Ore's Conjecture for k = 4 and Grötzsch Theorem

Alexandr Kostochka*

Matthew Yancey[†]

November 11, 2018

Abstract

A graph G is k-critical if it has chromatic number k, but every proper subgraph of G is (k-1)-colorable. Let $f_k(n)$ denote the minimum number of edges in an n-vertex k-critical graph. In a very recent paper, we gave a lower bound, $f_k(n) \geq F(k,n)$, that is sharp for every $n=1 \pmod{k-1}$. It is also sharp for k=4 and every $n\geq 6$. In this note, we present a simple proof of the bound for k=4. It implies the case k=4 of the conjecture by Ore from 1967 that for every $k\geq 4$ and $n\geq k+2$, $f_k(n+k-1)=f(n)+\frac{k-1}{2}(k-\frac{2}{k-1})$. We also show that our result implies a simple short proof of the Grötzsch Theorem that every triangle-free planar graph is 3-colorable.

Mathematics Subject Classification: 05C15, 05C35

Key words and phrases: graph coloring, k-critical graphs, sparse graphs.

1 Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V, E) is a function $f : V \to \{1, 2, ..., k\}$ such that for each $uv \in E$, $f(u) \neq f(v)$. A graph G is k-colorable if there exists a k-coloring of G. The chromatic number, $\chi(G)$, of a graph G is the smallest k such that G is k-colorable. A graph G is k-critical if G is not (k-1)-colorable, but every proper subgraph of G is (k-1)-colorable. Then every k-critical graph has chromatic number k and every k-chromatic graph contains a k-critical subgraph.

The only 1-critical graph is K_1 , and the only 2-critical graph is K_2 . The only 3-critical graphs are the odd cycles. Let $f_k(n)$ be the minimum number of edges in a k-critical graph with n vertices. Since $\delta(G) \geq k-1$ for every k-critical n-vertex graph G, $f_k(n) \geq \frac{k-1}{2}n$ for all $n \geq k$, $n \neq k+1$. Equality is achieved for n=k and for k=3 and n odd. In 1957, Dirac [2] asked to determine $f_k(n)$ and proved that for $k \geq 4$ and $n \geq k+2$, $f_k(n) \geq \frac{k-1}{2}n + \frac{k-3}{2}$. The bound is tight for n=2k-1. Gallai [4] found exact values of $f_k(n)$ for $k+2 \leq n \leq 2k-1$:

Theorem 1 (Gallai [4]) If $k \ge 4$ and $k + 2 \le n \le 2k - 1$, then

$$f_k(n) = \frac{1}{2} ((k-1)n + (n-k)(2k-n)) - 1.$$

^{*}University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. Email: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-0965587 and by grants 12-01-00448 and 12-01-00631 of the Russian Foundation for Basic Research.

[†]Department of Mathematics, University of Illinois, Urbana, IL 61801, USA. E-mail: yancey1@illinois.edu. Research of this author is partially supported by the Arnold O. Beckman Research Award of the University of Illinois at Urbana-Champaign and from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students."

He also proved that $f_k(n) \ge \frac{k-1}{2}n + \frac{k-3}{2(k^2-3)}n$ for all $k \ge 4$ and $n \ge k+2$. Gallai in 1963 and Ore [9] in 1967 reiterated the question on finding $f_k(n)$. Ore observed that Hajós' construction implies

 $f_k(n+k-1) \le f_k(n) + \frac{(k-2)(k+1)}{2} = f_k(n) + (k-1)(k-\frac{2}{k-1})/2,$ (1)

which yields that $\phi_k := \lim_{n \to \infty} \frac{f_k(n)}{n}$ exists and satisfies $\phi_k \leq \frac{k}{2} - \frac{1}{k-1}$. Ore [9] also conjectured that for every $n \geq k+2$, in (1) equality holds.

More detail on known results about $f_k(n)$ and Ore's Conjecture the reader can find in [6][Problem 5.3] and our recent paper [8]. In [8] we proved the following bound.

Theorem 2 If $k \ge 4$ and G is k-critical, then $|E(G)| \ge \left\lceil \frac{(k+1)(k-2)|V(G)|-k(k-3)}{2(k-1)} \right\rceil$. In other words, if $k \ge 4$ and $n \ge k$, $n \ne k+1$, then

$$f_k(n) \ge F(k,n) := \left\lceil \frac{(k+1)(k-2)n - k(k-3)}{2(k-1)} \right\rceil.$$
 (2)

This bound is exact for k=4 and every $n\geq 6$. For every $k\geq 5$, the bound is exact for every $n\equiv 1\ (\text{mod }k-1),\ n\neq 1$. In particular, $\phi_k=\frac{k}{2}-\frac{1}{k-1}$ for every $k\geq 4$. The result also confirms the above conjecture by Ore from 1967 for k=4 and every $n\geq 6$ and also for $k\geq 5$ and all $n\equiv 1\ (\text{mod }k-1),\ n\neq 1$. One of the corollaries of Theorem 2 is a short proof of the following theorem due to Grötzsch [5]:

Theorem 3 ([5]) Every triangle-free planar graph is 3-colorable.

