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Let T be a tree such that all its vertices of degree more than 
two lie on one path; that is, T is a caterpillar subdivision. 
We prove that there exists ε > 0 such that for every graph 
G with |V (G)| ≥ 2 not containing T as an induced subgraph, 
either some vertex has at least ε|V (G)| neighbours, or there 
are two disjoint sets of vertices A, B, both of cardinality at 
least ε|V (G)|, where there is no edge joining A and B.
A consequence is: for every caterpillar subdivision T , there 
exists c > 0 such that for every graph G containing neither 
of T and its complement as an induced subgraph, G has 
a clique or stable set with at least |V (G)|c vertices. This 
extends a theorem of Bousquet, Lagoutte and Thomassé [1], 
who proved the same when T is a path, and a recent theorem 
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of Choromanski, Falik, Liebenau, Patel and Pilipczuk [2], who 
proved it when T is a “hook”.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Erdős–Hajnal conjecture [6,7] asserts:

1.1 Conjecture: For every graph H, there exists c > 0 such that every H-free graph G
satisfies

max(ω(G), α(G)) ≥ |V (G)|c.

(All graphs in this paper are finite and have no loops or parallel edges. A graph G
is H-free if no induced subgraph of G is isomorphic to H; and ω(G), α(G) denote the 
cardinalities of the largest cliques and stable sets in G respectively, and ω(G) is called 
the clique number of G.) This conjecture has been investigated heavily, and nevertheless 
has been proved only for very restricted graphs H (see [3] for a survey, and see [9] for 
progress on the conjecture in a geometric setting). In particular it has not yet been 
proved when H is a five-vertex path.

On the other hand, a theorem of Bousquet, Lagoutte and Thomassé [1] asserts the 
following (H denotes the complement of a graph H):

1.2 For every path H, there exists c > 0 such that every graph G that is both H-free and 
H-free satisfies max(ω(G), α(G)) ≥ |V (G)|c.

Let us say H is a hook if H is a tree obtained from a path by adding a vertex adjacent 
to the third vertex of the path. Two of us, with Choromanski, Falik, and Patel [2], 
extended 1.2, proving:

1.3 For every hook H, there exists c > 0 such that every graph G that is both H-free 
and H-free satisfies max(ω(G), α(G)) ≥ |V (G)|c.

The main step of the proof of 1.2 is the following:

1.4 For every path H, there exists ε > 0 such that for every H-free graph G with 
|V (G)| ≥ 2, either some vertex has at least ε|V (G)| neighbours, or there are two anti-
complete sets of vertices A, B, both of cardinality at least ε|V (G)|.

(Two sets A, B ⊆ V (G) are complete to each other if A ∩ B = ∅ and every vertex in 
A is adjacent to every vertex in B; and anticomplete to each other if they are complete 
to each other in G.)
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It is natural to ask, which other graphs H have the property of 1.4? Let us say a 
graph H has the sparse strong EH-property if there exists ε > 0 such that for every 
H-free graph G with |V (G)| ≥ 2, either some vertex has at least ε|V (G)| neighbours, 
or there are two anticomplete sets of vertices A, B, both of cardinality at least ε|V (G)|. 
Which graphs have the sparse strong EH-property?

And here is a related question: let us say a graph has the symmetric strong EH-property
if there exists ε > 0 such that for every graph G that is both H-free and H-free, with 
|V (G)| ≥ 2, there are two disjoint sets of vertices, both of cardinality at least ε|V (G)|, 
and either complete or anticomplete to each other. Which graphs have the symmetric 
strong EH-property?

It follows from a theorem of Rödl [13] (and see [8] for a version with much better 
constants) that every graph with the sparse property has the symmetric property; and 
Erdős’s construction [5] of a graph with large girth and large chromatic number also 
shows that every graph with the sparse property is a forest, and every graph with the 
symmetric property is either a forest or the complement of one. (We omit all these proofs, 
which are easy; see [2] for more details.) We conjecture the converses, that is:

1.5 Conjectures:

• A graph H has the sparse strong EH-property if and only if H is a forest.
• A graph H has the symmetric strong EH-property if and only if one of H, H is 

a forest.

