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a b s t r a c t

An r-segment hypergraph H is a hypergraph whose edges consist of r consecutive integer
points on line segments in R2. In this paper, we bound the chromatic number χ (H)
and covering number τ (H) of hypergraphs in this family, uncovering several interesting
geometric properties in the process. We conjecture that for r ≥ 3, the covering number
τ (H) is at most (r − 1)ν(H), where ν(H) denotes the matching number of H . We prove
our conjecture in the case where ν(H) = 1, and provide improved (in fact, optimal)
bounds on τ (H) for r ≤ 5. We also provide sharp bounds on the chromatic number
χ (H) in terms of r , and use them to prove two fractional versions of our conjecture.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The combinatorial and geometrical properties of families of sets in Euclidean space has been a thriving area of research
in discrete geometry and combinatorics for many decades. It was initiated by the classical theorem of Helly [12], asserting
that if F is a family of convex sets in Rd in which every d+1 members have nonempty intersection, then some point lies
in every set in F . This landmark result led to the study of covering numbers (also sometimes called piercing numbers or
hitting numbers) of families of sets, that is, the minimal number of points needed to ‘‘pierce’’ every set in a family given
some local intersection property. Helly’s theorem is sharp in general, but improved bounds on covering numbers can be
obtained if one restricts the convex sets in question. Indeed, extensive work has been done on the covering numbers
of families of disks, boxes, line segments, homothets of centrally symmetric bodies, and other convex sets, as well as in
discrete settings, where the vertex set lies in the integer lattice (of some fixed semi-algebraic group). [4,6,7]. Determining
covering numbers in discrete arrangements is often harder than in the continuous case, as the covering sets of points are
required to lie in the lattice as well.

Hadwiger and Debrunner [10] studied the piercing numbers of families F satisfying the (p, q) property (i.e., among any
p sets in H , there are q with a common intersection). When F consists of convex sets in Rd, a fundamental theorem of Alon
and Kleitman [3] asserts that there exists a constant c = c(d, p, q) such that F can be covered by c points. Optimal upper
bounds on the numbers c(d, p, q) in the Alon–Kleitman theorem are not known, despite extensive work (for a survey
see [8] and the references therein).

Covering problems have also been studied in the abstract setting of hypergraphs, that is, pairs H = (V , E) of a vertex
set V and an edge set E ⊂ 2V . In this context, one generally wants to obtain an upper bound on the covering number τ (H)
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in terms of its matching number ν(H) (that is, the maximum number of pairwise disjoint edges in H). If H is an r-uniform
hypergraph (that is, if every edge has exactly r vertices), then one such bound is τ (H) ≤ rν(H), as the union of the edges
in any maximal matching is a cover of H of size rν(H) (we will refer to this bound as the trivial bound).

The trivial bound cannot be improved in general, as is exemplified by the disjoint union of copies of the projective
plane of uniformity r . However, for certain families of r-uniform hypergraphs, the trivial bound can be improved.
König’s theorem [14], for instance, asserts that τ (H) = ν(H) in the case where r = 2 and H is a bipartite graph.
A longstanding conjecture of Ryser (see [13]) generalizes König’s theorem and states that any r-partite hypergraph H
satisfies τ (H) ≤ (r − 1)ν(H). Ryser’s conjecture was proved in the r = 3 case [1], and remains open for r ≥ 4.

The trivial bound can also be improved for the family of triangle hypergraphs. Given a graph G = (V , E) let H = H(G) be
the 3-uniform hypergraph with vertex set E so that a triple in E is a hyperedge of H if it forms a triangle in G. A famous
conjecture of Tuza [19] asserts that for any graph G, τ (H) ≤ 2ν(H), and the best known upper bound is τ (H) ≤

66
23ν(H) [11].

For other families of r-uniform hypergraphs in which the trivial bound can be improved, see [2].
In this paper, we introduce a new family of r-uniform hypergraphs whose edges are comprised of consecutive integer

points on a line. The covering number of such a hypergraph coincides with the notion of covering number in discrete
versions of Helly-type theorems, as each edge is the intersection of a convex set (in this case, a line segment) with the
integer lattice, and any covering set consists only of lattice points.

Definition 1.1. Let r ≥ 2 be an integer. A hypergraph H = (V , E) on vertex set V ⊂ Z2 is an r-segment hypergraph if

(i) every edge in E consists of r consecutive integer points on some line in R2 and
(ii) every line in R2 contains at most one edge of H .

