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a b s t r a c t

Following a given ordering of the edges of a graph G, the greedy edge colouring
procedure assigns to each edge the smallest available colour. The minimum number
of colours thus involved is the chromatic index χ ′(G), and the maximum is the so-
called Grundy chromatic index. Here, we are interested in the restricted case where the
ordering of the edges builds the graph in a connected fashion. Let χ ′

c (G) be the minimum
number of colours involved following such an ordering. We show that it is NP-hard to
determine whether χ ′

c (G) > χ ′(G). We prove that χ ′(G) = χ ′
c (G) if G is bipartite, and

that χ ′
c (G) ≤ 4 if G is subcubic.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A naive way to colour the vertices of a graph is to consider them one by one and to colour each vertex with the
mallest colour that does not appear on any neighbour of it. More formally, let G be a graph and O = (v1, . . . , vn) be
linear ordering of its vertices. The greedy colouring of G following O is the colouring α of G obtained by colouring vi
ith the smallest colour k such that there is no vj ∈ N(vi) with j < i and α(vj) = k, for i from 1 to n. The maximum

number of colours that can be used using a greedy procedure is called the Grundy number, and computing this value
can be a convenient way to bound any heuristic used to colour a graph (see [2] and [7]). Finding a good ordering of the
vertices can indeed seem like an easier way to find a colouring with not ‘‘too many’’ colours. However, if we choose a bad
ordering then the difference between the number of colours involved in a greedy colouring and the chromatic number
can be arbitrary large, even for trees.

On the other hand, note that there is always an ordering O of the vertices of a graph G such that the greedy colouring
following O involves the optimal number of colours, i.e. χ (G). The argument is simple: consider a χ (G)-colouring α of
G, and put first all the vertices coloured 1 in α, then all the vertices coloured 2, etc. The greedy colouring following this
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ordering might not be exactly the same as α, but it will use χ (G) colours in total. Nevertheless, finding such an ordering
s equivalent to directly computing an optimal colouring, so this is not a helpful approach.

A more interesting approach is through connected orderings. A connected ordering is an ordering where each vertex
except the first one) has one of its neighbours as predecessor – in other words, G[{v1, . . . , vi}] is connected for every
. Note that disconnected graphs do not admit a connected ordering: throughout this paper we only consider connected
raphs. Indeed, for colouring purposes, one can simply handle each connected component independently. The minimum
umber of colours used by the greedy procedure when following a connected ordering is called the connected chromatic
umber of G and is denoted χc(G). Surprisingly, the connected chromatic number behaves similarly to the chromatic
umber. In fact, Benevides, Campos, Dourado, Griffiths, Morris, Sampaio and Silva [1] proved that χc(G) ≤ χ (G) + 1 for
very graph G.
Edge colouring is a special case of vertex colouring which typically displays significantly meeker behaviour. Indeed,

hile the chromatic number can vary wildly between the best-known lower bounds and best-known upper bounds, Vizing
roved in 1964 [6] that the number of colours needed to colour the edges of a graph G can only be either ∆(G) or ∆(G)+1,
here ∆(G) is the maximum degree of G. The minimum number of colours needed to colour the edges of a graph G such
hat any two incident edges have different colours is the chromatic index of G, denoted χ ′(G). Colouring the edges of a
raph G corresponds to colouring the vertices of its so-called line graph, where the vertices are E(G) and two vertices are
djacent if the corresponding edges are incident in G.
Given that edge colouring is a special case of vertex colouring, all the notions discussed earlier extend naturally. Let us

enote by χ ′
c(G) the connected greedy chromatic index of G. The goal of this paper is to study this parameter. By considering

ertex colourings of the line graph of G, we obtain χ ′(G) ≤ χ ′
c(G) ≤ χ ′(G)+1. In the case of vertex colouring, it is NP-hard

o decide whether χc(G) = χ (G) [1]. To the best of our knowledge it is unknown whether this extends to edge colouring,
nd even whether χ ′(G) and χ ′

c(G) can differ. It is however known that χ (G) and χc(G) can differ on claw-free graphs [3].
Our first contribution is to prove that deciding χ ′

c(G) = χ ′(G) is NP-hard, even for graphs of small maximum degree
atisfying χ ′(G) = ∆(G).

heorem 1. For all ∆ ≥ 4, it is NP-hard to decide whether χ ′(G) = χ ′
c(G) on the class of graphs with chromatic index ∆.