The first implies the second, because of the theorem of Rödl [13]. These two conjectures 
are reminiscent of the Gyárfás–Sumner conjecture, which we discuss later. (Since this 
paper was submitted for publication, both of these conjectures have been proved, in [4].)

A graph H is a caterpillar if H is a tree and some path of H contains all vertices 
with degree at least two; and a caterpillar subdivision if H is a tree and some path of H
contains all vertices with degree at least three. (Thus a graph is a caterpillar subdivision 
if and only if it can be obtained from a caterpillar by subdividing edges.) We will prove:

1.6 Every caterpillar subdivision has the sparse strong EH-property.

1.6 implies the next result, which generalizes 1.2 and 1.3. (This theorem was proved 
independently by the first two authors and by the last two, but since the proofs were 
virtually identical we have combined the two papers into one. The original paper by 
the first two authors is available [12].) If X ⊆ V (G), G[X] denotes the subgraph of G
induced on X.

1.7 Let H, J be caterpillar subdivisions. Then there exists c > 0 such that for every 
graph G, if G is both H-free and J-free, then max(ω(G), α(G)) ≥ |V (G)|c.
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Proof of 1.7, assuming 1.6. There is a caterpillar subdivision such that both H, J are 
induced subgraphs of it, and so, by replacing H, J by this graph, we may assume that 
H = J . Let ε satisfy 1.6; so 0 ≤ ε ≤ 1. By a theorem of Rödl [13],

(1) There exists δ > 0 such that for every H-free graph G, there is a subset X ⊆ V (G)
with |X| ≥ δ|V (G)| such that one of G[X], G[X] has at most ε|X|2/4 edges.

Choose c such that 2(εδ/2)2c = 1. A graph is perfect if chromatic number equals clique 
number for all its induced subgraphs. For a graph G, let π(G) denote the maximum 
cardinality of a subset X such that G[X] is perfect; we will prove by induction on 
|V (G|) that if G is both H-free and H-free, then π(G) ≥ |V (G)|2c (and consequently the 
theorem will follow, since α(G)ω(G) ≥ π(G)). If |V (G)| ≤ 1 the result is trivial, and if 
2 ≤ |V (G)| ≤ 2/δ then π(G) ≥ 2 ≥ |V (G)|2c as required, since (2/δ)2c ≤ (2/(εδ))2c = 2. 
Thus we may assume that |V (G)| > 2/δ. By (1) there is a subset X ⊆ V (G) with 
|X| ≥ δ|V (G)| such that one of G[X], G[X] has at most ε|X|2/4 edges; and by replacing 
G by its complement if necessary, we may assume that G[X] has at most ε|X|2/4 edges. 
Choose distinct v1, . . . , vk ∈ X, maximal such that for 1 ≤ i ≤ k, vi has at least ε|X|/2
neighbours in X \ {v1, . . . , vi}. Let Y = X \ {v1, . . . , vk}. It follows that k ≤ |X|/2, and 
every vertex in Y has fewer than ε|X|/2 neighbours in Y , from the maximality of k. 
Thus |Y | ≥ |X|/2 ≥ δ|V (G)|/2, and G[Y ] has maximum degree less than ε|X|/2 ≤ ε|Y |. 
Since |V (G)| > 2/δ, it follows that |X| > 2 and so |Y | > 1. By 1.6 applied to G[Y ], 
there are two anticomplete sets of vertices A, B, both of cardinality at least ε|Y |. From 
the inductive hypothesis π(G[A]) ≥ |A|2c and π(G[B]) ≥ |B|2c, and so

π(G) ≥ |A|2c + |B|2c ≥ 2(ε|Y |)2c ≥ 2(εδ|V (G)|/2)2c = |V (G)|2c.

