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Abstract

The disproved Nash-Williams conjecture states that every 4-regular 4-connected
graph has a hamiltonian cycle. We show that a modification of this conjecture is
equivalent to the Dominating Cycle Conjecture.

Mathematics Subject Classifications: 05C45

1 Basic definitions and main result

For used terminology which is not defined here we refer to [1, 2]. A dominating cycle
(DC) of a graph G is a cycle which contains at least one endvertex of every edge of G.
Let v ∈ V (G). Then Ev denotes the set of edges incident with v. A closed trail is a closed
walk in which all the edges are distinct. Definitions concerning connectivity parameters
are given in the next section. All graphs here are considered to be loopless and finite.

The following two conjectures are well known in graph theory. The first one was
disproved by Meredith, see [5].
Nash-Williams Conjecture (NWC): Every 4-regular 4-connected graph has a hamiltonian
cycle.
Dominating Cycle Conjecture (DCC): Every cyclically 4-edge connected cubic graph has
a dominating cycle.

The DCC is open and so far there is neither a promising approach known to prove it
nor to disprove it. For a survey on this conjecture, we refer to [2].

We need the following definitions for introducing the modified NWC.

∗Funded by the FWF-Project 26686.
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Definition 1. Let H be a 4-regular graph with a transition system T , i.e. T :=⋃
v∈V (H){Pv} where Pv is a partition of the four edges incident with v into two sets of size

2; each of these two sets is called a transition of T , of Pv and of v. A trail is said to
follow a transition if the two edges of the transition are consecutive edges of the trail.
Moreover, H is said to be T-hamiltonian if H contains a T-trail, that is a spanning
closed trail C of H such that for each v ∈ V (H) one of the following two conditions is
fulfilled:
a) |E(C) ∩ Ev| = 2 (in this case C may follow no transition of v).
b) C follows both transitions of v (in this case |E(C) ∩ Ev| = 4).

For an example, see Figure 1. Observe that H is T -hamiltonian if H is hamiltonian.
Hence, T -hamiltonicity generalizes the concept of hamiltonian graphs. Now, we introduce
the modification of the NWC.

Figure 1: On the left, a graph with a transition system (transitions are illustrated by
short bold lines next to those pairs of edges which form a transition), and on the right, a
T -trail (illustrated in bold) of the same graph with respect to its transition system.

NWC* : Every 4-regular 4-connected graph with a transition system T is T -hamiltonian.
We state the main result.

Theorem 2. The DCC is equivalent to the NWC*.

Theorem 2 implies another result. For stating it we use the following definition.

Definition 3. We say that a cycle dominates a matching M of a graph G if the cycle
contains at least one endvertex of each edge of M. Let G/M denote the graph which
results from G by contracting each edge of M to a distinct vertex and by deleting all
arising loops.

By Corollary 13 of Theorem 2, the subsequent conjecture is equivalent to the DCC.

Conjecture 4. Let G be a cubic graph with a perfect matching M such that G/M is
4-connected. Then G contains a cycle which dominates M.
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2 Proof of the main result

A graph G is said to be k-vertex connected if |V (G)| > k and G−X is connected for every
X ⊆ V (G) with |X| < k. We abbreviate k-vertex connected by k-connected. A graph G
is called k-edge connected if |V (G)| > 1 and G−Y is connected for every Y ⊆ E(G) with
|Y | < k. A set E ′ ⊆ E(G) of a connected graph G is called an edge cut of G if G − E ′
is disconnected. Moreover, if at least two components of G − E ′ are not trees, then E ′

is also called a cyclic edge cut of G. If G contains two vertex disjoint cycles, then λc(G)
is the minimum size over all cyclic edge cuts of G - otherwise we do not define λc(G).
Note that every connected cubic graph which does not have two disjoint cycles is either
the graph consisting of two vertices and three edges, K4, or K3,3, see Theorem 1.2 in [4].
Note that within the paper, λc(G) is only considered for cubic graphs G. The line graph
of a graph G is denoted by L(G). A cycle of length 3 is called a triangle.