The original proof of Theorem 3 is somewhat sophisticated. There were subsequent simpler proofs (see, e.g. [10] and references therein), but Theorem 2 yields a half-page proof. A disadvantage of this proof is that the proof of Theorem 2 itself is not too simple. The goal of this note is to give a simpler proof of the case k = 4 of Theorem 2 and to deduce Grötzsch' Theorem from this result. Note that even the case k = 4 was a well-known open problem (see, e.g. [7][Problem 12] and recent paper [3]). Some further consequences for coloring planar graphs are discussed in [1].

In Section 2 we prove Case k=4 of Theorem 2 and in Section 3 deduce Grötzsch Theorem from it. Our notation is standard. In particular, $\chi(G)$ denotes the chromatic number of graph G, G[W] is the subgraph of a graph G induced by the vertex set W. For a vertex v in a graph G, $d_G(v)$ denotes the degree of vertex v in graph G, $N_G(v)$ is the set of neighbors of v. If the graph G is clear from the context, we drop the subscript.

2 Proof of Case k = 4 of Theorem 2

The case k = 4 of Theorem 2 can be restated as follows.

Theorem 4 If G is 4-critical, then $|E(G)| \ge \left\lceil \frac{5|V(G)|-2}{3} \right\rceil$.

Definition 5 For $R \subseteq V(G)$, define the potential of R to be $\rho_G(R) = 5|R| - 3|E(G[R])|$. When there is no chance for confusion, we will use $\rho(R)$. Let $P(G) = \min_{\emptyset \neq R \subseteq V(G)} \rho(R)$.

Fact 6 We have
$$\rho_{K_1}(V(K_1)) = 5$$
, $\rho_{K_2}(V(K_2)) = 7$, $\rho_{K_3}(V(K_3)) = 6$, $\rho_{K_4}(V(K_4)) = 2$.

Note that $|E(G)| \ge \frac{5|E(G)|-2}{3}$ is equivalent to $\rho(V(G)) \le 2$. Suppose Theorem 4 does not hold. Let G be a vertex-minimal 4-critical graph with $\rho(V(G)) > 2$. This implies that

if
$$|V(H)| < |V(G)|$$
 and $P(H) > 2$, then H is 3-colorable. (3)

Definition 7 For a graph G, a set $R \subset V(G)$ and a 3-coloring ϕ of G[R], the graph $Y(G, R, \phi)$ is constructed as follows. First, for i = 1, 2, 3, let R'_i denote the set of vertices in V(G) - R adjacent to at least one vertex $v \in R$ with $\phi(v) = i$. Second, let $X = \{x_1, x_2, x_3\}$ be a set of new vertices disjoint from V(G). Now, let $Y = Y(G, R, \phi)$ be the graph with vertex set $(V(G) - R) \cup X$, such that Y[V(G) - R] = G - R and $N(x_i) = R'_i \cup (X - x_i)$ for i = 1, 2, 3.

Claim 8 Suppose $R \subset V(G)$, and ϕ is a 3-coloring of G[R]. Then $\chi(Y(G, R, \phi)) \geq 4$.

Proof. Let $G' = Y(G, R, \phi)$. Suppose G' has a 3-coloring $\phi' : V(G') \to C = \{1, 2, 3\}$. By construction of G', the colors of all x_i in ϕ' are distinct. So we may assume that $\phi'(x_i) = i$ for $1 \le i \le 3$. By construction of G', for all vertices $u \in R'_i$, $\phi'(u) \ne i$. Therefore $\phi|_R \cup \phi'|_{V(G)-R}$ is a proper coloring of G, a contradiction. \square

Claim 9 There is no $R \subseteq V(G)$ with $|R| \ge 2$ and $\rho_G(R) \le 5$.