This proves 1.7. �
Let G be a graph and for every subset X ⊆ V (G) let μ(X) be a real number, satisfying:

• μ(∅) = 0 and μ(V (G)) = 1, and μ(X) ≤ μ(Y ) for all X, Y with X ⊆ Y ; and
• μ(X ∪ Y ) ≤ μ(X) + μ(Y ) for all disjoint sets X, Y .

We call such a function μ a mass on G. For instance, we could take μ(X) = |X|/|V (G)|, 
or μ(X) = χ(G[X])/χ(G), where χ denotes chromatic number. We denote by N(v) the 
set of neighbours of v. The result 1.6 can be extended to graphs with masses, in the 
following way:

1.8 For every caterpillar subdivision H, there exists ε > 0 such that for every H-free 
graph G, and mass μ on G, either

• μ({v}) ≥ ε for some vertex v; or
• μ(N(v)) ≥ ε for some vertex v; or
• there are two anticomplete sets of vertices A, B, where μ(A), μ(B) ≥ ε.
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We prove this in the next section. It implies 1.6, setting μ(X) = |X|/|V (G)|. To see 
this, observe that if only the first outcome holds, and μ({v}) ≥ ε for some v, then v has 
no neighbours (or else the second outcome would hold), and μ(V (G) \ {v}) < ε (or else 
the third outcome would hold); and so μ(v) > 1 − ε. Adding, 2μ(v) > ε + (1 − ε) = 1, 
and so μ(v) > 1/2, and hence |V (G)| = 1.

But 1.8 also has an interesting application to the Gyárfás–Sumner conjecture [10,14], 
which states that for every tree T and every integer k ≥ 0, there exists f(T, k) such that 
every T -free graph with clique number at most k has chromatic number at most f(T, k). 
This has not been proved in general, and not even for caterpillars; and not even for 
trees with exactly two vertices of degree more than two (such a tree is a simple kind of 
caterpillar subdivision). But by induction on k, one could assume that for every vertex v, 
the chromatic number of the subgraph induced on N(v) is bounded; and so the following 
consequence of 1.8 might be of interest.

1.9 Let T be a caterpillar subdivision, and k ≥ 0 an integer. Let ε satisfy 1.8. Suppose that 
every T -free graph with clique number < k has chromatic number at most c ≥ 1. Then in 
every T -free graph with clique number at most k and chromatic number more than c/ε, 
there are two anticomplete sets of vertices A, B, where χ(G[A]), χ(G[B]) ≥ εχ(G).

Proof. Let G be a T -free graph with ω(G) ≤ k. Define μ(X) = χ(G[X])/χ(G), for 
each X ⊆ V (G). Thus one of the three outcomes of 1.8 holds. The first implies that 
χ(G) ≤ 1/ε, and the second implies that χ(G) ≤ c/ε, in both cases a contradiction. So 
the third holds. This proves 1.9. �

Incidentally, perhaps one can unify the Gyárfás–Sumner conjecture and 1.5, in the 
natural way (using masses).

2. The main proof

In this section we prove 1.8, but before the details of the proof, let us sketch the idea. 
If X, Y are disjoint subsets of V (G), we say that X covers Y if every vertex in Y has a 
neighbour in X. First let T be a caterpillar, rather than a caterpillar subdivision, and 
suppose that G is a T -free graph with a mass that does not satisfy the theorem. We 
choose some large number (depending on T ) of disjoint subsets of V (G), each with large 
mass (let us call them “blocks”). It follows from the falsity of the third bullet of 1.8 that 
for every two blocks, most of the vertices in one will have neighbours in the other, so 
we are well-equipped with edges between blocks. Choose a block B1, and let us grow 
a subset X of it, one vertex at a time, until there is some other block, say B2, that is 
at least half covered by X. We cannot use B1 as a block any more, and we discard it, 
retaining only the set X. Also we discard from B2 the part of B2 that is not covered 
by X, and for every other block B3 say, discard from B3 the part that is covered by X. 
We now have many disjoint blocks (one fewer than before), all still with large mass 
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(about half what it was before), together with one more set X that covers one of our 
blocks and has no edges to the others. Now pick another block (which could be B2) and 
do it again, growing a subset of it until it covers half of a different block, and so on. 
We can construct more complicated patterns of covering, by judiciously choosing which 
block to grow within next. This will enable us to find a copy of the caterpillar T , with 
all its vertices in different blocks.