For convenience, we split the statement of Theorem 2 into Proposition 5 and Propo-
sition 12.

Proposition 5. If the NWC* is true, then the DCC is true.

Proof. Let G be a cubic graph satisfying λc(G) > 4. We show that G has a DC. It
is well known and not difficult to see that L(G) is 4-regular and 4-connected. Note
that every vertex v ∈ V (G) corresponds to a unique triangle tv of L(G). Moreover,
{E(tv) : v ∈ V (G)} is a partition of E(L(G)).

Define the following transitions which imply a transition system T of L(G): each pair
of edges which are incident with the same vertex of L(G) and belong to the triangle tv of
L(G) forms a transition, see Figure 2.

Since the NWC* holds, L(G) is T -hamiltonian. If L(G) has a hamiltonian cycle, then
G has a DC by Theorem 5 in [2] (see also [3]), and we are finished.

Hence, we may assume that L(G) has a T -trail C which contains a positive minimum
number of 4-valent vertices. C contains at most one 4-valent vertex in every triangle tv of
L(G). Or else C follows by Definition 1 all transitions in at least two vertices of tv. This
implies that the remaining third vertex of tv is also a 4-valent vertex of C. Since now C
cannot follow both transitions in the third vertex, this is impossible. Let w be a 4-valent
vertex of C, and let tx with x ∈ V (G) be one triangle of L(G) which contains w. Define
the new T -trail C ′ of L(G) which results from C by replacing the two edges of C which
are contained in tx and incident with w by the remaining edge of tx. Then C ′ contains
fewer 4-valent vertices than C which contradicts the definition of C and thus finishes the
proof.

For the formulation and the proof of the next results we use the following definition.

Definition 6. Let H be a 4-regular graph with a transition system T . Let G(H,T ) denote
the cubic graph which results from H by firstly splitting every vertex v of H into two
vertices v′, v′′ of degree 2 such that the corresponding edges of each transition of T remain
adjacent and by secondly adding the new edge e(v) := v′v′′. Set MT := {e(v) : v ∈ V (H)}
which is a perfect matching of G(H,T ) satisfying G(H,T )/MT

∼= H.
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Figure 2: The transitions of the three vertices of tv in the line graph.

The following lemma can be verified straightforwardly.

Lemma 7. Let H be a 4-regular graph with a transition system T . Then G(H,T ) has a
cycle which dominates MT if and only if H has a T -trail.

We apply the subsequent three lemmata for the proof of the next proposition.
The next lemma is straightforward to prove.

Lemma 8. Let E0 be a matching of a cubic graph G such that G − E0 consists of two
components X1 and X2. Moreover, let every edge of E0 have precisely one endvertex in
Xi, i = 1, 2. Then |E0 ∩M |+ |E0| is even for every perfect matching M of G.

Lemma 9. Let H be a 4-regular 4-connected graph with a transition system T . Then
G(H,T ) is 3-edge connected. Moreover, if G(H,T ) has a cyclic 3-edge cut E0, then one
of the two components of G(H,T )− E0 is a triangle.

Proof. Set G := G(H,T ). Obviously, G is connected. Suppose G has a bridge f , then by
Lemma 8 (with E0 := {f}), f ∈ MT . Hence, f corresponds to a cut vertex of H which
contradicts the assumption that H is 4-connected.