Proof. Let $2 \leq |R| < |V(G)|$ and $\rho(R) = m = \min\{\rho(W) : W \subsetneq V(G), |W| \geq 2\}$. Suppose $m \leq 5$. Then $|R| \geq 4$. Since G is 4-critical, G[R] has a proper coloring $\phi : R \to C = \{1, 2, 3\}$. Let $G' = Y(G, R, \phi)$. By Claim 8, G' is not 3-colorable. Then it contains a 4-critical subgraph G''. Let W = V(G''). Since $|R| \geq 4 > |X|, |V(G'')| < |V(G)|$. So, by the minimality of G, $\rho_{G''}(W) = \rho_{G'}(W) \leq 2$. Since G is 4-critical by itself, $W \cap X \neq \emptyset$. Since every non-empty subset of X has potential at least 5, $\rho_G((W - X) \cup R) \leq \rho_{G'}(W) - 5 + m \leq m - 3$. Since $(W - X) \cup R \supset R$, $|(W - X)| \cup R| \geq 2$. Since $\rho_G((W - X) \cup R) < \rho_G(R)$, by the choice of R, $(W - X) \cup R = V(G)$. But then $\rho_G(V(G)) \leq m - 3 \leq 2$, a contradiction. \square

Claim 10 If $R \subseteq V(G)$, $|R| \ge 2$ and $\rho(R) \le 6$, then R is a K_3 .

Proof. Let R have the smallest $\rho(R)$ among $R \subsetneq V(G)$, $|R| \geq 2$. Suppose $m = \rho(R) \leq 6$ and $G[R] \neq K_3$. Then $|R| \geq 4$. By Claim 9, m = 6.

Let $R_* = \{u_1, \ldots, u_s\}$ be the set of vertices in R that have neighbors outside of R. Because G is 2-connected, $s \geq 2$. Let $H = G[R] + u_1 u_2$. Since $R \neq V(G)$, |V(H)| < |V(G)|. By the minimality of $\rho(R)$, for every $U \subseteq R$ with $|U| \geq 2$, $\rho_H(U) \geq \rho_G(U) - 3 \geq \rho_G(R) - 3 \geq 3$. Thus $P(H) \geq 3$, and by (3), H has a proper 3-coloring ϕ with colors in $C = \{1, 2, 3\}$. Let $G' = Y(G, R, \phi)$. Since $|R| \geq 4$, |V(G')| < |V(G)|. By Claim 8, G' is not 3-colorable. Thus G' contains a 4-critical subgraph G''. Let W = V(G''). By the minimality of |V(G)|, $\rho_{G''}(W) = \rho_{G'}(W) \leq 2$. Since G is 4-critical by itself, $W \cap X \neq \emptyset$. By Fact 6, if $|W \cap X| \geq 2$ then $\rho_G((W - X) \cup R) \leq \rho_{G'}(W) - 6 + 6 \leq 2$, a contradiction again. So, we may assume that $X \cap W = \{x_1\}$. Then

$$\rho_G((W - \{x_1\}) \cup R) \le (\rho_{G'}(W) - 5) + \rho_G(R) \le \rho_G(R) - 3. \tag{4}$$

By the minimality of $\rho_G(R)$, $(W - \{x_1\}) \cup R = V(G)$. This implies that $W = V(G') - X + x_1$.

Let $R_1 = \{u \in R_* : \phi(u) = \phi(x_1)\}$. If $|R_1| = 1$, then $\rho_G(W - x_1 \cup R_1) = \rho_H(W) \le 2$, a contradiction. Thus, $|R_1| \ge 2$. Since R_1 is an independent set in H and $u_1u_2 \in E(H)$, we may assume that $u_2 \notin R_1$. Then an edge u_2z connecting u_2 with V(G) - R was not accounted in (4). So, in this case instead of (4), we have

$$\rho_G((W - \{x_1\}) \cup R) \le \rho_{G'}(W) - 5 - 3 + \rho_G(R) \le \rho_G(R) - 6 \le 0.$$

Claim 11 G does not contain $K_4 - e$.

Proof. If $G[R] = K_4 - e$, then $\rho_G(R) = 5(4) - 3(5) = 5$, a contradiction to Claim 10. \square

Claim 12 Each triangle in G contains at most one vertex of degree 3.

Proof. By contradiction, assume that $G[\{x_1, x_2, x_3\}] = K_3$ and $d(x_1) = d(x_2) = 3$. Let $N(x_1) = X - x_1 + a$ and $N(x_2) = X - x_2 + b$. By Claim 11, $a \neq b$. Define $G' = G - \{x_1, x_2\} + ab$. Because $\rho_G(W) \geq 6$ for all $W \subseteq G - \{x_1, x_2\}$ with $|W| \geq 2$, and adding an edge decreases the potential of a set by 3, $P(G') \geq \min\{(5, 6 - 3\} = 3\}$. So, by (3), G' has a proper 3-coloring ϕ' with $\phi'(a) \neq \phi'(b)$. This easily extends to a proper 3-coloring of V(G). \square

Claim 13 Let $xy \in E(G)$ and d(x) = d(y) = 3. Then both, x and y are in triangles.

