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Abstract

We show that for all ` and ε > 0 there is a constant c = c(`, ε) > 0 such that every `-coloring
of the triples of an N -element set contains a subset S of size c

√
log N such that at least 1 − ε

fraction of the triples of S have the same color. This result is tight up to the constant c and
answers an open question of Erdős and Hajnal from 1989 on discrepancy in hypergraphs. For
` ≥ 4 colors, it is known that there is an `-coloring of the triples of an N -element set whose largest
monochromatic subset has cardinality only Θ(log log N). Thus, our result demonstrates that the
maximum almost monochromatic subset that an `-coloring of the triples must contain is much
larger than the corresponding monochromatic subset. This is in striking contrast with graphs,
where these two quantities have the same order of magnitude. To prove our result, we obtain a
new upper bound on the `-color Ramsey numbers of complete multipartite 3-uniform hypergraphs,
which answers another open question of Erdős and Hajnal.

1 Introduction

The Ramsey number r(n) is the smallest integer N such that every 2-coloring of the edges of the
complete graph on N vertices contains a monochromatic clique of size n. Ramsey’s theorem states
that r(n) exists for all n. Determining or estimating Ramsey numbers is one of the central problems in
combinatorics, see the book Ramsey theory [12] for details. A classical result of Erdős and Szekeres [11],
which is a quantitative version of Ramsey’s theorem, implies that r(n) ≤ 22n for every positive integer
n. Erdős [5] showed using probabilistic arguments that r(n) > 2n/2 for n > 2. Over the last sixty
years, there have been several improvements on these bounds (see, e.g., [3]). However, despite efforts
by various researchers, the constant factors in the above exponents remain the same.

Although already for graph Ramsey numbers there are significant gaps between lower and upper
bounds, our knowledge of hypergraph Ramsey numbers is even weaker. The Ramsey number rk(n) is
the minimum N such that every 2-coloring of the k-tuples of an N -element set contains a monochro-
matic set of size n, where a set is called monochromatic if all its k-tuples have the same color. Erdős,
Hajnal, and Rado [9] showed that there are positive constants c and c′ such that

2cn2
< r3(n) < 22c′n

.
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They also conjectured that r3(n) > 22cn
for some constant c > 0 and Erdős (see, e.g. [2]) offered a

$500 reward for a proof. Similarly, for k ≥ 4, there is a difference of one exponential between known
upper and lower bounds for rk(n), i.e.,

tk−1(cn2) ≤ rk(n) ≤ tk(c′n),

where the tower function tk(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).

The study of 3-uniform hypergraphs is particularly important for our understanding of hypergraph
Ramsey numbers. This is because of an ingenious construction called the stepping-up lemma due to
Erdős and Hajnal (see, e.g., Chapter 4.7 in [12]). For k ≥ 3, their method allows one to construct
lower bound colorings for uniformity k +1 from colorings for uniformity k, effectively gaining an extra
exponential each time it is applied. Therefore, proving that r3(n) has doubly exponential growth will
allow one to close the gap between the upper and lower bounds for rk(n) for all uniformities k.

Despite the fact that Erdős [6] (see also the book [2]) believed r3(n) is closer to 22cn
, together with

Hajnal [8], he discovered the following interesting fact about hypergraphs which maybe indicates the
opposite. They proved that there are c, ε > 0 such that every 2-coloring of the triples of an N -element
set contains a subset S of size s > c(log N)1/2 such that at least (1/2+ ε)

(
s
3

)
triples of S have the same

color. That is, this subset deviates from having density 1/2 in each color by at least some fixed positive
constant. Erdős [7] further remarks that he would begin to doubt that r3(n) is double-exponential in n

if one can prove that any 2-coloring of the triples of an N -set contains some set of size s = c(ε)(log N)δ

for which at least (1 − ε)
(
s
3

)
triples have the same color, where δ > 0 is an absolute constant. Erdos

and Hajnal proposed [8] that such a statement may even be true with δ = 1/2. Our first result shows
that this is indeed the case.