Our proof also provides an example of a graph G with χ ′
c(G) > χ ′(G) of maximum degree 3. When G is a connected

raph of maximum degree 2, then G is a path or a cycle and it is easy to see that χ ′
c(G) = χ ′(G).

In the vertex case, 2 = χ (G) = χc(G) when G is bipartite [1]. We show that for bipartite graphs optimal connected
orderings also exist in the edge case.

Theorem 2. If G is bipartite, then χ ′
c(G) = χ ′(G).

The key argument in the proof of Vizing’s theorem is to start from a non-optimal colouring and to reconfigure it to
decrease the number of colours used. The reconfiguration step used in the proof, the Kempe change, was first introduced
by Kempe in his attempt to prove the four colour theorem and since has become a standard and widely used tool to study
colourings as it was proven to often be a fruitful approach.

More formally, an (i, j)-Kempe chain is a connected component of the subgraph induced by the edges coloured i or
j, and a Kempe change consists of switching the colours of the edges in this component. Note that after switching the
colours, the colouring is still proper. Moreover, contrary to the case of vertex colouring, when considering edge colouring,
Kempe chains have a much more restrained structure as they can only be paths or even cycles.

In Theorem 2, we use Kempe changes to reconfigure a k-edge colouring to a connected greedy k-edge colouring. In order
to do this we define the notion of ‘reachability’ which might be of independent interest. Let G′ be the subgraph induced
by the edges of colour < k. Reachability predicts whether we can ‘jump’ between the components of G′ via a connected
ordering that assigns the edges between the components colour k; by induction, we can find optimal connected orderings
for the components of G′, which we combine to an optimal connected ordering for G. We can get a similar reachability
result for general graphs (Lemma 7), of which the following is an easy corollary.

Theorem 3. If G has maximum degree 3 then χ ′
c(G) ≤ 4.

However, we did not manage to push through the induction argument used in Theorem 2 to provide a full answer to
the following problem, which we leave open.

Problem 1 (Question 3 in [5]). Is it true that χ ′
c(G) ≤ ∆ + 1 for each graph G of maximum degree ∆?

Throughout this paper, we use the short-cut xy for the edge {x, y} and write [n] to mean {1, . . . , n}. We use the notation
NG(v) for the set of vertices adjacent to v in G.

2. Proof of NP-hardness

In this section, we prove Theorem 1. We first define some auxiliary constructions.
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Fig. 1. The graphs Q3 , Q+

3 and H3 are depicted with possible 3-edge colourings.

Let ∆ ≥ 3 be given. The ∆-dimensional hypercube Q∆ with vertex set {0, 1}∆ is ∆-regular and satisfies χ ′(Q∆) = ∆.
ndeed, we may reserve a different colour for each ‘direction’ as in Fig. 1. Pick an edge xy ∈ E(Q∆). Let Q+

∆ be the graph
with vertex set V (Q+

∆ ) = V (Q∆) ∪ {x′, y′
} and edge set

E(Q+

∆ ) = (E(Q∆) \ {xy}) ∪ {xx′, yy′
}.

Then χ ′(Q+

∆ ) = ∆. An example is given in Fig. 1.
Below we consider the situation in which we attempt to extend a colouring in which one of the edges has been

precoloured. We assign the lowest available colour to the edges in a connected ordering starting from an edge incident
with the precoloured edge.

Lemma 4. Let ∆ ≥ 3. Let xx′, yy′
∈ E(Q+

∆ ) be the two edges containing a vertex of degree 1.

