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Order-isomorphic twins in permutations

Boris Bukh∗ Oleksandr Rudenko†

Abstract

Let a1, . . . , an be a permutation of [n]. Two disjoint order-isomorphic subsequences are called

twins. We show that every permutation of [n] contains twins of length Ω(n3/5) improving the trivial

bound of Ω(n1/2). We also show that a random permutation contains twins of length Ω(n2/3),

which is sharp.

In this paper we regard permutations as sequences of symbols, devoid of any group-theoretic

meaning. So, for us a permutation on a finite set Σ is a sequence of elements of Σ in which each

element of Σ appears exactly once. We call a subsequence of a permutation subpermutation. For

instance, 135642 is a permutation of [6], and 1562 is a subpermutation inside, which itself is a

permutation of {1, 2, 5, 6}. We denote permutations by bold letters.

Throughout the paper we consider only the permutations of finite sets of natural numbers. We

say that permutations a = (a1, . . . , aL) and b = (b1, . . . , bL) are order-isomorphic if (ai < aj) ⇐⇒

(bi < bj). For example, 1562 is order-isomorphic to 1342.

We call a pair of subpermutation a,b of c twins if a and b are order-isomorphic and disjoint (do

not contain the same symbol). For example, 152 and 364 are twins in 135642 of length 3. We denote

by t(n) the largest integer such that every permutation of [n] contains a pair of twins of length t(n).

The problem of estimating t(n) was raised by Gawron [5], who observed that t(n) ≥ (n1/2 − 1)/2

follows from the Erdős–Szekeres theorem, and that t(n) = O(n2/3) follows from the first moment

method. He further conjectured that t(n) = Ω(n2/3). This is not known even for random permu-

tations: the best result is due to Dudek, Grytczuk, and Ruciński [4] who showed that a random

permutation almost surely contains twins of length Ω(n2/3/ log1/3 n).

In this short note, we give a first non-trivial lower bound on t(n), and remove the logarithmic

factor from the Dudek–Grytczuk–Ruciński result.

Theorem 1. For n ≥ 2, every permutation of [n] contains twins of length at least 1
8n

3/5.

Theorem 2. A random permutation of [n] almost surely contains twins of length at least 1
80n

2/3, as

n → ∞.

In view of Gawron’s result, Theorem 2 is sharp up to the constant factor.
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Proof of Theorem 1

The proof relies on a result of Beame and Huynh-Ngoc [1, Lemma 5.9], which previously was used by

Bukh and Zhou [2] to study a related notion of twins in words.

Lemma 3. Among any three permutations c(0), c(1), c(2) of [m] we may find two distinct, say, c(k)

and c(ℓ), that contain the same subpermutation of length at least m1/3.

Call twin subpermutations a1, . . . , aL and b1, . . . , bL close if |bi − ai| ≤ n2/5 for all i. Let t′(m,n)

be the largest integer so that whenever Σ ⊂ [n] is any set of at least m elements, every permutation

of Σ contains close twins of length at least t′(m,n).

Claim 4. If m ≥ 7n3/5, then t′(m,n) ≥ t′(m− 7n3/5, n) + n1/5.

From ⌊17n
2/5⌋ many invocations of Claim 4 we infer that t(n) ≥ t′(n, n) ≥ ⌊17n

2/5⌋n1/5, implying

Theorem 1 for n ≥ 565/2. When 2 ≤ n ≤ 565/2, Theorem 1 follows from t(n) ≥ (n1/2 − 1)/2 ≥ 1
8n

3/5.

We now prove the claim. We can clearly assume that |Σ| = m. Let a = (a1, . . . , am) be an

arbitrary permutation of Σ. Consider its first 3r elements, where r
def

= ⌈2n3/5⌉. Say a1, . . . , a3r is

a permutation of the set {b0, . . . , b3r−1}, where b0 < · · · < b3r−1. Consider the triples (b0, b1, b2),

(b3, b4, b5), . . . , (b3r−3, b3r−2, b3r−1). Since
∑r

i=0(b3i+2− b3i) ≤ n, the set I0
def

= {i : b3i+2− b3i ≤ 2n/r}

has at least r/2 elements. For each j = 0, 1, 2 let c(j) be the subpermutation of a1, . . . , am obtained

by keeping only the elements b3i+j with i ∈ I0. Let c
(j)
i

def

= b3i+j , and note that |c
(j)
i − c

(k)
i | ≤ n2/5.