This new family of hypergraphs has proven to be a fruitful source for challenging combinatorial questions, the answers
to which have yielded surprising geometrical properties. Much of the work in this paper centers around the following
conjectured bound on the covering numbers of r-segment hypergraphs.

Conjecture 1.2. If H is an r-segment hypergraph with r ≥ 3, then

τ (H) ≤ (r − 1)ν(H).

Said another way, if r ≥ 3 and H is an r-segment hypergraph satisfying the (p, 2) property, then Conjecture 1.2 asserts
τ (H) ≤ (r − 1)(p − 1).

Our main results in this direction are as follows.

(a) We prove Conjecture 1.2 in the case where H is intersecting, i.e. when ν(H) = 1 (Theorem 2.3). Our proof is highly
geometric, using areas of bounded regions to argue that any such hypergraph must have a vertex that lies in only
one edge.

(b) In Section 3, we provide tight upper bounds on τ (H) in the special case where r ≤ 5 and H is intersecting. In
particular, we show that Conjecture 1.2 is tight when r = 3 or r = 4, and if r = 5 then τ (H) ≤ 3. It follows from
our proof that any intersecting 5-segment hypergraph that contains a triangle has at most 6 edges.

(c) In Theorem 4.2 we prove sharp bounds on the chromatic numbers χ (H) of r-segment hypergraphs H (that is, the
minimal number of colors needed to color the vertices so that no edge is monochromatic). In particular, we show
that if r = 2, then χ (H) ≤ 4, if r = 3 then χ (H) ≤ 3 and if r ≥ 4 then χ (H) = 2.

(d) Finally, we use our bounds on the chromatic numbers to prove in Theorem 5.2 two fractional relaxations of
Conjecture 1.2. Specifically, we show that for any r-segment hypergraph H the ratios τ (H)/ν∗(H) and τ ∗(H)/ν(H)
do not exceed r − 1, where ν∗(H) and τ ∗(H) are the fractional matching and covering numbers, respectively (see
the beginning of Section 5 for formal definitions).

2. Covering intersecting r-segment hypergraphs

The main result of this section is Theorem 2.3, in which we prove Conjecture 1.2 for intersecting r-segment
hypergraphs. First, we give two examples demonstrating that no hypothesis in Conjecture 1.2 can be dropped.

Example 2.1. Conjecture 1.2 does not hold for r = 2, as exemplified by the complete 2-segment hypergraph R on the
vertex set V (R) = {(0, 0), (1, 0), (0, 1)}, which has ν = 1 and τ = 2.

Example 2.2. Without the ‘‘consecutive’’ assumption in Definition 1.1, Conjecture 1.2 would fail to hold. Consider, for
instance, the hypergraph S with vertex set

V (S) = {(−2, 0), (0, 0), (2, 0), (0, 2), (−1, 3), (1, 3), (0, 6)}

depicted in Fig. 2a. This configuration resembles the classical non-Fano plane and has ν(H) = 1 but τ (H) = 3.

In what follows, an isolated point in a hypergraph is a vertex lying in only one edge.
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Fig. 1. Configurations for the proof of Theorem 2.3.

Theorem 2.3. Any intersecting r-segment hypergraph H with r ≥ 3 contains an isolated vertex. In particular, τ (H) ≤ r − 1.

Proof. Assume for contradiction that H contains no isolated vertices. If all of the edges in H intersect at a vertex, then
the theorem is trivial. Otherwise, there are three edges e1, e2, e3 ∈ E(H) in H whose corresponding line segments form
a triangle T = {a, b, c} with a = e1 ∩ e2, b = e2 ∩ e3 and c = e3 ∩ e1. Suppose further that T has minimal area among
all triangles formed by edges in H . The minimality of the area of T implies that T contains no other integer points in its
boundary, and since r ≥ 3, each edge ei bounding T contains at least one more vertex.

First, suppose that each of the vertices a, b, and c is an endpoint of one of the edges e1, e2, and e3, and let pi denote
the next sequential vertex along each edge ei, as depicted in Fig. 1a. Since H contains no isolated vertices, some other
edge ep1 must contain p1, and since any two edges intersect, ep1 must intersect both e2 and e3 at b. Similarly, some other
edge ep3 contains both p3 and a, and must also intersect ep1 at some integer point q between p1 and b. Now, observe that
T and the triangle {a, p1, b} have the same area, meaning that the triangle {a, p1, q} has smaller area than T , which is a
contradiction.