Theorem 1 For each ε > 0 and `, there is c = c(`, ε) > 0 such that every `-coloring of the triples of
an N -element set contains a subset S of size s = c

√
log N such that at least (1 − ε)

(
s
3

)
triples of S

have the same color.

It is easy to see that this theorem is tight up to the constant factor c. Indeed, consider an `-coloring
of the triples of an N -element set in which every triple gets one of ` colors uniformly at random. Using
a standard tail estimate for the binomial distribution, one can show that in this coloring, with high
probability, every subset of size À √

log N has a 1/` + o(1) fraction of its triples in each color.

Our result also shows a significant difference between the discrepancy problem in graphs and that in
hypergraphs. The `-color Ramsey number rk(n; `) is the minimum N such that every `-coloring of the
k-tuples of an N -element set contains a monochromatic set of size n. Erdős and Hajnal (see, e.g., [12])
constructed a 4-coloring of the triples of a set of size 22cn

which does not contain a monochromatic
subset of size n. In [4] we constructed a 3-coloring of the triples of a set of size 2nc log n

which does not
contain a monochromatic subset of size n. Thus, Theorem 1 demonstrates (at least for ` ≥ 3) that
the maximum almost monochromatic subset that an `-coloring of the triples must contain is much
larger than the corresponding monochromatic subset. This is in striking contrast with graphs, where
these two quantities have the same order of magnitude, as demonstrated by a random `-coloring of
the edges of a complete graph.

Another open problem from the 1989 paper of Erdős and Hajnal [8] asks whether one can exhibit a
fixed hypergraph of density larger than 1/2 + ε on c

√
log N vertices that occurs monochromatically.
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That is, can we find dense hypergraphs with small Ramsey numbers? We show that this is indeed
the case by obtaining a new upper bound on the `-color Ramsey number of a complete multipartite
3-uniform hypergraph. A hypergraph H = (V, E) consists of a vertex set V and an edge set E, which
is a collection of subsets of V . A hypergraph is k-uniform if each edge has exactly k vertices. For a
k-uniform hypergraph H, the Ramsey number r(H; `) is the minimum N such that every `-coloring
of the k-tuples of an N -element set contains a monochromatic copy of H. The complete d-partite
k-uniform hypergraph Kk

d (n) is the k-uniform hypergraph whose vertex set consists of d parts of size
n and whose edges are all k-tuples that have their vertices in some k different parts. The number of
vertices of K3

d(n) is dn and the number of edges in K3
d(n) is

(
d
3

)
n3 > (1 − 3

d)
(
dn
3

)
, i.e., it has edge

density more than 1− 3
d . In particular, as d increases, the edge density of K3

d(n) tends to 1. Therefore,
Theorem 1 is an immediate corollary of the following theorem.

Theorem 2 The `-color Ramsey number of the complete d-partite hypergraph K3
d(n) satisfies

r(K3
d(n); `) ≤ 2`2rn2

,

where r = r2(d− 1; `) is the `-color Ramsey number of the complete graph on d− 1 vertices.

In the next section, we discuss the technique of Kövári, Sós, and Turán on the classical problem of
Zarankiewicz and its consequences, which will be helpful in proving our main theorems. In Section 3,
we present the proof of Theorem 2. Throughout the paper, we systematically omit floor and ceiling
signs whenever they are not crucial for the sake of clarity of presentation. We also do not make any
serious attempt to optimize absolute constants in our statements and proofs. All logarithms in this
paper are in base 2.

2 Complete bipartite graphs in dense graphs

The problem of Zarankiewicz [15] asks for the maximum number z(m,n; s, t) of edges in a bipartite
graph G which has m vertices in its first class, n vertices in its second class, and does not contain a
complete bipartite graph Ks,t with s vertices in the first class and t in the other. In their celebrated
paper, Kövári, Sós, and Turán [13] used double counting together with the pigeonhole principle to
give a general upper bound on z(m,n; s, t). Using this technique, we obtain the following two simple
lemmas which we need in the proof of our main result. The degree d(v) of a vertex v is the number
of vertices adjacent to v.

