] A. Brøndsted, G. Maxwell, A new proof of the d-connectedness of d-polytopes, Canad. Math. Bull. 32 (2) (1989) 252-254.
[6] H.T. Bui, G. Pineda-Villavicencio, J. Ugon, The linkedness of cubical polytopes, (2018). arXiv:1802.09230.
[7] R. Diestel, Graph Theory, 5th edition, in: Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2017.
[8] J.E. Goodman, J. O’Rourke, C.D. Tóth (Eds.), Handbook of Discrete and Computational Geometry, 3rd edition, Chapman \& Hall/CRC, Boca Raton, FL, 2017.
[9] B. Grünbaum, Convex Polytopes, 2nd edition, in: Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003, Prepared and with a preface by V. Kaibel, V. Klee and G. M. Ziegler.
[10] K. Menger, Zur allgemeinen kurventheorie, Fundamenta Mathematicae. 10 (1) (1927) 96-115.
[11] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1) (1932) 150-168.
[12] G.M. Ziegler, Lectures on Polytopes, in: Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

[^0]: * Correspondence to: School of Information Technology, Deakin University, Geelong, Australia.

 E-mail address: work@guillermo.com.au.