• If α is a ∆-edge colouring of Q+

∆ , then α(xx′) = α(yy′).
• If xx′ is precoloured with some colour i ∈ [∆], then there is a connected ordering of the edges of Q+

∆ such that the greedy
procedure uses ∆ colours.

Proof. To see the first claim, suppose that we assign xx′ and yy′ different colours. One of the colour classes must then
cover an odd number of vertices from Q∆ (because it covers an even number of vertices in Q+

∆ as any colour class of an
edge colouring of Q+

∆ forms a matching). Let v ∈ V (Q∆) be a vertex not covered by this colour class. Since v has degree
∆, there are edges of ∆ different colours incident to it. Hence we have used at least ∆ + 1 colours.

To see the second claim, fix any ∆-edge colouring α of Q+

∆ with α(xx′) = i. Let z ∈ {x, x′
} be the vertex of degree

∆. We can now always create an ordering of the edges leading to the edge colouring α. Indeed, we first colour the edge
incident to z which needs to get colour 1, then the edge incident to z that needs to get colour 2, etc., until we coloured
all edges incident to z. We then pick a neighbour of z of degree ∆ and colour all edges incident to this one in a similar
order. We continue like this until all edges have been coloured. □

We will extend Q+

∆ into a gadget H . Let us first explain the case ∆ = 3. We obtain the graph H3 from the graph Q+

3
by adding a new vertex u adjacent to the vertices x′ and y′ as well as adding a new vertex s adjacent to u as in Fig. 1.
Suppose we have a connected greedy 3-edge colouring of H starting from s. By Lemma 4, xx′ and yy′ must get the same
colour. Since x′u and y′u cannot get the same colour, the edges xx′, yy′ and su must all receive the same colour. Since we
started from s, some edge from {xx′, yy′

} is the first edge to be coloured from Q+

3 . Since x′ and y′ have degree 2, this edge
will not get colour 3. If we force the edge su to have colour 3, and then continue in a connected greedy fashion, then this
shows we cannot colour all the edges using three colours. On the other hand, if we force it to have colour 1 or 2, then
we can continue to colour x′u, xx′, the remainder of the hypercube and finally yy′ and y′u using Lemma 4. This proves the
lemma below in the case ∆ = 3.

Lemma 5. For any ∆ ≥ 3, there exists a graph H of maximum degree ∆ with a special vertex s of degree 1 with the following
properties.

• If the edge incident with s is precoloured with colour ∆, then there is no connected greedy ∆-edge colouring of H starting
from this edge.

• If the edge incident with s is precoloured with i ∈ [∆ − 1], then there exists a connected greedy ∆-edge colouring of H
starting from this edge.

Proof. We extend ∆ − 2 copies of Q+

∆ to the graph H . We first glue all these copies on their respective vertices labelled
x′ and y′. We then obtain the graph H by adding a new vertex u adjacent to the (merged) vertices x′ and y′ and a new
vertex s adjacent to u (see Fig. 2).

Let α be a ∆-edge colouring. Since α(x′u) ̸= α(y′u), we find that there exists a Q+

∆ copy for which α(xx′) = α(yy′) =

α(su), where x and y are the vertices in this copy adjacent to x′ and y′ respectively. If we start the colouring from an edge
incident to u, then one of the edges in {xx′, yy′

} is the first edge to be coloured from Q+; since x′ has degree ∆ − 1, this
∆
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Fig. 2. The graph H is depicted with a possible edge colouring.