In the case when T is a caterpillar subdivision, we were not able to prove that there 
is a copy of T with all its vertices in different blocks. But T can be obtained from some 
caterpillar T ′ by subdividing some of its leaf edges (not subdividing the spine of T ′). 
We find a copy of T ′ with all its vertices in different blocks, and grow each leaf of T ′ to 
an appropriately long path within the block that contained the leaf, by using “spires”, 
a variant of the proof of Gyárfás [11] showing the χ-boundedness of the graphs not 
containing a fixed path.

Let us turn to the details. Throughout the remainder of this section, ε > 0 is some 
real number that will be specified later, and G is a graph with a mass μ, satisfying:

(1) μ({v}) < ε for every vertex v;
(2) μ(N(v)) < ε for every vertex v; and
(3) there do not exist two subsets A, B of V (G), anticomplete, with μ(A), μ(B) ≥ ε.

We will show that, for every caterpillar subdivision T , if ε is sufficiently small, then G
contains T as an induced subgraph, which will prove 1.8. We refer to the three statements 
above as the “axioms”.

2.1 Let X ⊆ V (G). If μ(X) ≥ 3ε then μ(X ′) > μ(X) − ε for the vertex set X ′ of some 
component of G[X].

Proof. Let the vertex sets of the components of G[X] be X1, . . . , Xk say. Choose i ≥ 1
minimal such that μ(X1 ∪ · · · ∪Xi) ≥ ε. Then from axiom (3), μ(Xi+1 ∪ · · · ∪Xn) < ε; 
and from the minimality of i, μ(X1 ∪ · · · ∪Xi−1) < ε. But

μ(X1 ∪ · · · ∪Xi−1) + μ(Xi) + μ(Xi+1 ∪ · · · ∪Xn) ≥ μ(X) ≥ 3ε,

and so μ(Xi) ≥ ε. From axiom (3), the union of all other components has mass less 
than ε, and so μ(Xi) > μ(X) − ε. This proves 2.1. �

We observe that since the union of all components of G[X] different from X ′ has mass 
less than ε, the set X ′ in 2.1 is unique, and we call it the big piece of X.

2.2 Let X ⊆ Y ⊆ V (G). If μ(X) ≥ 3ε then the big piece of X is a subset of the big piece 
of Y .
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Proof. The big piece of X has mass at least ε, and is a subset of the vertex set of some 
component of G[Y ]; and therefore is a subset of the big piece of Y . This proves 2.2. �

Let τ ≥ 3 be an integer. If X ⊆ V (G), a τ -spire in X is a sequence (x1, . . . , xτ , Z), 
where

• x1, . . . , xτ are the vertices in order of an induced τ -vertex path of G[X];
• Z ⊆ X \ {x1, . . . , xτ−1}, and xτ ∈ Z;
• x1, . . . , xτ−1 have no neighbours in Z \ {xτ}; and
• G[Z] is connected.

2.3 Let τ ≥ 3 be an integer, and let X ⊆ V (G) with μ(X) ≥ (τ + 2)ε; then there is a 
τ -spire (x1, . . . , xτ , Z) in X where μ(Z) ≥ μ(X) − τε.

Proof. Let Z1 be the big piece of X, and choose x1 ∈ Z1. Let Z2 be the big piece of 
X \N(x1). Since μ(X \N(x1)) ≥ 3ε, from axiom (2) and since τ ≥ 3, 2.2 implies that 
Z2 ⊆ Z1. Now x1 is a one-vertex component of G[X \N(x1)], and therefore not its big 
piece, by axiom (1); and since Z2 ⊆ Z1, some neighbour x2 of x1 has a neighbour in Z2.

Inductively, suppose that 2 ≤ i < τ , and we have defined x1, . . . , xi and Zi, where

• x1, . . . , xi are the vertices in order of an induced i-vertex path of G[X];
• Zi is the big piece of X \

⋃
1≤h≤i−1 N(xh); and

• xi has a neighbour in Zi.