Lemma 1 Let G be a bipartite graph with parts A and B and with at least |A||B|/` edges. Then G

contains a complete bipartite subgraph with one part having a = |A|/` vertices from A and the other
part having b = 2−|A||B| vertices from B.

Proof: Using the convexity of the function f(x) =
(
x
a

)
together with the fact that the average degree

of a vertex in B is at least a, we conclude that the number of pairs (A′, v), where A′ is a subset of A

of size a and v ∈ B is adjacent to every vertex in A′, is at least
∑

v∈B

(
d(v)
a

)
≥ |B|

( 1
|B|

∑
v∈B d(v)
a

)
= |B|.
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Since the set A has at most 2|A| subsets, by the pigeonhole principle, there are at least b = 2−|A||B|
vertices in B adjacent to the same subset A′ ⊂ A of size a. Together they form a complete bipartite
graph with one part having a vertices in A and the other part having b vertices in B, completing the
proof. 2

Lemma 2 If a graph G of order n has εn2 edges and t < εn, then it contains Ks,t with s = εtn.

Proof: Note that the number of pairs (U, v) with U being a subset of G of size t and v being a vertex
of G adjacent to every vertex in U is at least

∑

v∈V (G)

(
d(v)

t

)
≥ n

(
2εn

t

)
≥ n(εn)t/t!,

where we use convexity of f(x) =
(
x
t

)
and the fact that the average degree of a vertex in G is

2εn > t + εn. If G does not contain Ks,t as a subgraph, then for every subset U of G of size t, there
are at most s− 1 vertices of G adjacent to U . Hence,

n(εn)t/t! ≤ (s− 1)
(

n

t

)
< snt/t! = n(εn)t/t!,

a contradiction, which completes the proof. 2

Both of these lemmas can be further improved by using better upper bound estimates for binomial
coefficients. However, the above clean estimates are sufficient for our purposes.

3 Proof of the main result

First we briefly discuss the classical approach of Erdős and Rado which gives an upper bound on
the Ramsey number of the complete 3-uniform hypergraph on d vertices. Suppose the triples of a
sufficiently large set V of vertices are `-colored. Let r be the `-color Ramsey number of a complete
graph of order d− 1. Erdős and Rado greedily construct a set of vertices {v1, . . . , vr+1} such that for
any given pair 1 ≤ i < j ≤ r, all triples {vi, vj , vk} with k > j are of the same color, which we denote
by χ(vi, vj). By definition of the Ramsey number r = r2(d− 1; `), there is a monochromatic clique of
size d− 1 in coloring χ, and this clique together with vr+1 forms a monochromatic set of size d in the
original coloring. Note that in their approach, after having picked {v1, . . . , vi}, we have a subset Si

such that for any pair a, b with 1 ≤ a < b ≤ i, all triples {va, vb, w} with w ∈ Si are the same color.
The subset Si consists of those vertices from which we can draw future vertices.

Instead of picking vertices one by one as in the Erdős-Rado technique, we instead pick subsets one
by one. After step i, we will have disjoint subsets V1,i, . . . , Vi,i and another subset Si such that for any
pair a, b with 1 ≤ a < b ≤ i, all triples in Va,i×Vb,i×Vc,i with b < c ≤ i and all triples in Va,i×Vb,i×Si

are the same color. Similar to before, the subset Si consists of those vertices from which we can draw
future vertex subsets.
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We now present the proof of Theorem 2, which states that the `-color Ramsey number of the complete
d-partite hypergraph K3

d(n) satisfies

r(K3
d(n); `) ≤ 2`2rn2

,

where r = r2(d− 1; `). The set of edges of a graph G is denoted by E(G) and e(G) = |E(G)|.
Proof of Theorem 2: Let r = r2(d − 1; `) and let V be a set of N = 2`2rn2

