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Abstract

The crossing number of a graph G is the least number of crossings
over all possible drawings of G. We present a structural characterization
of graphs with crossing number one.

1 Introduction

For a graph G, we let V (G) and E(G) denote its vertex set and edge set,
respectively. Our graphs may have multiple edges but, for simplicity, we assume
they have no loops.

We assume the reader is familiar with the concept of drawings of graphs in
the plane or sphere. We make no distinction between the elements of a graph
and their representations in the drawing. Let D be a drawing of a graph G. If
H is a subgraph of G, we use the notation D[H] to denote the drawing of H
obtained from D by deleting the corresponding vertices and edges that are not
in H.

Let cr(D) denote the number of crossings of D. The crossing number cr(G)
of G is the least number of crossings over all possible drawings of G. A drawing
D of G is optimal if cr(D) = cr(G). We note that a graph G is planar if and
only if cr(G) = 0. An optimal drawing of a planar graph is an embedding.
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In the context of studying crossing numbers, we can interpret Kuratowski’s
classic characterization of planar graphs as: a graph has crossing number at
least one if and only if it contains a subdivision of K5 or K3,3 (we shall refer
to the subdivisions of K3,3 and K5 as Kuratowski graphs). Following the same
spirit, we answer the question of when does a graph have crossing number at
least 2?

We answer with Theorem 4, a characterization of the crossing pairs of a
graph. A pair {e, f} of edges in a graph G is a crossing pair of G if there exists
a drawing D of G with cr(D) = 1 (we refer to D as a 1-drawing of G) in which
e and f cross. Clearly, for a nonplanar G, cr(G) = 1 if and only if G has a
crossing pair and cr(G) ≥ 2 otherwise. This characterization is an extension of
a result of Arroyo and Richter [2] (Theorem 1, below).

In Section 2, we present some related work. Section 3 expands on some
properties of crossing pairs and details our characterization in Theorem 4. In
Section 4, we describe the results and notation used for proving Theorem 4; the
proof is in Section 5. The last section contains some remarks on Theorem 4.

2 Related work

The problem of characterizing graphs with crossing number at least two was
already studied by Arroyo and Richter [2] in the context of peripherally 4-
connected graphs.

A graph G is peripherally 4-connected if G is 3-connected and, for every
vertex 3-cut X of G, and, for any partition of the components of G−X into two
non-null subgraphs H and K, at least one of H or K has just one vertex. Two
edges e = x1y1 and f = x2y2 are linked if either e, f are incident with a common
vertex or there is a 3-cut X in G such that X ⊂ {x1, y1, x2, y2} and the vertex
in {x1, y1, x2, y2}\X induces a trivial component of G−X. Otherwise, e and f
are unlinked. Two edges e and f of G are separated by cycles if there exists two
(vertex-)disjoint cycles Ce and Cf in G with e ∈ E(Ce) and f ∈ E(Cf ).

Theorem 1. [2] A peripherally 4-connected nonplanar graph G has crossing
number at least two if and only if every pair of unlinked edges {e, f} in G is
separated by cycles.

We note that if we drop the connectivity requirement, then the converse of
Theorem 1 is no longer true. Consider G = K3,4. It is 3-connected but the cut
consisting of the part of size 3 shows that it is not peripherally 4-connected. We
know that cr(K3,4) = 2 [19]; however, no pair of disjoint edges is separated by
cycles, as we need at least 8 vertices for 2 disjoint cycles.

There is also some work on a characterization of line graphs that have cross-
ing number one. The line graph L(G) of a graph G is a graph with vertex set
E(G) and a, b ∈ E(G) are adjacent in L(G) if and only if a, b share a common
vertex in G. Let ∆(G) denote the maximum degree of a graph G.

Since the edges incident with a vertex of degree d in G induce a complete
graph Kd in L(G), a vertex of degree 6 in G implies cr(L(G)) ≥ cr(K6) = 3.
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Similarly, if G has two vertices with degree 5, then cr(L(G)) ≥ 2. Therefore, if
cr(L(G)) ≤ 1, then G has at most one vertex of degree 5 and ∆(L(G)) < 8.