Suppose E ′ is a 2-edge cut of G. Then E ′ is a matching, otherwise G has a bridge.
By Lemma 8 we have two cases.
Case 1. E ′ ⊆MT .
H is a simple graph, otherwise H is not 4-connected. Thus, G is also a simple graph.
Therefore both components of G − E ′ contain more than two vertices. Hence, E ′ corre-
sponds to a vertex 2-cut of H which contradicts the definition of H.
Case 2. MT ∩ E ′ = ∅.
Then E ′ corresponds to a 2-edge cut of H. Since H is 4-connected and since the edge
connectivity is greater than or equal to the vertex connectivity, this is impossible.
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Hence, G is 3-edge connected which finishes the first part of the proof.
Let E0 be a cyclic 3-edge cut of G. Then E0 is a matching and G − E0 consists of

two components, otherwise G would contain a k-edge cut for some k ∈ {1, 2}. Moreover,
at most one component of G−E0 is a triangle, since otherwise |V (H)| = 3 and H is not
4-connected.

Suppose by contradiction that no component of G − E0 is a triangle. Hence both
components have more than three vertices. Since every graph contains an even number
of vertices of odd degree, every component has at least five vertices. Denote one of the
two components of G − E0 by L. By Lemma 8 and by reasons of symmetry, we need to
consider two cases: Case A and Case B. Set E0 = {e1, e2, e3}.
Case A. MT ∩ E0 = {e1}.
Let us suppose first that |V (L)| > 5.
Set E∗ := { e ∈ E(L) ∩ MT : e is incident with a 2-valent vertex of L }. Obviously,
1 6 |E∗| 6 2 (depending on whether one edge of MT ∩ E(L) covers one endvertex of e2
and one of e3). E

∗ ∪{e1} corresponds to a vertex subset of V (H) which we denote by W .
Since |V (L)| > 5, it follows that H −W is not connected. Moreover, W is a j-vertex cut
of H for some j ∈ {2, 3} which contradicts the assumption that H is 4-connected.

Thus, we may assume that |V (L)| = 5.
Hence, |MT ∩ E(L)| = 2. Set {a, b} := MT ∩ E(L). Since H is a simple graph, a and b
have the following properties:
(1) a and b are not contained together in a cycle of length 4.
(2) Neither a nor b is contained in a triangle.

Denote by v1 the unique 2-valent vertex of L which is neither matched by a nor by b.
Denote by a1 and b1 the remaining two 2-valent vertices in L. If a1b1 ∈ E(L), then a1b1 6∈
MT ; otherwise the two vertices in H corresponding to e1 and a1b1 would form a vertex
2-cut of H. Hence we can set a := a1a2 and b := b1b2 such that V (L) = {v1, a1, a2, b1, b2}.

By (2), v1 is adjacent to precisely one endvertex of a and to one of b. Thus, and by
reasons of symmetry we have three possibilities:

Subcase 1. {v1a1, v1b1} ⊆ E(L).
Then G must contain the edge a2b2 twice which is impossible since G is a simple cubic
graph.

Subcase 2. {v1a1, v1b2} ⊆ E(L).
Then L contains the triangle consisting of the vertices b1, b2, a2 which contradicts (2).

Subcase 3. {v1a2, v1b2} ⊆ E(L).
Then L contains either double edges or a cycle of length 4 consisting of the vertices
a1, a2, b1, b2 which contradicts (1).

Hence, Case A cannot occur.
Case B. |MT ∩ E0| = 3.
Since both components of G − E0 have at least five vertices and since E0 ⊆ MT , E0

corresponds to a vertex 3-cut of H which contradicts the definition of H and thus finishes
the proof.

Definition 10. Let H be a 4-regular simple graph with a transition system T . Denote by
G ′(H,T ) the graph which results from G(H,T ) by contracting each triangle into a vertex.
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Note that each pair of triangles of G(H,T ) (in Definition 10) is vertex disjoint. Hence,
G ′(H,T ) is well defined and cubic.

Lemma 11. Let H be a 4-regular 4-connected graph with a transition system T . Then
either G ′(H,T ) ∈ {K4, K3,3} or λc(G ′(H,T )) > 4.

Proof. Since |V (H)| > 5, |V (G(H,T ))| > 10 and thus |V (G ′(H,T ))| > 4. Suppose first
that G ′(H,T ) does not contain two disjoint cycles. Since |V (G ′(H,T ))| > 4 and by
Theorem 1.2 in [4], it follows that G ′(H,T ) ∈ {K4, K3,3}.