Fig. 3. We create an instance of the depicted graph for each vertex of G.

dge will not get colour ∆. Combined with Lemma 4, this shows that no connected ∆-edge colouring starting from su
an exist in which the edge su is precoloured ∆.
On the other hand, if su gets a colour strictly smaller than ∆, then we first may colour x′u, then all edges incident to

′, and finally by Lemma 4 we can further extend the connected ordering in such a way that all copies of Q+

∆ are ∆-edge
oloured while no edge incident with y′ receives colour ∆. So we have at least one colour leftover for y′u (which will in
act need to get colour ∆). □

We are now ready to show that it is NP-hard to decide whether χ ′(G) = χ ′
c(G) on the class of graphs of maximum

egree ∆, for all ∆ ≥ 4.

roof of Theorem 1. Let d = ∆ − 1, and let G be an n-vertex d-regular graph. We transform G into a graph G′ of
aximum degree ∆ such that χ ′(G) = d if and only if χ ′

c(G
′) = χ ′(G′). In fact, χ ′(G′) = ∆ and |V (G′)| ≤ ∆22∆n. This

eduction proves the theorem since deciding whether χ ′(G) = d is NP-hard on d-regular graphs for all d ≥ 3, as shown
y Leven and Galil [4].
Let ∆ = d + 1 and let H be the graph from Lemma 5 for that value of ∆. For each v ∈ V (G), we create a graph Gv by

erging ∆−1 copies of H on their special vertex s (see Fig. 3). The graph G′ is obtained from G by connecting Gv to v via
n edge for each v ∈ V (G); for v, v′ distinct vertices of G, the graphs Gv and Gv′ are disjoint and have no edges between
hem. Note that χ ′(G′) = ∆.

Suppose first that our d-regular graph G can be coloured using d colours. Fix a d-edge colouring α of G. There is a
onnected ordering of the edges of G that results in the edge colouring α. Indeed, since G is d-regular, whenever we have
reached’ a vertex we can assign the edges incident to this vertex the desired colours, starting from the edge coloured 1,
ontinuing with the edge coloured 2 etc. We may then colour the edge from v to Gv with colour d + 1 for all v ∈ V (G).
ontinuing in the various copies of H , the corresponding edge su gets a colour < d+1 = ∆ and hence by Lemma 5 there
s a connected ordering in which we can edge colour these with ∆ colours. So χ ′(G′) = χ ′(G′).
c
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Fig. 4. A graph G with maximum degree 3 and χc (G)′ > χ ′(G). For any 3-edge colouring, there are two edges of type su coloured 3 ‘entering’ a
copy of H3 .

Suppose now that G is not d-edge colourable. For contradiction, suppose there is a ∆-edge colouring α that can be
obtained via a connected ordering. Since G is not d-edge colourable, α(vv′) = d + 1 for some vv′

∈ E(G). The two edges
between v, v′ and Gv,Gv′ are then not coloured ∆. As Gv and Gv′ are not connected to each other, we may assume that
these edge are coloured before any of the edges in Gv are coloured. Since s has degree ∆, there is then a copy of H with
vertex u connecting to s in Gv for which su has colour ∆ and this is the first edge of H that is coloured; this contradicts
Lemma 5. So χ ′

c(G
′) > χ ′(G′). □

To obtain a graph G of maximum degree 3 with χ ′
c(G) > χ ′(G), we take a triangle and give each point a pendant vertex,

and take three pairs of copies of the graph H3 (as depicted in Fig. 1) for which we identify the vertex labelled s with one
of the pendant vertices, as depicted in Fig. 4. At least two of the three ‘pendant’ edges incident with the triangle does
not have colour 3 in a 3-edge colouring; one of the two su-type edges adjacent to such an edge hence gets colour 3. In
a connected greedy edge colouring, for at least one of the two corresponding copies of H3, the edge su is the first to be
coloured. By Lemma 5, the colouring then uses at least 4 colours. Hence χ ′

c(G) > 3 = χ ′(G).

3. Bipartite graphs

Theorem 2 is an immediate consequence of the following lemma.

Lemma 6. Let G be a connected bipartite graph with χ ′(G) ≤ k. Then for any vertex v ∈ V (G), there exists a connected
ordering starting from v leading to a k-edge colouring of G.

