Order-isomorphic twins in permutations

Boris Bukh* Oleksandr Rudenko ${ }^{\dagger}$

Abstract

Let a_{1}, \ldots, a_{n} be a permutation of $[n]$. Two disjoint order-isomorphic subsequences are called twins. We show that every permutation of $[n]$ contains twins of length $\Omega\left(n^{3 / 5}\right)$ improving the trivial bound of $\Omega\left(n^{1 / 2}\right)$. We also show that a random permutation contains twins of length $\Omega\left(n^{2 / 3}\right)$, which is sharp.

In this paper we regard permutations as sequences of symbols, devoid of any group-theoretic meaning. So, for us a permutation on a finite set Σ is a sequence of elements of Σ in which each element of Σ appears exactly once. We call a subsequence of a permutation subpermutation. For instance, 135642 is a permutation of [6], and 1562 is a subpermutation inside, which itself is a permutation of $\{1,2,5,6\}$. We denote permutations by bold letters.

Throughout the paper we consider only the permutations of finite sets of natural numbers. We say that permutations $\mathbf{a}=\left(a_{1}, \ldots, a_{L}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{L}\right)$ are order-isomorphic if $\left(a_{i}<a_{j}\right) \Longleftrightarrow$ $\left(b_{i}<b_{j}\right)$. For example, 1562 is order-isomorphic to 1342.

We call a pair of subpermutation \mathbf{a}, \mathbf{b} of \mathbf{c} twins if \mathbf{a} and \mathbf{b} are order-isomorphic and disjoint (do not contain the same symbol). For example, 152 and 364 are twins in 135642 of length 3 . We denote by $t(n)$ the largest integer such that every permutation of $[n]$ contains a pair of twins of length $t(n)$.

The problem of estimating $t(n)$ was raised by Gawron [5], who observed that $t(n) \geq\left(n^{1 / 2}-1\right) / 2$ follows from the Erdős-Szekeres theorem, and that $t(n)=O\left(n^{2 / 3}\right)$ follows from the first moment method. He further conjectured that $t(n)=\Omega\left(n^{2 / 3}\right)$. This is not known even for random permutations: the best result is due to Dudek, Grytczuk, and Ruciński [4] who showed that a random permutation almost surely contains twins of length $\Omega\left(n^{2 / 3} / \log ^{1 / 3} n\right)$.

In this short note, we give a first non-trivial lower bound on $t(n)$, and remove the logarithmic factor from the Dudek-Grytczuk-Ruciński result.

Theorem 1. For $n \geq 2$, every permutation of $[n]$ contains twins of length at least $\frac{1}{8} n^{3 / 5}$.
Theorem 2. A random permutation of $[n]$ almost surely contains twins of length at least $\frac{1}{80} n^{2 / 3}$, as $n \rightarrow \infty$.

In view of Gawron's result, Theorem 2 is sharp up to the constant factor.

[^0]
Proof of Theorem 1

The proof relies on a result of Beame and Huynh-Ngoc [1, Lemma 5.9], which previously was used by Bukh and Zhou [2] to study a related notion of twins in words.
Lemma 3. Among any three permutations $\mathbf{c}^{(0)}, \mathbf{c}^{(1)}, \mathbf{c}^{(2)}$ of $[m]$ we may find two distinct, say, $\mathbf{c}^{(k)}$ and $\mathbf{c}^{(\ell)}$, that contain the same subpermutation of length at least $\mathrm{m}^{1 / 3}$.

Call twin subpermutations a_{1}, \ldots, a_{L} and b_{1}, \ldots, b_{L} close if $\left|b_{i}-a_{i}\right| \leq n^{2 / 5}$ for all i. Let $t^{\prime}(m, n)$ be the largest integer so that whenever $\Sigma \subset[n]$ is any set of at least m elements, every permutation of Σ contains close twins of length at least $t^{\prime}(m, n)$.
Claim 4. If $m \geq 7 n^{3 / 5}$, then $t^{\prime}(m, n) \geq t^{\prime}\left(m-7 n^{3 / 5}, n\right)+n^{1 / 5}$.
From $\left\lfloor\frac{1}{7} n^{2 / 5}\right\rfloor$ many invocations of Claim 4 we infer that $t(n) \geq t^{\prime}(n, n) \geq\left\lfloor\frac{1}{7} n^{2 / 5}\right\rfloor n^{1 / 5}$, implying Theorem 1 for $n \geq 56^{5 / 2}$. When $2 \leq n \leq 56^{5 / 2}$, Theorem 1 follows from $t(n) \geq\left(n^{1 / 2}-1\right) / 2 \geq \frac{1}{8} n^{3 / 5}$.

