Bipartite complements of circle graphs

Louis Esperet ${ }^{\text {a,* }}$, Matěj Stehlík ${ }^{\text {b, }}{ }^{\text {r }}$
${ }^{\text {a }}$ Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), Grenoble, France
${ }^{\mathrm{b}}$ Laboratoire G-SCOP, Univ. Grenoble Alpes, France

ARTICLE INFO

Article history:

Received 18 October 2019
Received in revised form 17 January 2020
Accepted 17 January 2020
Available online xxxx

Abstract

Using an algebraic characterization of circle graphs, Bouchet proved in 1999 that if a bipartite graph G is the complement of a circle graph, then G is a circle graph. We give an elementary proof of this result.

© 2020 Elsevier B.V. All rights reserved.

Keywords:

Circle graphs
Bipartite graphs
Complementation

A graph is a circle graph if it is the intersection graph of the chords of a circle. Using an algebraic characterization of circle graphs proved by Naji [6] (as the class of graphs satisfying a certain system of equalities over GF(2)), Bouchet proved the following result in [1].

Theorem 1 (Bouchet [1]). If a bipartite graph G is the complement of a circle graph, then G is a circle graph.

The known proofs of Naji's theorem are fairly involved [3,4,6,7], and Bouchet [1] (see also [2]) asked whether, on the other hand, Theorem 1 has an elementary proof. The purpose of this short note is to present such a proof.

We will need two simple lemmas. Given a finite set of points $X \subset \mathbb{R}^{2}$ of even cardinality, a line ℓ bisects the set X if each open half-plane defined by ℓ contains precisely $|X| / 2$ points. The following lemma is an immediate consequence of the 2-dimensional discrete ham sandwich theorem (see e.g. [5, Corollary 3.1.3]), and is equivalent to the necklace splitting problem with two types of beads. In order to keep this note self-contained, we include a short proof.

Lemma 2. Let $X, Y \subset \mathbb{R}^{2}$ be disjoint finite point sets of even cardinality on a circle C. Then there exists a line ℓ simultaneously bisecting both X and Y.

Proof. Let $p_{0}, \ldots, p_{2 n-1}$ be the points of $X \cup Y$ in cyclic order along C. For $0 \leq i \leq 2 n-1$ we denote by I_{i} the set $\left\{p_{i}, p_{i+1} \ldots, p_{i+n-1}\right\}$ (here and in the remainder of the proof, all indices are considered modulo $2 n$). Clearly, for every $0 \leq i \leq n-1$, there exists a line ℓ_{i} in \mathbb{R}^{2} bisecting the points of $X \cup Y$, with I_{i} on one side of ℓ_{i} and I_{i+n} on the other side. For $0 \leq i \leq 2 n-1$, define $f(i)=\left|X \cap I_{i}\right|-\frac{1}{2}|X|$. Note that since X has even cardinality, each $f(i)$ is an integer.

To prove the lemma, it suffices to show that $f(i)=0$ for some $0 \leq i \leq n-1$, for then $\left|X \cap I_{i}\right|=\frac{1}{2}|X|$ and $\left|Y \cap I_{i}\right|=\frac{1}{2}(|X|+|Y|)-\left|X \cap I_{i}\right|=\frac{1}{2}|Y|$. If $f(0)=0$ then we are done, so let us assume that $f(0) \neq 0$. Without loss of generality $f(0)<0$, and hence $f(n)=-f(0)>0$. Since $f(i+1)-f(i) \in\{-1,0,1\}$ for all $0 \leq i \leq n-1$, there exists $1 \leq i \leq n-1$ such that $f(i)=0$, as required.

[^0]Lemma 3. Consider a set of pairwise intersecting chords c_{1}, \ldots, c_{n} of a circle C, with pairwise distinct endpoints. Then any line ℓ that bisects the $2 n$ endpoints of the chords intersects all the chords c_{1}, \ldots, c_{n}.

Proof. Assume for the sake of contradiction that some chord c_{i} does not intersect ℓ. Then c_{i} lies in one of the two open half-planes defined by ℓ, say to the left of ℓ. Since ℓ bisects the $2 n$ endpoints of the chords, it follows that there is another chord c_{j} that does not intersect ℓ and which lies in the half-plane to the right of ℓ. This implies that c_{i} and c_{j} do not intersect, which is a contradiction.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Consider a bipartite graph G such that its complement \bar{G} is a circle graph. In particular, for any vertex v_{i} of \bar{G} there is a chord c_{i} of some circle C such that any two vertices v_{i} and v_{j} are adjacent in \bar{G} (equivalently, non-adjacent in G) if and only if the chords c_{i} and c_{j} intersect. Since G is bipartite, the vertices v_{1}, \ldots, v_{n} (and the corresponding chords c_{1}, \ldots, c_{n}) can be colored with colors red and blue such that any two chords of the same color intersect. We can assume without loss of generality that the endpoints of the n chords are pairwise distinct, so the coloring of the chords also gives a coloring of the $2 n$ endpoints with colors red or blue (with an even number of blue endpoints and an even number of red endpoints). Since the $2 n$ endpoints lie on the circle C, it follows from Lemma 2 that there exists a line ℓ simultaneously bisecting the set of blue endpoints and the set of red endpoints.

On one side of ℓ, reverse the order of the endpoints of the chords c_{1}, \ldots, c_{n} along the circle C. Observe that crossing chords intersecting ℓ become non-crossing, and vice versa. By Lemma 3 , ℓ intersects all the chords c_{1}, \ldots, c_{n}, and thus the resulting circle graph is precisely G. It follows that G is a circle graph, as desired.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

The authors would like to thank András Sebő for his remarks on an early version of the draft.

References

[1] A. Bouchet, Bipartite graphs that are not circle graphs, Ann. Inst. Fourier 49 (3) (1999) 809-814.
[2] G. Durán, L.N. Grippo, M.D. Safe, Structural results on circular-arc graphs and circle graphs: A survey and the main open problems, Discrete Appl. Math. 164 (2) (2014) 427-443.
[3] E. Gasse, A proof of a circle graph characterization, Discrete Math. 173 (1997) 277-283.
[4] J. Geelen, E. Lee, Naji's characterization of circle graphs, J. Graph Theory 93 (1) (2020) 21-33.
[5] J. Matoušek, Using the Borsuk-Ulam Theorem, in: Universitext, Springer-Verlag, Berlin, 2003.
[6] W. Naji, Reconnaissance des graphes de cordes, Discrete Math. 54 (1985) 329-337.
[7] L. Traldi, Notes on a theorem of Naji, Discrete Math. 340 (1) (2017) 3217-3234.

[^0]: * Corresponding author.

 E-mail addresses: louis.esperet@grenoble-inp.fr (L. Esperet), matej.stehlik@grenoble-inp.fr (M. Stehlík).
 1 Partially supported by ANR Projects GATO (ANR-16-CE40-0009-01) and GrR (ANR-18-CE40-0032).