vertices whose triples
are `-colored. We will construct disjoint subsets V1, V2, . . . , Vr+1 of size n such that for each pair
1 ≤ i < j ≤ r there is a color χ(i, j) for which all triples in Vi × Vj × Vk with j < k ≤ r + 1 have color
χ(i, j). Note that χ is an `-coloring of the edges of the complete graph with vertex set {1, . . . , r} and
therefore, from the definition of the Ramsey number r = r2(d − 1; `), it follows that there are d − 1
numbers 1 ≤ i1 < i2 < . . . < id−1 ≤ r that make a monochromatic clique in coloring χ. Then, using
the properties of χ it is easy to see that the corresponding sets Vi1 , Vi2 , . . . , Vid−1

together with Vr+1

make a monochromatic K3
d(n). So we are left with constructing subsets V1, . . . , Vr+1 with the desired

properties, which we will do in r rounds.

In the first round we pick V1,1 ⊂ V of size `−1
√

log N arbitrarily and let S1 = V \ V1,1, so |S1| =
N − `−1

√
log N ≥ N3/4. Now suppose that we already constructed disjoint subsets V1,i, V2,i, . . . , Vi,i

each of size `−i
√

log N and a subset Si of vertices disjoint from V1,i, . . . , Vi,i with |Si| ≥ N1/4+2−i
such

that if 1 ≤ a < b ≤ i, then all triples in Va,i×Vb,i×Vc,i with b < c ≤ i and all triples in Va,i×Vb,i×Si

have color χ(a, b). Note that this is satisfied for i = 1.

We next show how we proceed through round i + 1. Consider all triples with one vertex in V1,i and
the other two vertices in Si. By the pigeonhole principle, at least a 1/` fraction of these triples have
the same color which we denote by χ(1, i + 1). Let H be an auxiliary bipartite graph whose first part
A is V1,i, second part B consists of all the unordered pairs (w,w′) from Si, and whose edges are those
pairs (a, b), a ∈ A and b = (w, w′) ∈ B such that the triple (a, w, w′) has color χ(1, i+1). By applying
Lemma 1 to H we find a subset V1,i+1 ⊂ V1,i with |V1,i+1| = |V1,i|/` = `−(i+1)

√
log N and a graph G1,i

on Si with at least

2−|V1,i|
(|Si|

2

)
≥ 2−2−`−i

√
log N |Si|2

edges such that all triples consisting of a vertex from V1,i+1 and an edge from G1,i have color χ(1, i+1).

Continuing this process, suppose that after j steps, we have already picked for all 1 ≤ h ≤ j the
sets Vh,i+1 ⊂ Vh,i with |Vh,i+1| = |Vh,i|/` = `−(i+1)

√
log N and graphs Gj,i ⊂ Gj−1,i ⊂ . . . ⊂ G1,i on Si

which have the following properties. The number of edges of Gj,i is at least

2−2−j`−i
√

log N |Si|2

and every triple consisting of a vertex in Vh,i+1 together with the two vertices of an edge from Gh,i

have color χ(h, i + 1).

In the step j +1, consider all triples whose one vertex is in Vj+1,i and the other two vertices form an
edge of Gj,i. By the pigeonhole principle, at least a 1/` fraction of these triples have the same color,
which we denote by χ(j +1, i+1). Similar to before, let H be an auxiliary bipartite graph whose first
part A is Vj+1,i, second part B consists of all the edges of Gj,i, and the edges of H are those pairs
(a, b), a ∈ A and b = (w, w′) ∈ E(Gj,i) such that the triple (a,w, w′) has color χ(j + 1, i + 1). By
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applying Lemma 1 to H we find a subset Vj+1,i+1 ⊂ Vj+1,i with |Vj+1,i+1| = |Vj+1,i|/` = `−(i+1)
√

log N

and a subgraph Gj+1,i ⊂ Gj,i ⊂ . . . ⊂ G1,i on Si with at least

2−|Vj+1,i|e(Gj,i) ≥ 2−|Vj+1,i|2−2−j`−i
√

log N |Si|2 = 2−2−(j+1)`−i
√

log N |Si|2

edges such that all triples whose one vertex is from Vj+1,i+1 and the other two vertices form an edge
from Gj+1,i have color χ(j + 1, i + 1).