In all the remaining cases, one of the vertices a, b, and c is not an endpoint of any of the edges e1, e2, and e3. Without
loss of generality, assume this vertex is a. Let p1 and p2 denote the vertices adjacent to a on e1 and e2, respectively, as
in Fig. 1b. As before, since H has no isolated vertices, some other edges ep1 and ep2 must contain p1 and p2, respectively.
Since H is intersecting and the line p1p2 is parallel to e3, the edges ep1 and ep2 must be distinct. Moreover, ep1 and ep2
cannot intersect b and c , respectively, as this would make ep1 and ep2 parallel (see Fig. 1b). Thus we may assume that ep2
intersects e3 at a point past vertex b, as depicted in Fig. 1c.

If ep2 intersects e3 at the vertex adjacent to b, then ep2 is parallel to e1. Therefore, ep2 must intersect e1 at a vertex
closer to p1 than to a. Labeling the vertices on e1 as q0 = p1, q1, q2, . . . according to their distance from a, assume that
ep2 is the edge containing p2 that contains qj for j ≥ 1 minimal. Since qj−1 is not isolated, it must be contained in some
additional edge eqj−1 that, by the minimality of j, does not contain p2. However, the triangle {p2, qj−1, qj} has the same
area as T , and eqj−1 must divide this triangle in order to intersect ep2 , contradicting the minimality of T . □

Example 2.4. Theorem 2.3 need not hold for non-intersecting r-segment hypergraphs in general. For example, the
3-hypergraph in Fig. 7b has no isolated vertices.

3. A refined bound for intersecting r-segment hypergraphs

Our main goal in this section is to investigate the following refinement of Conjecture 1.2 for intersecting r-segment
hypergraphs, which closely resembles the bound in the generalized Tuza conjecture for certain linear hypergraphs
(Remark 3.2).

Conjecture 3.1. If H is an intersecting r-segment hypergraph and r ≥ 5, then

τ (H) ≤

⌈ r
2

⌉
.

We prove two results in support of Conjecture 3.1: (i) we show that the bound in Conjecture 3.1, if true, is sharp
(Theorem 3.4), and (ii) we prove that Conjecture 3.1 holds in the case r = 5 (Theorem 3.7), confirming a strict departure
from the bound in Conjecture 1.2. Note that Conjecture 3.1 fails to hold for r < 5, as Conjecture 1.2 is tight in this
case. Indeed, adding an isolated vertex to every edge in the 2-segment hypergraph R in Example 2.1 yields a 3-segment
hypergraph with τ = 2, and Example 3.3 demonstrates sharpness for r = 4.

Remark 3.2. The upper bound in Conjecture 3.1 almost matches the bound conjectured by Aharoni and the third
author [2] for a family of hypergraphs H (r−1) (see [2] for formal definitions) generalizing Tuza’s conjecture [19]. We believe
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Fig. 2. The configuration lacking the ‘‘sequential’’ property from Example 2.2 (left), the intersecting 4-segment hypergraph with τ = 3 from
Example 3.3 (middle), and an intersecting 5-segment hypergraph with 6 edges (right).

this is no coincidence, since both hypergraphs share a similar ‘‘strong-linearity’’ property: given any two vertices u, v in
H (r−1), there is at most one possible r-tuple of elements of V (H (r−1)) containing both u and v that can serve as an edge;
similarly, in an r-segment hypergraph H , any edge e is fully determined by the pair of vertices u, v at the two ends of the
segment corresponding to e, in that there is at most one possible r-tuple in Z2 containing both u and v that can serve as
an edge in any r-segment hypergraph.

Example 3.3. The hypergraph H depicted in Fig. 2b is an intersecting 4-segment hypergraph with covering number 3. To
see this, note that there are 6 edges in H , and any two vertices of degree 3 share an edge. As such, any two vertices in H
cover at most 5 edges.

Note that this hypergraph is the 3-uniform projective plane minus one edge, with an added isolated vertex in every
edge. This construction appears to be special to r = 4, in part because of the increased difficulty of obtaining straight-line
embeddings of the r-uniform projective plane for large r . The authors were unable to obtain a proof, however, as the
proof method used in Theorem 3.7 includes too many cases to reasonably check by hand when r > 5.