Now, assume that G ′(H,T ) has two disjoint cycles. Suppose by contradiction that
E ′0 is a cyclic k-edge cut of G ′(H,T ) for some k ∈ {1, 2, 3}. Then E ′0 corresponds to a
cyclic k-edge cut E0 of G(H,T ). Lemma 9 implies that k = 3 and that one of the two
components of G(H,T ) − E0 is a triangle. Since this triangle is contracted to a vertex
in G ′(H,T ), one of the two components of G ′(H,T )− E ′0 is a vertex. Hence, E ′0 is not a
cyclic edge cut which is a contradiction and thus finishes the proof.

Proposition 12. If the DCC is true, then the NWC* is true.

Proof. Let H be a 4-regular 4-connected graph with a transition system T . Since H is
4-connected, |V (H)| > 5. Set G := G(H,T ). Then |V (G)| > 10 and we have the following
two cases.
Case 1. λc(G) > 4. Then, by assumption G has a DC which thus dominates MT (Defini-
tion 6). By Lemma 7, H is T -hamiltonian.
Case 2. λc(G) < 4. Consider G ′(H,T ) (see Definition 10). Every edge of G ′(H,T )
corresponds to an edge of

E(G)− {e ∈ E(G) : e is contained in a triangle of G} .

Thus, every subgraph X ′, say, of G ′(H,T ) induces by its corresponding edge set in G, a
subgraph of G which we denote by X.

Note that K4 and K3,3 have a dominating cycle. Therefore, by Lemma 11 and since
the DCC holds, G ′(H,T ) has a dominating cycle C ′. The corresponding subgraph C ⊆ G
is not a cycle if and only if there is a vertex v′ ∈ V (C ′) which has been obtained by
contracting a triangle in G. We denote this triangle by 4(v′) and call such a vertex v′,

a bad vertex of C ′. We define the cycle C̃ ⊆ G depending on C ′: for each bad vertex v′

of C ′, we extend C ⊆ G to C̃ by adding the unique path of length 2 which is contained
in 4(v′) and which connects two endvertices of two edges of C; if C ′ has no bad vertex,

then C is already a cycle and we set C̃ := C. We show that C̃ dominates MT .
Since H is 4-connected, H is simple. Thus, no triangle of G contains an edge of

MT . Hence, it suffices to show that the edge e ∈ E(G) is dominated by C̃ for every

e′ ∈ E(G ′(H,T )). If e′ ∈ E(C ′), then e ∈ E(C) and thus e is dominated by C̃. If
e′ 6∈ E(C ′), then the following two cases are possible. Firstly, if e′ is a chord of C ′, then

by the construction of C̃ both endvertices of e are contained in C̃. Secondly, if precisely
one endvertex of e′ is contained in C ′, then one endvertex of e is contained in C̃.

Hence, C̃ dominates MT . By Lemma 7, H is T -hamiltonian which finishes the proof.
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Now, Theorem 2 follows easily from Proposition 5 and Proposition 12.

Corollary 13. Conjecture 4 is equivalent to the DCC.

Proof. Suppose that Conjecture 4 holds. We show that in this case the NWC* holds
which implies by Theorem 2 the truth of the DCC. Let H be a 4-regular 4-connected
graph with a transition system T . Since Conjecture 4 holds, the cubic graph G(H,T ) has
a cycle dominating MT and thus by Lemma 7, the first part of the proof is finished.

Suppose that the DCC and thus by Theorem 2 also the NWC* holds. Let G and M
be given as in Conjecture 4. We want to find a cycle which dominatesM. Set H := G/M
and let T be the transition system of H such that G(H,T ) ∼= G. Since the NWC* holds,
H is T -hamiltonian. By Lemma 7, G has a cycle dominating MT where MT equals M
which finishes the proof.
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