Replace each c
(j)
i in c(j) with number i to obtain permutation c̃(j) of I0. By Lemma 3 applied

to the c̃’s, there is I ⊂ I0 of size |I| ≥ |I0|
1/3 ≥ n1/5 and k < ℓ such that the subpermutations

c
(k)
I

def

= (c
(k)
i : i ∈ I) and c

(ℓ)
I

def

= (c
(ℓ)
i : i ∈ I) are order-isomorphic. By deleting some elements of I if

necessary, we may assume that |I| = ⌈n1/5⌉. Note that c
(k)
I and c

(ℓ)
I is a pair of close twins.

Let d be the subpermutation of a obtained by deleting the first 3r elements, and also deleting all

elements that are contained in the intervals of the form [c
(k)
i , c

(k)
i +n2/5] for i ∈ I. Since in total these

intervals contain no more than (n2/5 +1)|I| elements, and each interval contains at least two elements

among the first 3r, the permutation d is of length at least m− 3r − (n2/5 − 1)|I| ≥ m− 7n3/5.

Given a pair of close twins e, f in d, we may obtain a pair of close twins in a by concatenating

c
(k)
I with e and concatenating c

(ℓ)
I with f . Indeed, let i and j be arbitrary, and consider two pairs of

elements c
(k)
i , c

(ℓ)
i and ej , fj. Because neither of ej , fj is contained in the interval T

def

= [c
(k)
i , c

(k)
i +n2/5],

and |ej−dj| ≤ n2/5, it follows that ej , fj are either both smaller than minT or both larger than maxT .

As both c
(k)
i and c

(ℓ)
i are contained in T , we deduce that (c

(k)
i < ej) ⇐⇒ (c

(ℓ)
i < fj). Hence, the

two concatenations indeed form a pair of twins.

Proof of Theorem 2

We modify the argument of Dudek–Grytczuk–Ruciński. They construct a certain bipartite graph B

such that the matchings in B correspond to twins in the original permutation. They note that B

contains a matching of size v(B)/2∆(B), where v(B) and ∆(B) denote the number of vertices and the

maximum degree respectively. The logarithmic factor is lost because of the union bound to bound

∆(B). In our proof, instead of the maximum degree, we effectively work with the typical vertex

degrees. To help with this, we gain more independence by first Poissonizing the random process.
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Let t(p) be the length of the longest twin in a permutation p. We consider two ways of generating

a random permutation. First, we may sample p uniformly from all permutations of [n]. Denote

this probability distribution by Sn. Second, we may consider a Poisson process of intensity λ on the

unit square, list the points in the order of their x-coordinates, and then record the relative order of

y-coordinates. Denote this probability distribution on permutations by Sλ.

Consider an infinite sequence p1, p2, . . . of independent points in [0, 1]2. We may regard its prefix

p1, . . . , pm of length m as a permutation p(m) of length m. We clearly have t(p(m)) ≤ t(p(ℓ)) whenever

m ≤ ℓ. Note that we may sample from Sn by sampling a number m from the Poisson distribution of

mean n and returning p(m). Since Pr[Poisson(n/2) ≥ n] ≤ exp(−cn) (see, for example [3]), we infer

that to show that t(p(n)) ≥ 1
80n

2/3 a.a.s., it suffices to establish t(Sn/2) ≥ 1
80n

2/3 a.a.s.

Partition [0, 1] into r
def

= ⌈n2/3⌉ equal intervals of length 1/r each, denoted A1, . . . , Ar. This induces

a partition of [0, 1]2 into r2 smaller squares of the form Ai×Aj . Sample a set P from a Poisson process

of intensity n/2 on [0, 1]2. Make a bipartite graph B whose parts are two copies of [r], with (i, j)

being an edge if Ai×Aj contains at least two points of P . The edges are independent with probability

p = Pr[Poisson(n/2r2) ≥ 2] ≥ 1
9n

−2/3, for large n. Clearly, every matching in B corresponds to a pair

of twins in the associated permutation.

Theorem 2 follows once we show that B is likely to contain a large matching. This is well-known

in the (very similar) context of the G(n, p) model. We include such a proof for completeness.

Claim 5. Let p ≤ 1
6r . Then a random bipartite graph G(r + r, p) contains a matching of size

pr2/7 a.a.s.

Proof. Let L ∪ R be the bipartition. As long as |L| = |R| ≥ r/2, do the following. Pick any vertex

v ∈ L. It has a neighbor with probability ≥ p|R| − p2
(|R|

2

)

≥ pr/3. If u ∈ R is a neighbor, match

u to v. Else, let u be any vertex in R. Remove v from L and u from R. This way, we match

Binom(r/2, pr/3) edges, which is at least pr2/7 a.a.s.
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