Theorem 3.4. For every integer r ≥ 5, there exists an intersecting r-segment hypergraph with covering number ⌈
r
2⌉.

Proof. Consider the vectors

v⃗ = (1, r − 1) and u⃗ = (−1, r − 1).

Construct an r-segment hypergraph H by starting with a segment e from (0, 0) to (r − 1)v⃗ and a segment f from (0, 0)
to (r − 1)u⃗, and for each i = 1, . . . , r − 2, include a segment ei from iv⃗ to (r − 1− i)u⃗ (connecting e to f ). We must show
the following.

(i) Each segment has exactly r integer points. Indeed, e and f each have exactly r integer points (one at each integral
x-coordinate), and each edge ei has slope

mi =
i(r − 1) − (r − 1 − i)(r − 1)

i − (r − 1 − i)(−1)
= 2i − r + 1 ∈ Z,

meaning each of the r points on ei with integral x-coordinate is an integer point.
(ii) Any two segments intersect at an integer point. Indeed, segments e and f intersect at the origin, and the endpoints

of each edge ei intersect e and f , respectively. Moreover, two distinct edges ei and ej intersect at

x = i + j + 1 − r,

since the corresponding y-coordinate is

mi(x − i) + i(r − 1) = (2i − r + 1)(i + j + 1 − r − i) + i(r − 1)
= 2ij − (r − 1)(i + j) + (r − 1)2
= (2j − r + 1)(i + j + 1 − r − j) + j(r − 1)
= mj(x − j) + j(r − 1).

(iii) No 3 segments intersect at the same integer point. This holds since, on a given edge, each intersection point
identified in part (ii) has a distinct x-coordinate.

From these facts, we conclude τ (H) =
⌈ 1

2 |E(H)|
⌉

=
⌈ r

2

⌉
. □

For the proof of Theorem 3.7, we first prove Lemma 3.5. This geometric result was also used by the authors to
systematically verify Conjecture 3.1 for fixed values of r ≥ 6 in only finitely many cases.
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Fig. 3. The configuration from Lemma 3.5, together with each projection used in the proof.

Lemma 3.5. Fix a configuration of four pairwise intersecting line segments in R2 in which no three intersect at the same
point. These segments necessarily bound a quadrilateral Q and two triangles T1 and T2, as in Fig. 3. Denote the lengths of the
sides of the quadrilateral Q by a1, . . . , a4, and the lengths of the remaining sides of T1 and T2 by b1a1, . . . , b4a4, as shown in
Fig. 3 (here, we assume only that each labeled length is positive). The ratios b1, . . . , b4 must satisfy the relations

b2b3 = b1(b2 + 1) and b1b4 = (b1 + 1)b2.

In particular, specifying rational values for any two of the bi’s uniquely determines rational values for the other two.

Proof. Let A1, . . . , A4, B1, . . . , B4 denote the given segments in the lemma of lengths a1, . . . , a4, a1b1, . . . , a4b4, respec-
tively. Note the ratios b1, . . . , b4 are preserved under rotation and scaling of the entire configuration, as well as under
projection onto a line.

First, consider the projection P along the diagonal of Q connecting the points A1∩A2 and A3∩A4 (the ‘‘vertical’’ diagonal
in Fig. 3). Scale the original configuration so that P(A1) (which coincides with P(A4)) has unit length, and let a be the length
of P(A2) = P(A3). Comparing projected lengths yields

b3a = b1 + 1 and (b2 + 1)a = b4

which can be solved to obtain

(b1 + 1)(b2 + 1) = b3b4. (3.1)

Next, consider the projection P ′ along the diagonal of Q connecting the points A1 ∩ A4 and A2 ∩ A3 (the ‘‘horizontal’’
diagonal in Fig. 3). Scaling the original configuration so that P ′(A1) = P ′(A2) has unit length and writing a′ for the length
of P ′(A3) = P ′(A4), we obtain

(b3 + 1)a′
= b1 and (b4 + 1)a′

= b2,

yielding

b1(b4 + 1) = b2(b3 + 1). (3.2)

Solving (3.1) for b4 and substituting into (3.2) yields

b2b23 + (b2 − b1)b3 + b1(b1 + 1)(b2 + 1) = 0,

implying

b3 =
(b1 − b2) ± (b1 + b2 + 2b1b2)

2b2
.