Proof. We prove the lemma by induction on k. If G is a connected graph with χ ′(G) = 1, then G is a single edge. Hence
the lemma is true for k = 1. Suppose now that we have proven the lemma for all k′ < k for some integer k ≥ 2.

Let α : E(G) → [k] be a k-edge colouring of G and let u, v ∈ V (G). For u, v distinct, we say u strongly reaches v in the
olouring α if uv ∈ E(G) and either α(uv) < k or the degree of u is k. Each vertex strongly reaches itself. We now define
eachability as the transitive closure of strong reachability: we say u reaches v in the colouring α if there is a sequence
= v0, v1 . . . , vℓ = v of vertices in G such that vi−1 strongly reaches vi for all i ∈ [ℓ].
We first show that for every vertex v, there exists a k-edge colouring of G such that v reaches all vertices of G in this

olouring. Take a k-edge colouring α of G which maximises the number of vertices that v can reach. Suppose that v cannot
et reach all vertices. We will strictly increase the set of vertices that v can reach through a series of Kempe changes.
Let A ⊆ V (G) be the set of vertices that v can reach in α and let B = V (G) \ A. Note that as v reaches itself, v ∈ A.

Since G is connected, there must be an edge su from some s ∈ A to some u ∈ B. By the definition of strong reachability,
we find that s has degree strictly smaller than k and that α(su) = k. Hence s misses a colour x ∈ [k− 1], that is, it has no
edge incident of colour x.

Suppose first that u has degree < k. If vertex u misses colour x as well, then the edge su forms a (k, x)-component
on its own and a (k, x)-Kempe change switches the colour of su to x. This adds the vertex u to the set of vertices that
v can reach, increasing the set of vertices v can reach as desired. Hence we may assume that u misses some colour y
133
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Fig. 5. If the (x, y)-chain of s′ includes s, then G contains an odd cycle.

ut does not miss colour x. Then y < k and there is some edge e incident to u coloured x. Since all edges between A
nd B are coloured k, the (x, y)-component of e stays within G[B]. Hence we may perform an (x, y)-Kempe change on this

component without affecting the set of vertices that v can reach. Now we are back in the case in which u and s both miss
colour x, which we already handled.

Suppose now that vertex u has degree k. Let e denote the edge coloured x incident to u. Note that the (x, k)-component
of e is a path (of which one endvertex is s). If it stays within G[B ∪ {s}], then performing an (x, k)-Kempe change on e

ecolours su with colour x without affecting the colours in G[A] and hence strictly enlarges the set of vertices that v can
reach. So we may assume that C intersects A a second time, say s′ ∈ A is the vertex closest to s in the path C . Since s′
as an edge incident with B, we find that it has degree < k. Hence it has some colour y < k missing. Once we ensure x

is missing at s′, we can do an (x, k)-Kempe change on the component of e and strictly increase the set of vertices that v

can reach.
If s′ has an edge incident with colour x, then consider the (x, y)-component of this edge. This has to stay within A and

performing a Kempe change on it will not affect the set of vertices that v can reach since x, y < k. The only problem is
that this chain C ′ could include the vertex s. Here is where we use that the graph is bipartite: as can be seen in Fig. 5, this
would create an odd cycle in the graph, since there is an odd number of edges in C between s and s′ and an even number
of edges in C ′ between s and s′ (since they have different colours missing). Hence we may perform the (x, y)-Kempe
change without affecting the missing colour of s, and can then perform the (x, k)-Kempe change as desired.

This shows we can always strictly increase the set of vertices that v can reach. This contradicts the maximality of α.
Hence there exists a colouring α in which v can reach all vertices.

Let C1, . . . , Cℓ denote the connected components of G when we remove all edges of G coloured k in α, where v ∈ C1. We
will show that there is a connected ordering starting from v that leads to a k-edge colouring of G which is a (k− 1)-edge
colouring when restricted to any Ci. Since v can reach everything in α, after possibly renumbering C2, . . . , Cℓ, we can find
vertices

si ∈ C1 ∪ · · · ∪ Ci and vi+1 ∈ Ci+1 ∩ NG(si),

for i = 1, . . . , ℓ−1, such that for all i ∈ [ℓ−1], si can strongly reach vi+1 (‘reach in one step’) and hence dG(si) = k (since
we already know α(sivi+1) = k by the definition of the components).