Let Yi+1 = X \
⋃

1≤h≤i N(xh). Axiom (2) implies that μ(Yi+1) ≥ μ(X) − iε ≥ 3ε. Let 
Zi+1 be the big piece of Yi+1. By 2.2, Zi+1 ⊆ Zi, and so some neighbour xi+1 of xi has 
a neighbour in Zi+1. This completes the inductive definition.

Then (x1, . . . , xτ , Zτ ∪ {xτ}) is a τ -spire in X, and μ(Zτ ) ≥ μ(X) − τε, by axiom (2) 
and 2.1. This proves 2.3. �

Let H be a caterpillar, and choose a vertex v which is an end of some path P of H
that contains all vertices with degree at least two; and call v the head of the caterpillar. 
The spine is the minimal path of H with one end v that contains all vertices of degree at 
least two. The pair (H, v) is thus a rooted tree rather than a tree, but we will normally 
speak of it as a tree and let the head be implicit.

Again, let τ ≥ 3 be an integer. A caterpillar is a τ -chrysalis if

• its spine has at most τ + 1 vertices;
• every vertex of the spine different from the head has degree exactly τ ; and
• the head has degree at most τ −1, and the head has degree one if the spine has τ +1

vertices.
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The τ -chrysalis with most vertices therefore has τ2 − τ + 2 vertices, and is unique; let 
us call it the τ -butterfly. It is the only τ -chrysalis in which the spine has τ + 1 vertices.

Now let N be a disjoint union of τ -chrysalises H1, . . . , Hk; we call N a τ -nursery. We 
define

φ(N) =
∑

1≤i≤k

2|V (Hi)|.

If N, M are τ -nurseries, we say that M is an improvement of N if M has fewer compo-
nents than N and φ(M) ≥ φ(N).

Returning to the graph G with mass μ, we need to define what it is for a τ -nursery 
N to be “realizable” in G. Let us direct all the edges of N towards the heads; thus, for 
every edge uv of N , if v is on the path between u and the head of the component of 
N containing u, we direct the edge uv from u to v. A vertex v of N is a leaf if it has 
indegree zero and outdegree one in N ; that is, if and only if it does not belong to the 
spine of its component. Let 0 ≤ κ ≤ 1, and for each vertex v ∈ V (N), let Xv ⊆ V (G), 
satisfying the following conditions:

• the sets Xv (v ∈ V (N)) are pairwise disjoint;
• for each leaf v of N there is a τ -spire (x1

v, . . . , x
τ
v , Zv) in Xv, and Xv = {x1

v, . . . , x
τ
v}

∪ Zv;
• for all distinct u, v ∈ V (N), if v is a leaf then {x1

v, . . . , x
τ
v} is anticomplete to Xu;

• for all distinct u, v ∈ V (N), if there is an edge of G between Xu, Xv then either u, v
are adjacent in N or both u, v are heads of components of N ;

• for every directed edge u → v of N , Xu covers Xv;
• for each v ∈ V (N), if v is the head of a component of N then μ(Xv) ≥ κ.

If such a function Xv (v ∈ V (N)) exists we call it a κ-realization of N in G, and say N
is κ-realizable in G. We need:

2.4 Let τ ≥ 3 be an integer, and let 0 ≤ κ, κ′ ≤ 1, with κ ≥ 2κ′ + (τ + 2)ε. Let N be a 
τ -nursery with at least two components, and in which no component is the τ -butterfly. 
If N is κ-realizable in G, there is an improvement N ′ of N that is κ′-realizable in G.

Proof. Let the components of N be H1, . . . , Hk, where |V (H1)| ≤ · · · ≤ |V (Hk)|, and 
for 1 ≤ i ≤ k let hi be the head of Hi. Let Xv (v ∈ V (N)) be a κ-realization of N
in G. If there exists i ∈ {1, . . . , k} such that hi has degree τ − 1, choose such a value 
of i, maximum; and otherwise, let i = 1. By 2.3, since μ(Xhi

) ≥ κ ≥ (τ + 2)ε, there is a 
τ -spire (x1, . . . , xτ , Z) say in Xhi

where μ(Z) ≥ μ(Xhi
) − τε ≥ ε.