Proof. Assume that x is not in a K_3 . Suppose $N(x) = \{y, u, v\}$. Then $uv \notin E(G)$. Let G' be obtained from G - y - x by gluing u and v into a new vertex u * v. Since |V(G')| < |V(G)|, G' is smaller than G. If G' has a 3-coloring $\phi' : V(G') \to C = \{1, 2, 3\}$, then we extend it to a proper 3-coloring ϕ of G as follows: define $\phi|_{V(G)-x-y-u-v} = \phi'|_{V(G')-u*v}$, then let $\phi(u) = \phi(v) = \phi'(u*v)$, choose $\phi(y) \in C - (\phi'(N(y) - x))$, and $\phi(x) \in C - \{\phi(y), \phi(u)\}$.

So, $\chi(G') \geq 4$ and G' contains a 4-critical subgraph G''. Let W = V(G''). Since G'' is smaller than G, $\rho_{G''}(W) = \rho_{G'}(W) \leq 2$. Since G'' is not a subgraph of G, $u * v \in W$. Let W' = W - u * v + u + v + x. Then $\rho_G(W') \leq 2 + 5(2) - 3(2) = 6$, since G[W'] has two extra vertices and at least two extra edges in comparison with G''. This contradicts Claim 10 because $y \notin W'$ and so $W' \neq V(G)$. \square

By Claims 11 and 13, we have

Each vertex with degree 3 has at most 1 neighbor with degree 3. (5)

We will now use discharging to show that $|E(G)| \geq \frac{5}{3}|V(G)|$, which will finish the proof of Theorem 4. Each vertex begins with charge equal to its degree. If $d(v) \geq 4$, then v gives charge $\frac{1}{6}$ to each neighbor with degree 3. Note that v will be left with charge at least $\frac{5}{6}d(v) \geq \frac{10}{3}$. By (5), each vertex of degree 3 will end with charge at least $3 + \frac{2}{6} = \frac{10}{3}$.

3 Proof of Theorem 3

Let G be a plane graph with fewest elements (vertices and edges) for which the theorem does not hold. Then G is 4-critical and in particular 2-connected. Suppose G has n vertices, e edges and f faces.

CASE 1: G has no 4-faces. Then $5f \leq 2e$ and so $f \leq 2e/5$. By this and Euler's Formula n-e+f=2, we have $n-3e/5\geq 2$, i.e., $e\leq \frac{5n-10}{3}$, a contradiction to Theorem 2. CASE 2: G has a 4-face (x,y,z,u). Since G has no triangles, $xz,yu\notin E(G)$. If the graph G_{xz}

CASE 2: G has a 4-face (x, y, z, u). Since G has no triangles, $xz, yu \notin E(G)$. If the graph G_{xz} obtained from G by gluing x with z has no triangles, then by the minimality of G, it is 3-colorable, and so G also is 3-colorable. Thus G has an x, z-path (x, v, w, z) of length 3. Since G itself has no triangles, $\{y, u\} \cap \{v, w\} = \emptyset$ and there are no edges between $\{y, u\}$ and $\{v, w\}$. But then G has no y, u-path of length 3, since such a path must cross the path (x, v, w, z). Thus the graph G_{yu} obtained from G by gluing y with u has no triangles, and so, by the minimality of G, is 3-colorable. Then G also is 3-colorable, a contradiction. \square

Acknowledgment. We thank Michael Stiebitz for helpful comments.

References

- [1] O. V. Borodin, A. V. Kostochka, B. Lidicky, and M. Yancey, Short proofs of coloring theorems on planar graphs, in preparation.
- [2] G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, *Proc. London Math. Soc.* (3) 7 (1957), 161-195.
- [3] B. Farzad, M. Molloy, On the edge-density of 4-critical graphs, *Combinatorica* **29** (2009), 665–689.
- [4] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 373-395.
- [5] H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 8 (1958/1959), 109–120 (in German).
- [6] T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1995.
- [7] T. R. Jensen and B. Toft, 25 pretty graph colouring problems, Discrete Math. 229 (2001), 167-169.
- [8] A. V. Kostochka and M. Yancey, Ore's Conjecture is almost true, submitted.
- [9] O. Ore, The Four Color Problem, Academic Press, New York, 1967.
- [10] C. Thomassen, A short list color proof of Grötzsch's theorem, J. Combin. Theory Ser. B 88 (2003), 189–192.