Disregarding the negative solution yields b3 = (b2 + 1)b1/b2. Substituting back into (3.1) and (3.2) yields the desired
equations. □

Example 3.6. Suppose r = 5, and consider the configuration in Fig. 4a. Using the labeling in Lemma 3.5, b1 = b2 = 2,
which forces b3 = b4 = 3. As such, the additional integer points depicted in Fig. 4b must also appear in the configuration.
On the other hand, the configuration in Fig. 4c has b1 = 1 and b2 = 2, so by Lemma 3.5, we have b4 = 4, which is
impossible if r < 6. As such, this configuration cannot occur in any 5-segment hypergraph.

We are now ready to prove Theorem 3.7.

Theorem 3.7. If H is an intersecting 5-segment hypergraph, then τ (H) ≤ 3.



6 D. Oliveros, C. O’Neill and S. Zerbib / Discrete Mathematics 343 (2020) 111825

Fig. 4. Configurations in Example 3.6.

Fig. 5. The thick lines (colored black) are the edges in Q , with ratios (b1, b2, b3, b4) = ( 13 , 1
2 , 1, 2). The thin lines in the left hand image labeled

L1, . . . , L7 (colored blue) may contain additional edges of H , while the remaining thin lines (colored red) cannot contain any edges of H . Applying
Lemma 3.5 to the shaded quadrilateral in the right hand image implies that aj cannot contain any edges in H . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Proof. Let H = (V , E) be an intersecting 5-segment hypergraph. We may assume that |E| ≥ 7, for otherwise the claim
τ (H) ≤ 3 is trivial. If all of the edges in H intersect in a single vertex, then τ (H) = 1. Otherwise, choose two edges
e1, e2 ∈ E, and let e3 be an edge not intersecting e1 ∩ e2. If the three vertices of the triangle formed by e1, e2, e3 form a
cover of H , then again τ (H) ≤ 3. Otherwise, there is an edge e4 not containing any of these vertices, so Q = {e1, e2, e3, e4}
is a set of four edges satisfying the conditions of Lemma 3.5.

Let b1, . . . , b4 be the ratios defined in Lemma 3.5 for Q . Since r = 5, each bi must lie in the set {
1
3 ,

1
2 , 1, 2, 3}. Since

the values of b1 and b2 uniquely determine the values of b3 and b4 by Lemma 3.5, trying each possible pair (b1, b2) yields

(1, 1, 2, 2), (2, 2, 3, 3), ( 12 , 1, 1, 3), and ( 13 ,
1
2 , 1, 2)

as the only possible tuples (b1, b2, b3, b4) up to symmetry. We can now divide the proof into four cases, one for each
possibility. We include here only the case where (b1, b2, b3, b4) = ( 13 ,

1
2 , 1, 2), as similar arguments yield the remaining

three cases.
The thick black edges depicted in Fig. 5 correspond to the edges in Q , with ratios (b1, b2, b3, b4) = ( 13 ,

1
2 , 1, 2). We first

demonstrate that any additional edges in H must lie in one of the lines labeled L1, . . . , L7 in Fig. 5 (i.e. those colored blue).
The lines gn, hl and ik are parallel to be and therefore, since H is intersecting, they cannot contain an edge. Similarly, the
lines hd, gc and jf are parallel to ie, and hc is parallel to jd, and thus cannot contain an edge. Applying Lemma 3.5 to the
shaded quadrilateral in Fig. 5 implies the length ratio of jz to az is 1

4 , which is impossible if aj has only 5 consecutive
integer points. As such, we conclude the line aj cannot contain an edge. By similar arguments, the lines im and bm cannot
contain an edge since they do not intersect be and ie, respectively, at integer points.