For each j ∈ {1, . . . , k} with j 
= i, let Yhj
⊆ Xhj

be the set of vertices in Xhj
with 

no neighbour in {x1, . . . , xτ}. Thus

μ(Yhj
) ≥ μ(Xhj

) − τε ≥ κ− τε ≥ 2(κ′ + ε)
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from axiom (2). Since G[Z] is connected and xτ ∈ Z, we can number the vertices of Z
as z1, . . . , zn say, such that z1 = xτ and G[{z1, . . . , zm}] is connected for 1 ≤ m ≤ n. 
Since k ≥ 2, there exists j 
= i with 1 ≤ j ≤ k; but μ(Yhj

) ≥ 2(κ′ + ε), and by axiom (3), 
the set of vertices in Yhj

with no neighbour in Z has mass less than ε. Consequently we 
may choose m with 1 ≤ m ≤ n, minimum such that for some j ∈ {1, . . . , k} \ {i}, the 
set of vertices in Yhj

with no neighbour in {z1, . . . , zm} has mass less than κ′ + ε. Since 
no vertex in Yhj

is adjacent to z1, it follows that m ≥ 2.

• If j < i, it follows that the degree of hi in N is exactly τ − 1. Let N ′ be the graph 
obtained from N by adding the edge hihj , and deleting all vertices in V (Hj) \ {hj}. 
Let H ′

i be the component of N ′ that contains the edge hihj , and let us assign its 
head to be hj . Thus H ′

i is a τ -chrysalis, and so N ′ is a τ -nursery. Since N ′ has k− 1
components and |V (Hi)| ≥ |V (Hj)| (because i > j) it follows that φ(N ′) ≥ φ(N), 
and N ′ is an improvement of N .

• If j > i, it follows that the degree of hj in N is at most τ − 2. Let N ′ be the graph 
obtained from N by adding the edge hihj , and deleting all vertices in V (Hi) \ {hi}. 
Let H ′

j be the component of N ′ that contains the edge hihj , and let us assign its 
head to be hj . Thus H ′

j is a τ -chrysalis, and again N ′ is an improvement of N .

For each v ∈ V (N ′) define X ′
v as follows:

• if v 
= {h1, . . . , hk} let X ′
v = Xv;

• let X ′
hi

= {z1, . . . , zm} ∪ {x1, . . . , xτ};
• let X ′

hj
be the set of vertices in Yhj

with a neighbour in {z1, . . . , zm};
• for 1 ≤ � ≤ k with � 
= i, j, let X ′

h�
be the set of vertices in Yh�

with no neighbour in 
{z1, . . . , zm}.

We see that X ′
hi

covers X ′
hj

, and has no edges to X ′
h�

for 1 ≤ � ≤ k with � 
= i, j. 
Moreover, μ(X ′

hj
) ≥ κ′. Let 1 ≤ � ≤ k with � 
= i, j; then, since m ≥ 2 and from the 

choice of m, the mass of the set of vertices in Yh�
with no neighbour in {z1, . . . , zm−1}

is at least κ′ + ε. Hence μ(X ′
h�

) ≥ κ′. It follows that the function X ′
v (v ∈ V (N ′)) is a 

κ′-realization of N ′ in G. This proves 2.4. �

Now let T be a caterpillar subdivision. We say that an integer τ ≥ 3 fits T if

• there is a path of T with at most τ vertices containing all vertices of T of degree 
more than two;

• T has maximum degree at most τ ; and
• every path of T in which every internal vertex has degree two in T has at most τ

vertices.
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2.5 Let T be a caterpillar subdivision, and let τ fit T . If G is T -free then for κ > 0, the 
τ -butterfly is not κ-realizable in G.