Kulli, Akka and Beineke [8] characterized planar graphs whose line graph
has crossing number one, while Jendrol’ and Klevusč [6] completed the charac-
terization by including nonplanar graphs:

Theorem 2. [8] For every planar graph G, we have cr(L(G)) = 1 if and only
if either:

(1) ∆(G) = 4 and there is a unique non-cut-vertex of degree 4, or

(2) ∆(G) = 5, every vertex of degree 4 is a cut vertex, and there is a unique
vertex of degree 5 with at most 3 edges in any block.

Theorem 3. [6] For a nonplanar graph G, we have cr(L(G)) = 1 if and only
if the following conditions hold:

(1) cr(G) = 1,

(2) ∆(G) ≤ 4, and every vertex of degree 4 is a cut vertex of G, and

(3) there exists a drawing of G in the plane with exactly one crossing in which
each crossed edge is incident with a vertex of degree 2.

Akka, Jendrol, Klešč, and Panshetty [1] obtained a characterization of planar
graphs whose line graph has crossing number two.

A graph G is k-crossing-critical if cr(G) ≥ k and every proper subgraph H
of G has cr(H) < k. The 1-crossing-critical graphs are exactly the Kuratowski
graphs. We note that a graph with crossing number at least 2 contains a 2-
crossing-critical graph as a subgraph.

A great deal of attention has been given to 2-crossing-critical graphs [3, 4, 5,
7, 9, 10, 16]. For a positive integer n ≥ 3, the Möbius Ladder V2n on 2n vertices
is the graph obtained from a 2n-cycle by joining vertices with distance n in the
cycle. Bokal, Oporowski, Richter and Salazar [4] characterized all 2-crossing-
critical graphs that: are not 3-connected; are 3-connected and have V10 as a
minor; or are 3-connected and do not have V8 as a minor. They also showed
that there exists only finitely many 3-connected 2-crossing-critical graphs with
no V10 minor.

It remains to characterize or enumerate all the 3-connected 2-crossing-critical
graphs that have V8 but not V10 as a minor. We hope this work can help
determine these remaining 2-crossing-critical graphs.

3 Crossing pairs and statement of the main re-
sult

The main point of this section is to introduce our main result Theorem 4. The
lead-up to its statement is an analysis of crossing pairs.
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Figure 1: Removing v4v5 will result in a planar graph, however removing the
edge v1v5 will result in a subdivision of K3,3. The squares and disks represents
the parts of the subdivision of K3,3.
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Figure 2: The pair of edges e, f is separated by the highlighted cycles, however
removing either will result in a planar graph.

The graph in Figure 1a is V8. The figure shows a 1-drawing of the V8 where
v0v1 and v4v5 are crossing. Removing either v0v1 or v4v5 results in a planar
graph (Figure 1b). In contrast, as shown in Figure 1c, removing v1v5 results in
a subdivision of K3,3. Since any drawing of V8 − v1v5 contains a crossing, v1v5
is not in a crossing pair.

There are three obvious facts about a crossing pair {e, f} in a graph G.
First, as illustrated above, if D is a 1-drawing of G in which e and f cross, then
D[G− e] and D[G− f ] are planar embeddings of G− e and G− f , respectively.

Second, if H is a Kuratowski subgraph of G, then e and f are both in H
and make the unique crossing of D[H]. That is, {e, f} is a crossing pair in H.
This is readily seen to be equivalent to the assertion that e and f are not in
either the same branch or adjacent branches of H. (A branch in H is a path P
joining two vertices with degrees different from 2 such that all internal vertices
of P have degree 2 in H.)

Third, since vertex-disjoint cycles cross an even number of times in a draw-
ing, e and f are not separated by cycles in G (separated by cycles is defined
just before Theorem 1). Figure 2 shows edges e and f that are separated by
cycles such that G− e and G− f are both planar.

The second fact is easily seen to imply the first: If, for every Kuratowski
subgraph H of G, {e, f} is a crossing pair of H, then G − e and G − f are
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both planar. However, the first fact does not imply the second: if e and f are
in branches of a Kuratowski graph H sharing a vertex, both H − e and H − f
are planar, but {e, f} is not a crossing pair of H. In Theorem 4 we describe
conditions under which the first and second facts are equivalent.

We are now ready to state our main result, which characterizes crossing pairs
in nonplanar graphs in terms of these three facts.