Let E ′
= E \ Q . By the above argument, |E ′

| ≤ 7 and each edge in E ′ must lie in a distinct labeled line L1, . . . , L7 in
Fig. 5. We now consider which pairs of lines can simultaneously contain edges. For instance, if L1 and L3 both contained
edges, then applying Lemma 3.5 to the quadrilateral formed with de and eℓ implies the edge in L1 contains more than
5 integer points. Similarly, if L1 and L5 both contained edges, then applying Lemma 3.5 to the quadrilateral formed with
de and eℓ implies L1 contains more than 5 integer points. Continuing in this way, the only pairs of lines that can contain
two distinct edges is E ′ are the following:

{L1, L2}, {L1, L4}, {L1, L7}, {L2, L6}, {L3, L5},
{L3, L6}, {L3, L7}, {L4, L5}, {L5, L7}, {L6, L7}.
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From this, we must have |E ′
| ≤ 3, as the maximal sets of lines that could simultaneously contain edges in E ′ are {L3, L5, L7}

or {L3, L6, L7}. However, both triples require L3 to contain more than 5 integer points by Lemma 3.5. We conclude that H
contains at most 6 edges, which completes the proof of this case. □

Remark 3.8. One consequence of the proof of Theorem 3.7 is that any intersecting 5-segment hypergraph has at most
6 edges if it contains a triangle. Indeed, in any such configuration, the degree of each vertex v is at most r since every
edge through v must intersect an edge not containing v at a different vertex. As such, any configuration with more than
r + 1 edges contains a configuration of the form in Lemma 3.5, and the proof of Theorem 3.7 verifies that no more than
2 edges can be added in each case. One configuration achieving the maximum 6 edges is illustrated in Fig. 2c.

Question 3.9. What is the maximum number of edges that can occur in an intersecting r-segment hypergraph containing
a triangle?

4. Coloring r-segment hypergraphs

A hypergraph H is k-colorable for a positive integer k if one can assign one of k colors to each vertex in such a way
that no edge in H is monochromatic, and the chromatic number of H , denoted χ (H), is the least number k such that H is
k-colorable.

Coloring problems in geometric settings have a long and vibrant history. Particularly noteworthy examples include the
4-color theorem for planar graphs and the question of how to color every point in R2 so that no two points that are unit
distance apart are colored by the same color [5]. Chromatic numbers of certain families of r-uniform hypergraphs are also
of interest, such as the family of Kneser hypergraphs KGr (n, k), whose vertices are the k-element subsets of {1, . . . , n} and
whose edges are collections of r pairwise disjoint subsets [17].

In this section, we give an optimal upper bound on the chromatic numbers of r-segment hypergraphs in terms of r
(Theorem 4.2). Our proof uses geometric projections to explicitly construct proper colorings (Proposition 4.1). We also
demonstrate that the bounds in Theorem 4.2 are sharp (Examples 4.3 and 4.4).

Like many other hypergraph families in the literature, r-segment hypergraphs are linear, meaning any two edges
intersect in at most one vertex. It is worth noting that in general, the problem of deciding whether an r-uniform
hypergraph H is k-colorable is NP-hard, even in the case where H is linear.

For each integer k ≥ 2, let Zk denote the additive group Z/kZ = {0, 1, . . . , k − 1}. In what follows, denote by Zk the
k-uniform hypergraph with vertex set V (Zk) = Z2

k and edge set

E(Zk) = {u + Zkv : u, v ∈ Z2
k, |u + Zkv| = k},

where u = (u1, u2) ∈ Z2
k .

Proposition 4.1. Fix integers r ≥ k ≥ 2 and an r-segment hypergraph H. The image of any edge of H under the projection

Pk : Z2
−→ Z2

k
(v1, v2) ↦−→ (v1, v2)

is an edge in Zk. In particular, χ (H) ≤ χ (Zk).

Proof. Fix an edge e ∈ E(H) with endpoint u ∈ Z2 and vector v = (v1, v2) ∈ Z2 pointing from u to the next integer point
in e. Since e = u + {0, 1, . . . , r − 1}v, the image of e under Pk is u + Zkv, so to complete the proof, we claim the images
of any k sequential vertices in e are distinct vertices of Zk, or, equivalently, that no nonzero element of Zk annihilates v.
The fact that u and u + v are two consecutive integer points on a line in R2 implies gcd(v1, v2) = 1, so the claim follows
from the fact that ann(v) = ann(v1) ∩ ann(v2) has nonzero elements only if gcd(v1, v2) > 1. □

We are now ready to prove our main theorem on colorations.

Theorem 4.2. Let H be an r-segment hypergraph.

(a) If r = 2 then χ (H) ≤ 4.
(b) If r = 3 then χ (H) ≤ 3.
(c) If r ≥ 4 then χ (H) = 2.

Additionally, the inequalities in parts (a) and (b) are sharp.