Proof. Suppose that Xv (v ∈ V (N)) is a κ-realization in G of the τ -butterfly N . Now 
N is connected, and since |V (N)| = τ2 − τ + 2, the spine of N has exactly τ + 1 vertices 
and they all have degree τ except the head which has degree one. Let the spine of N
have vertices v0, v1, . . . , vτ in order, where v0 is the head of N . Since μ(Xv0) ≥ κ > 0, 
it follows that Xv0 
= ∅; choose pv0 ∈ Xv0 . For 1 ≤ i ≤ τ , choose pvi ∈ Xvi adjacent 
to pvi−1 ; this is possible since Xvi covers Xvi−1 . Now let u be a leaf of N , with neighbour 
v say. From the definition of a realization, there is a τ -spire (x1

u, . . . , x
τ
u, Zu) in Xu, and 

Xu = {x1
u, . . . , x

τ
u} ∪ Zu. Since pv has a neighbour in Xu, and G[Zu] is connected and 

contains xτ
u, and none of x1

u, . . . , x
τ−1
u have neighbours in Zu \ {xτ

u}, there is an induced 
path Pu with τ vertices, with one end pv and with all other vertices in Xu. Let H be 
the induced subgraph of G consisting of the union of all these paths Pu (over all leaves 
u of N) and the path induced on {pv0 , . . . , pvτ }; then T is isomorphic to an induced 
subgraph of H, contradicting that G is T -free. This proves 2.5. �

Now we can prove the main Theorem 1.8, which we restate.

2.6 For every caterpillar subdivision T , there exists ε > 0 such that for every T -free 
graph G, and mass μ on G, either

• μ({v}) ≥ ε for some vertex v; or
• μ(N(v)) ≥ ε for some vertex v; or
• there are two anticomplete sets of vertices A, B, where μ(A), μ(B) ≥ ε.

Proof. Choose τ fitting T , and let p = 2τ2 . Define ε such that ε−1 = p2p(τ + 3). We will 
show that ε satisfies the theorem. Suppose not, and choose a T -free graph G, and mass 
μ on G not satisfying the theorem (and therefore satisfying the axioms). For 0 ≤ i ≤ p

define κi = 2−ip−1 − (τ + 2)ε. Thus 0 ≤ κi ≤ 1 for each i. Moreover, κp = ε, and for 
1 ≤ i ≤ p,

κi−1 = 2κi + (τ + 2)ε.

Choose X1, . . . , XP ⊆ V (G), pairwise disjoint, with κ0 ≤ μ(Xi) < κ0 + ε for 1 ≤ i ≤ P , 
with P maximum. We claim that P ≥ p; for suppose not. Then the union of X1, . . . , XP

has mass at most (p − 1)(κ0 + ε), and since (p − 1)(κ0 + ε) ≤ 1 − κ0, there exists a set 
of mass at least κ0 disjoint from this union. Choose such a set, XP+1 say, minimal; then 
from the minimality of XP+1, and since μ({v}) < ε for each vertex v, it follows that 
μ(XP+1) < κ0 + ε, contrary to the maximality of P . This proves that P ≥ p.

Let N0 be the τ -nursery with p components, each an isolated vertex. It follows that 
N0 is κ0-realizable in G and φ(N0) = 2p. Choose a sequence N1, . . . , Nq of τ -nurseries, 
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such that for 1 ≤ i ≤ q, Ni is an improvement of Ni−1, and Ni is κi-realizable in G, 
with q maximum. It follows that φ(Ni) ≥ φ(Ni−1) for 1 ≤ i ≤ q, from the definition of 
an improvement, and so φ(Nq) ≥ 2p, and in particular, Nq is nonnull. But Ni has at 
most p − i components for 0 ≤ i ≤ q, and so q ≤ p − 1. Thus κq+1 is defined. By 2.5 no 
component of Nq is the τ -butterfly, and so Nq has at most one component by 2.4, and 
therefore has at most τ2 − τ + 1 vertices. But φ(Nq) ≥ 2p, which is impossible.

Thus there is no such pair G, μ. This proves 2.6. �
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