Since C1 is a connected bipartite graph with χ ′(C1) ≤ k − 1, there exists a connected ordering starting from v that
(k − 1)-edge colours C1 by the induction hypothesis. By the definition of the components, all edges incident to s1 except
for s1v2 have now been coloured. We colour the edge s1v2 next; this obtains colour k. Since C2 is a connected bipartite
graph with χ ′(C2) ≤ k−1, there exists a connected ordering starting from v2 that (k−1)-edge colours C2 by the induction
hypothesis. We extend our previous ordering by this connected ordering and continue like this until we have coloured all
edges within the components. We then colour the edges between the components; since colour k will always be available
to them, they will all receive a colour at most k. □

4. Subcubic graphs

Let G be a graph, let α be a k-edge colouring of G and let i ∈ [k]. We say that a vertex v ∈ V (G) can i-reach another
vertex w ∈ V (G) in α if there exists a sequence of vertices v = v , v , . . . , v = w of G such that for all j ∈ [ℓ] there is
1 2 ℓ+1
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an edge vjvj+1 ∈ E(G) and one of the following holds:

• α(vjvj+1) < i;
• vj has incident edges in colours 1, 2, . . . , α(vjvj+1).

If k = i = ∆ the maximum degree of G, then this reduces to the notion of reachability from the proof of Theorem 2. The
proof of Theorem 3 follows from the lemma below which might be of independent interest.

Lemma 7. Suppose G is a graph with maximum degree ∆ and v ∈ V (G). Then G has a (∆ + 1)-edge colouring α such that v
an ∆-reach all other vertices of G in α.

roof. In this proof, we will omit the ∆ from ∆-reach. By Vizing’s theorem [6], G has at least one (∆+1)-edge colouring
. We choose such a colouring α that maximises the size of the set A of vertices that v can reach in α. Let B = V (G) \ A

be the set of vertices that v cannot reach.
Suppose that A ̸= V (G). The edges between A and B are of colour ∆ or ∆ + 1. Let C ⊆ B be the neighbours of A

via edges coloured ∆. Let D ⊆ B the set of vertices adjacent to a vertex in C (which a priori might overlap with C). We
claim that we can obtain an edge colouring in which v can reach a strictly larger set of vertices than A (contradicting the
maximality of A) as soon as one of the following properties holds.

(1) C is empty, i.e. there is no ∆-edge between A and B.
(2) There is an (x, ∆)-Kempe chain with x < ∆ which is a path between a vertex in A and a vertex in B.
(3) Some c ∈ C has a colour x ∈ [∆ − 1] missing.
(4) Some d ∈ D misses colour ∆ or ∆ + 1.

We will prove the claim after we show that we can assume one of (1) − (4) holds. We suppose all properties above do
not hold. Since (1) fails, we know there is an edge from some a ∈ A to some c ∈ C (which has colour ∆ by definition of
C). Since c is not reachable, there is a colour x < ∆ missing at a. Since (3) fails, c is incident to an edge cd of colour x.
As (4) fails, we know that there is some colour y < ∆ missing at d. Consider a (∆, y)-Kempe chain starting at d. Since (2)
fails, it stays within B. After performing the Kempe change, there is a vertex in D with no edge coloured ∆, contradicting
with (4) failing.

To prove the claim in case (1), suppose that there are no edges coloured ∆ between A and B. Since G is connected,
there exists an edge from some a ∈ A to some b ∈ B. Then α(ab) = ∆ + 1. Let x < ∆ + 1 be the smallest colour missing
at a. Since b has the edge ab incident in colour ∆ + 1, b misses some colour y < ∆ + 1. We do an (x, y)-Kempe change
on the component of b (this could be empty). Since all the edges between A and B are coloured ∆ + 1, this chain stays
within B. After the applying the Kempe change, both a and b miss the colour x. We may recolour the edge ab with colour
x, and now the set of vertices that v can reach has increased (since v can now reach b as well).