We now prove the claim. We can clearly assume that $|\Sigma|=m$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be an arbitrary permutation of Σ. Consider its first $3 r$ elements, where $r \stackrel{\text { def }}{=}\left\lceil 2 n^{3 / 5}\right\rceil$. Say $a_{1}, \ldots, a_{3 r}$ is a permutation of the set $\left\{b_{0}, \ldots, b_{3 r-1}\right\}$, where $b_{0}<\cdots<b_{3 r-1}$. Consider the triples $\left(b_{0}, b_{1}, b_{2}\right)$, $\left(b_{3}, b_{4}, b_{5}\right), \ldots,\left(b_{3 r-3}, b_{3 r-2}, b_{3 r-1}\right)$. Since $\sum_{i=0}^{r}\left(b_{3 i+2}-b_{3 i}\right) \leq n$, the set $I_{0} \stackrel{\text { def }}{=}\left\{i: b_{3 i+2}-b_{3 i} \leq 2 n / r\right\}$ has at least $r / 2$ elements. For each $j=0,1,2$ let $\mathbf{c}^{(j)}$ be the subpermutation of a_{1}, \ldots, a_{m} obtained by keeping only the elements $b_{3 i+j}$ with $i \in I_{0}$. Let $c_{i}^{(j)} \stackrel{\text { def }}{=} b_{3 i+j}$, and note that $\left|c_{i}^{(j)}-c_{i}^{(k)}\right| \leq n^{2 / 5}$.

Replace each $c_{i}^{(j)}$ in $\mathbf{c}^{(j)}$ with number i to obtain permutation $\tilde{\mathbf{c}}^{(j)}$ of I_{0}. By Lemma 3 applied to the $\tilde{\boldsymbol{c}}$'s, there is $I \subset I_{0}$ of size $|I| \geq\left|I_{0}\right|^{1 / 3} \geq n^{1 / 5}$ and $k<\ell$ such that the subpermutations $\mathbf{c}_{I}^{(k)} \stackrel{\text { def }}{=}\left(c_{i}^{(k)}: i \in I\right)$ and $\mathbf{c}_{I}^{(\ell)} \stackrel{\text { def }}{=}\left(c_{i}^{(\ell)}: i \in I\right)$ are order-isomorphic. By deleting some elements of I if necessary, we may assume that $|I|=\left\lceil n^{1 / 5}\right\rceil$. Note that $\mathbf{c}_{I}^{(k)}$ and $\mathbf{c}_{I}^{(\ell)}$ is a pair of close twins.

Let \mathbf{d} be the subpermutation of a obtained by deleting the first $3 r$ elements, and also deleting all elements that are contained in the intervals of the form $\left[\mathbf{c}_{i}^{(k)}, \mathbf{c}_{i}^{(k)}+n^{2 / 5}\right]$ for $i \in I$. Since in total these intervals contain no more than $\left(n^{2 / 5}+1\right)|I|$ elements, and each interval contains at least two elements among the first $3 r$, the permutation \mathbf{d} is of length at least $m-3 r-\left(n^{2 / 5}-1\right)|I| \geq m-7 n^{3 / 5}$.

Given a pair of close twins \mathbf{e}, \mathbf{f} in \mathbf{d}, we may obtain a pair of close twins in a by concatenating $\mathbf{c}_{I}^{(k)}$ with \mathbf{e} and concatenating $\mathbf{c}_{I}^{(\ell)}$ with \mathbf{f}. Indeed, let i and j be arbitrary, and consider two pairs of elements $\mathbf{c}_{i}^{(k)}, \mathbf{c}_{i}^{(\ell)}$ and e_{j}, f_{j}. Because neither of e_{j}, f_{j} is contained in the interval $T \stackrel{\text { def }}{=}\left[\mathbf{c}_{i}^{(k)}, \mathbf{c}_{i}^{(k)}+n^{2 / 5}\right]$, and $\left|e_{j}-d_{j}\right| \leq n^{2 / 5}$, it follows that e_{j}, f_{j} are either both smaller than $\min T$ or both larger than max T. As both $\mathbf{c}_{i}^{(k)}$ and $\mathbf{c}_{i}^{(\ell)}$ are contained in T, we deduce that $\left(\mathbf{c}_{i}^{(k)}<e_{j}\right) \Longleftrightarrow\left(\mathbf{c}_{i}^{(\ell)}<f_{j}\right)$. Hence, the two concatenations indeed form a pair of twins.

Proof of Theorem 2

We modify the argument of Dudek-Grytczuk-Ruciński. They construct a certain bipartite graph B such that the matchings in B correspond to twins in the original permutation. They note that B contains a matching of size $v(B) / 2 \Delta(B)$, where $v(B)$ and $\Delta(B)$ denote the number of vertices and the maximum degree respectively. The logarithmic factor is lost because of the union bound to bound $\Delta(B)$. In our proof, instead of the maximum degree, we effectively work with the typical vertex degrees. To help with this, we gain more independence by first Poissonizing the random process.