After i such steps, we have V1,i+1, . . . , Vi,i+1 each of size `−(i+1)
√

log N and a sequence of graphs
Gi,i ⊂ Gi−1,i ⊂ . . . ⊂ G1,i on Si such that the number of edges of Gi,i is at least

2−2−i`−i
√

log N |Si|2 ≥ 2−
√

log N |Si|2,

and, for 1 ≤ h ≤ i, all triples consisting of a vertex in Vh,i+1 together with an edge from Gh,i are color
χ(h, i + 1).

Now we apply Lemma 2 (with ε = 2−
√

log N and t = `−(i+1)
√

log N) to graph Gi,i to find disjoint
subsets Vi+1,i+1 and Si+1 of Si that form a complete bipartite graph in Gi,i and satisfy |Vi+1,i+1| =
`−(i+1)

√
log N , and

|Si+1| ≥
(
2−

√
log N

)|Vi+1,i+1| |Si| = N−`−(i+1) |Si| ≥ N−2−(i+1)
N1/4+2−i ≥ N1/4+2−(i+1)

.

By construction we have that for j < i + 1 all triples in Vj,i+1 × Vi+1,i+1 × Si+1 have color χ(j, i + 1).
On the other hand, since Vj,i+1 ⊂ Vj,i for j < i + 1 and Vi+1,i+1, Si+1 ⊂ Si we have by induction
that if 1 ≤ a < b ≤ i, then all triples in Va,i+1 × Vb,i+1 × Vc,i+1 with b < c ≤ i + 1 and all triples in
Va,i+1×Vb,i+1×Si+1 have color χ(a, b). This completes the description of round i+1 of our induction
process.

After r such iterations, we have disjoint subsets V1,r, . . . , Vr,r, each of size `−r
√

log N = n and Sr of
size at least N1/4 ≥ n such that if 1 ≤ a < b ≤ r, then all triples in Va,r × Vb,r × Vc,r with b < c ≤ r

and all triples in Va,r × Vb,r × Sr have color χ(a, b). Letting Vi = Vi,r for 1 ≤ i ≤ r and Vr+1 to be
any subset of Sr of size n, we obtain the sets V1, . . . , Vr+1 with desired properties. This completes the
proof. 2

4 Concluding remarks

• It would be very interesting to extend Theorems 1 and 2 to uniformity k ≥ 4. In [4] we
obtain some preliminary remarks in this direction. We show that for all k, ` and ε > 0 there is
δ = δ(k, `, ε) > 0 such that every `-coloring of the k-tuples of an N -element set contains a subset
of size s = (log N)δ which contains at least (1− ε)

(
s
k

)
k-tuples of the same color. Unfortunately,

notice that δ here depends on ε. Just as we deduce Theorem 1 from Theorem 2, this result is
obtained by proving an upper bound on the Ramsey numbers of complete multipartite k-uniform
hypergraphs.

• It would be nice to determine the best possible dependence of c on ε in Theorem 1. As we already
mention in the introduction, this theorem follows from our bound on the `-color Ramsey number
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of the complete d-partite 3-uniform hypergraph with d = Θ(ε−1). From Theorem 2 we have that
c ≤ `−r, where r is the `-color Ramsey number of a complete graph of order d − 1. Therefore,
using the simple upper bound r = r2(d − 1; `) ≤ `(d−1)` we obtain that c(`, ε) ≤ 2−`Θ(`/ε)

. It
seems likely that this double exponential dependence on 1/ε is not correct.
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