Proof of Theorem 4.2. By Proposition 4.1, it suffices to show χ (Z2) ≤ 4, χ (Z3) ≤ 3 and χ (Z4) ≤ 2. The first inequality
is clear since Z2 is a complete graph on 4 vertices, and the other two follow from the colorings given in Figs. 6a
and 6b, respectively (one can manually verify that no monochromatic edges are present). The remaining claims about
the sharpness of parts (a) and (b) of the theorem follow from Examples 4.3 and 4.4, respectively. □
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Fig. 6. Colorings of Z3 (left) and Z4 (right) for the proof of Theorem 4.2. In each, every edge through the point (0, 0) is also depicted.

Fig. 7. Hypergraphs from Examples 4.3 and 4.4.

Example 4.3. The 2-segment hypergraph H with vertex set

V (H) = {(0, 0), (1, 1), (1, 2), (2, 1)}

depicted in Fig. 7a is the complete graph on 4 vertices, and thus has χ (H) = 4.

Example 4.4. The following 3-segment hypergraph H has χ (H) = 3. We begin by constructing the hypergraph C depicted
in Fig. 7c with vertex set {0, 1, 2}3. Start with the 1-skeleton of the cube with vertex set {0, 2}3. Next, add edges so that
each side of the cube forms a square with 3 horizontal edges, 3 vertical edges, and 2 diagonal edges (see Fig. 7b). Finally,
include edges so that the center layer (i.e. z = 1) matches Fig. 7b as well. This yields 40 edges: 8 within each layer parallel
to the xy-plane, 8 ‘‘vertical’’ edges parallel to the z-axis, and 2 diagonal edges within each vertical side. One can check via
computation that C is not 2-colorable (a brute-force implementation in Python takes approximately 1 min).

Next, let H denote the image of C under the projection map

Z3
−→ Z2

(x, y, z) ↦−→ (x + 3z, y + 5z).

The lower left corners of the squares comprising the bottom (z = 0), middle (z = 1), and top (z = 2) layers of C are
(0, 0), (3, 5), and (6, 10), respectively. It suffices to check that the image of each ‘‘vertical’’ edge in H ′ still only contains
3 integer points, but the vector v in the direction of any such edge from the bottom layer (z = 0) to the middle layer
(z = 1) either has x-coordinate 3 or y-coordinate 5, ensuring gcd(v1, v2) = 1. As such, H is a 3-segment hypergraph with
chromatic number 3.

One immediate consequence of Theorem 4.2 is a bound on τ (H) in terms of V (H) for any r-segment hypergraph H .

Corollary 4.5. Let H = (V , E) be an r-segment hypergraph.

(a) If r = 2, then τ (H) ≤
3
4 |V |.

(b) If r = 3, then τ (H) ≤
2
3 |V |.

(c) For every r ≥ 4, τ (H) ≤
1
2 |V |.
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Proof. Suppose H is k-colorable. For any color c , the set of all vertices not colored by c is a cover. By the pigeon
hole principle, some color must label at least 1/k of the vertices of H , so τ (H) ≤

k−1
k |V |. The result now follows from

Theorem 4.2. □

Remark 4.6. One surprising consequence of Theorem 4.2 is that some graphs are not realizable as 2-segment
hypergraphs. For example, K5 (the complete graph on 5 vertices) is the smallest complete graph that cannot be realized
as a 2-segment hypergraph, and is also the smallest non-planar complete graph. On the other hand, K3,3 (the complete
bipartite graph with 3 vertices of each color) is realizable as a 2-segment hypergraph (in fact, so is any bipartite graph).

Schnyder proved that every planar graph can be embedded in the plane so that every vertex is an integer point and
every edge is a straight line segment [18]. This, together with Remark 4.6, prompts the following.

Problem 4.7. Which graphs are realizable as 2-segment hypergraphs?