Let $t(\mathbf{p})$ be the length of the longest twin in a permutation \mathbf{p}. We consider two ways of generating a random permutation. First, we may sample \mathbf{p} uniformly from all permutations of $[n]$. Denote this probability distribution by S_{n}. Second, we may consider a Poisson process of intensity λ on the unit square, list the points in the order of their x-coordinates, and then record the relative order of y-coordinates. Denote this probability distribution on permutations by \bar{S}_{λ}.

Consider an infinite sequence p_{1}, p_{2}, \ldots of independent points in $[0,1]^{2}$. We may regard its prefix p_{1}, \ldots, p_{m} of length m as a permutation $\mathbf{p}^{(m)}$ of length m. We clearly have $t\left(\mathbf{p}^{(m)}\right) \leq t\left(\mathbf{p}^{(\ell)}\right)$ whenever $m \leq \ell$. Note that we may sample from \bar{S}_{n} by sampling a number m from the Poisson distribution of mean n and returning $\mathbf{p}^{(m)}$. Since $\operatorname{Pr}[\operatorname{Poisson}(n / 2) \geq n] \leq \exp (-c n)$ (see, for example [3]), we infer that to show that $t\left(\mathbf{p}^{(n)}\right) \geq \frac{1}{80} n^{2 / 3}$ a.a.s., it suffices to establish $t\left(\bar{S}_{n / 2}\right) \geq \frac{1}{80} n^{2 / 3}$ a.a.s.

Partition $[0,1]$ into $r \stackrel{\text { def }}{=}\left\lceil n^{2 / 3}\right\rceil$ equal intervals of length $1 / r$ each, denoted A_{1}, \ldots, A_{r}. This induces a partition of $[0,1]^{2}$ into r^{2} smaller squares of the form $A_{i} \times A_{j}$. Sample a set P from a Poisson process of intensity $n / 2$ on $[0,1]^{2}$. Make a bipartite graph B whose parts are two copies of $[r]$, with (i, j) being an edge if $A_{i} \times A_{j}$ contains at least two points of P. The edges are independent with probability $p=\operatorname{Pr}\left[\operatorname{Poisson}\left(n / 2 r^{2}\right) \geq 2\right] \geq \frac{1}{9} n^{-2 / 3}$, for large n. Clearly, every matching in B corresponds to a pair of twins in the associated permutation.

Theorem 2 follows once we show that B is likely to contain a large matching. This is well-known in the (very similar) context of the $G(n, p)$ model. We include such a proof for completeness.
Claim 5. Let $p \leq \frac{1}{6 r}$. Then a random bipartite graph $G(r+r, p)$ contains a matching of size $p r^{2} / 7$ a.a.s.

Proof. Let $L \cup R$ be the bipartition. As long as $|L|=|R| \geq r / 2$, do the following. Pick any vertex $v \in L$. It has a neighbor with probability $\geq p|R|-p^{2}\binom{|R|}{2} \geq p r / 3$. If $u \in R$ is a neighbor, match u to v. Else, let u be any vertex in R. Remove v from L and u from R. This way, we match $\operatorname{Binom}(r / 2, p r / 3)$ edges, which is at least $p r^{2} / 7$ a.a.s.

Acknowledgment. We thank Andrzej Dudek, Andrzej Ruciński, Chengfei Xie, Zixiang Xu and two anonymous referees for feedback on earlier versions of this paper.

References

[1] Paul Beame and Dang-Trinh Huynh-Ngoc. On the value of multiple read/write streams for approximating frequency moments. Electronic Colloquium on Computational Complexity (ECCC), May 2008. Technical Report TR08-024.
[2] Boris Bukh and Lidong Zhou. Twins in words and long common subsequences in permutations. Israel J. Math., 213(1):183-209, 2016. arXiv:1307.0088.
[3] Clément Cannone. A short note on Poisson tail bounds. http://www.cs.columbia.edu/ ~ccanonne/files/misc/2017-poissonconcentration.pdf.
[4] Andrzej Dudek, Jarosław Grytczuk, and Andrzej Ruciński. Variations on twins in permutations. arXiv:2001.05589, January 2020.
[5] Maciej Gawron. Izomorficzne podstruktury w słowach i permutacjach. Master's thesis, Uniwersytet Jagielloński, 2014.

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported in part by Sloan Research Fellowship and by U.S. taxpayers through NSF CAREER grant DMS-1555149.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported in part by U.S. taxpayers through NSF CAREER grant DMS-1555149.