To prove the claim in case (2), suppose that some (x, ∆)-chain for x < ∆ starts in u ∈ B and contains a vertex s from
A. Let a ∈ A and b ∈ B such that ab is the closest edge between A and B in this chain to s. As x < ∆, we find α(ab) = ∆.
Thus a must have some colour y < ∆ missing (since b cannot be reached). The (x, y)-chain starting at a will stay within
A and performing the Kempe change does not affect which vertices v can reach. So we may assume that x is missing at a
and the (x, ∆)-component of a is a path between a and u that only intersects A in the vertex a. A Kempe change on this
component strictly increases the set of vertices that v can reach.

We now prove the claim assuming (3). Suppose that c ∈ C has a colour x < ∆ missing. Let a ∈ A with α(ac) = ∆

(which exists by the definition of C). Let y < ∆ be a colour missing at a. The (x, y)-chain starting at c stays in B, and hence
we may perform a Kempe change and then recolour ac to y in order to increase the set of vertices that v can reach.

Finally, we prove the claim from (4). Suppose d ∈ D misses colour ∆ or ∆ + 1. Let c ∈ C be the vertex d is adjacent
to. By (3) we are done unless c only has the colour ∆ + 1 missing. If ∆ + 1 is missing at d, then we recolour cd to colour
∆ + 1 in order to reduce to (3). So ∆ is missing at d. Let a ∈ A with α(ac) = ∆. Let y = α(cd) < ∆ and let x < ∆ be
a missing colour at a. We may perform an (x, y)-Kempe change starting at a to ensure that a misses colour y. The only
vertices on the (y, ∆)-Kempe chain containing c are then a and d. After we apply a Kempe change on this chain, the set
of vertices that v can reach has strictly increased again. □

We are now ready to prove that any graph of maximum degree ∆ ≤ 3 satisfies χ ′
c(G) ≤ ∆ + 1.

Proof of Theorem 3. Let G be a graph of maximum degree 3. Pick a vertex v ∈ V (G). Let α be a 4-edge colouring of G in
which v can 3-reach all other vertices of G; this exists by the lemma above.

The proof follows the same argument as the last two paragraphs of the proof of Lemma 6, now using the fact that any
(1, 2)-component can be 2-edge coloured in a connected greedy fashion starting from any vertex instead of applying the
induction hypothesis.

Let C1 be the (1, 2)-component of v. After doing a (1, 2)-Kempe change if needed, we can colour C1 in a connected
greedy fashion starting from v. If G has more components, then since v can 3-reach all other vertices, there must be a
(1, 2)-component C2 ̸= C1 and vertices v2 ∈ C2 and s1 ∈ C1 such that s1v2 ∈ E(G), and either α(s1v2) < 3 or s1 has incident
edges in colours 1, . . . , α(s v ) in α. Since s and v are in different (1, 2)-components, we conclude the latter holds. Since
1 2 1 2
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G has maximum degree 3, it follows that α(s1v2) = 3. Hence all edges incident to s1 have been coloured apart from s1v2,
which we put next in the connected ordering. After performing a (1, 2)-Kempe change if needed, we 2-edge colour the
edges of C2 in a connected greedy fashion starting from v2. (Note that there might be no edges to colour in this step, as
the component might consist of only v2.) As long as the edges of some (1, 2)-component have not been coloured, we can
continue the connected ordering in a similar fashion. The resulting (partial) colouring has the same (1, 2)-components as
α and coloured an edge 3 if and only if it has colour 3 in α. We finish the connected ordering by first colouring the edges
coloured 3 by α and then the edges coloured 4 by α; all these edges receive a colour at most 4. □
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