5. Fractional covers and matchings in r-segment hypergraphs

Let H = (V , E) be a hypergraph. A function f : E → R≥0 is a fractional matching if
∑

e∋v f (e) ≤ 1 for every v ∈ V . We
denote by

ν∗(H) = max
{∑

e∈E

f (e) : f is a fractional matching of H
}

the fractional matching number of H . Similarly, a fractional cover is a function g : V → R≥0 such that
∑

v∈e g(v) ≥ 1 for
every e ∈ E. We denote by

τ ∗(H) = min
{∑

v∈V

g(v) : g is a fractional cover of H
}

the fractional covering number of H . In every hypergraph H , we have

ν(H) ≤ ν∗(H) = τ ∗(H) ≤ τ (H),

where the equality ν∗(H) = τ ∗(H) follows from linear programming duality. Moreover, the complementary slackness
condition asserts that if some minimum fractional cover g : V → R≥0 satisfies g(u) > 0 for some u ∈ V , then every
maximum fractional matching f : E → R≥0 satisfies

∑
e∋u f (e) = 1.

Bounding the fractional ratios τ/ν∗ and τ ∗/ν is often easier than the integral one. In the context of Ryser’s conjecture,
Lovász proved [16] that τ (H) ≤

r
2ν

∗(H), and the bound τ ∗(H) ≤ (r − 1)ν(H) follows from a theorem of Füredi:

Theorem 5.1 ([9]). If every edge of a hypergraph H has at most r vertices with r ≥ 3, and H does not contain a copy of the
r-uniform projective plane, then ν(H) ≥

ν∗(H)
r−1 .

For Tuza’s conjecture, Krivelevich [15] showed both τ (H(G)) ≤ 2ν∗(H(G)) and τ ∗(H(G)) ≤ 2ν(H(G)) for every G. The
latter bounds follow from Theorem 5.1 as well.

Here we prove that both fractional bounds are true when H is an r-segment hypergraph with r ≥ 3. As in the case of
r-partite hypergraphs and triangle hypergraphs of graphs, the proof of the bound on τ ∗/ν follows from Theorem 5.1.

Theorem 5.2. If H is an r-segment hypergraph with r ≥ 3, then τ ∗(H) ≤ (r − 1)ν(H) and τ (H) ≤ (r − 1)ν∗(H).

Proof. By Theorem 5.1, for the first statement of the theorem it is enough to show that H does not contain a copy of
the r-uniform projective plane. Suppose to the contrary that H contains a subhypergraph H ′ isomorphic to the r-uniform
projective plane. Since H ′ is an intersecting r-segment hypergraph, Theorem 2.3 implies H ′ contains an isolated vertex,
contradicting the fact that each vertex in the r-uniform projective plane belongs to r edges.

Suppose H = (V , E) has the minimal number of edges such that

τ (H) > (r − 1)ν∗(H) = (r − 1)τ ∗(H).

Let f : E → R≥0 and g : V → R≥0 be a maximal fractional matching and a minimal fractional cover of H , respectively.
By removing vertices from V if necessary, we may assume that every vertex in V belongs to some edge.

Suppose first that some vertex u ∈ V has g(u) = 0. Given an edge e containing u, we have
∑

e∋v g(v) ≥ 1 since g is
the fractional cover, but g(u) = 0, so there must be a vertex v ∈ e with g(v) ≥

1
r−1 . Consider the hypergraph H ′ obtained

from H by removing v and all the edges containing it.
Clearly τ (H ′) ≥ τ (H) − 1, since otherwise a minimal cover in H ′ together with v is a cover of H of size smaller than

τ (H). Moreover, by the minimality of H , we have τ (H ′) ≤ (r−1)τ ∗(H ′), and since the restriction of g to V (H ′) is a fractional
cover of H ′, we have τ ∗(H ′) ≤ τ ∗(H) − g(v). Thus,

τ ∗(H ′) ≤ τ ∗(H) − g(v) <
τ (H)
r − 1

−
1

r − 1
=

τ (H) − 1
r − 1

≤
τ (H ′)
r − 1

≤ τ ∗(H ′),
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which is a contradiction.
We may now assume g(u) > 0 for all u ∈ V (if the second inequality does not hold for some u ∈ V then we can

repeat the argument above by removing u from H). By the complementary slackness conditions, each vertex u satisfies∑
e∋u f (e) = 1, so

|V | =

∑
u∈V

1 =

∑
u∈V

∑
e∋u

f (e) =

∑
e∈E

rf (e) = rν∗(H) = rτ ∗(H).

We conclude τ ∗(H) =
1
r |V |, but since τ (H) ≤

2
3 |V | by Corollary 4.5, we have

τ (H)
τ ∗(H)

≤

2
3 |V |

1
r |V |

=
2r
3

≤ r − 1,

for every r ≥ 3. This concludes the proof of the theorem. □
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