Theorem 4. Let G be a nonplanar graph and let e, f ∈ E(G). The following
are equivalent:

(i) {e, f} is a crossing pair of G;

(ii) {e, f} is a crossing pair of every Kuratowski subgraph of G and e, f are
not separated by cycles in G; and

(iii) e, f are not separated by cycles in G, both G− e and G−f are planar and
there exists a Kuratowski subgraph H of G such that {e, f} is a crossing
pair in H.

Theorem 4 gives an answer to our original question: what makes a graph
have crossing number at least 2? Let G be a non-planar graph and let H be a
Kuratowski subgraph of G. Then cr(G) ≥ 2 if and only if, for every crossing
pair {e, f} of H, e, f are separated by cycles in G or at least one of G− e and
G− f is not planar.

The following example from Širáň [15] shows that the two conditions in
Theorem 4 (ii) are independent. Let ({u, v, w}, {x, y, z}) be a bipartition of
K3,3 and let G be the graph K3,3 + {uv, yz} (see Figure 2a). As Širáň notes,
there is only one Kuratowski graph contained in G. The edges ux and wz
are separated by cycles in G. However, {ux,wz} is a crossing pair of every
Kuratowski subgraph of G. On the other hand, {uy,wz} is also a crossing pair
of every Kuratowski subgraph of G, but uy and wz are not separated by cycles
in G.

The proof of Theorem 4 is in Section 5. This is preceded by some preparatory
work in the next section.

4 Preliminaries

In this section, we present some definitions and results used in the proof of
Theorem 4.

Given a subgraph H of G, a path P in G is H-avoiding or avoids H if no
edge or internal vertex of P is in H. For u, v ∈ V (G), a uv-path in G is a path
whose ends are u and v.

Let G be a graph and let H be a subgraph of G. An H-bridge B of G is
a subgraph of G consisting of either a single edge of E(G) \ E(H) with both
ends in H, or a component F of G − V (H) together with the edges of G with
one end in F and another in H. The vertices of Att(B) = V (H) ∩ V (B) are
the attachments of B, and the nucleus Nuc(B) is B − Att(B). Although, the
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definitions of attachment and nucleus depend on G and on the subgraph H, we
omit them, since these are always clear from the context.

Let C be a cycle of G. Two distinct C-bridges B1 and B2 overlap if they have
exactly three attachments in common or if there exist distinct vertices a, x, b, y
occurring in this cyclic order in C such that a, b ∈ Att(B1) and x, y ∈ Att(B2).
The following simple observations are useful to us.

Observation 5. Let C be a cycle in a graph G with overlapping C-bridges B1

and B2.

(i) If D is a planar embedding of G, then B1 and B2 are embedded in distinct
faces of D[C].

(ii) If u1 and u2 are in the nuclei of B1 and B2, respectively, then (C ∪ B1 ∪
B2) + u1u2 is not planar. �

For vertices x and y of a graph G, a cycle C ⊆ G detaches x from y if there
exists two overlapping C-bridges, each containing exactly one of x and y in its
nucleus.

The vertices x and y are cofacial in an embedding D if x and y are incident
with a common face of D. The following theorem by Tutte (and its slight
modification in Corollary 7) is an important tool in the proof of Theorem 4.

Theorem 6. (Tutte [18]) Let G be a planar graph and let x, y ∈ V (G). Then
G has an embedding such that x and y are cofacial unless G contains a cycle C
that detaches x from y.

We need a slight modification of Tutte’s result that holds for a vertex x and
an edge f . A cycle C detaches x from f if there exist overlapping C-bridges
with one containing x and its nucleus and the other containing f . A vertex x
and an edge f are cofacial in an embedding D if x and f are incident with a
common face of D.

Corollary 7. Let G be a planar graph, let x ∈ V (G) and let f ∈ E(G). Then
G has an embedding such that x and f are incident with a common face unless
G contains a cycle C that detaches x from f .

5 Proof of Theorem 4

In this section we give the proof of Theorem 4. The proof that (i) implies (ii)
follows from the second and third facts on the discussion preceding the statement
of Theorem 4. To see that (ii) implies (iii), by (ii), G− e and G− f both have
no Kuratowski subgraphs, so both are planar. Moreover, G is not planar, so G
has a Kuratowski subgraph H. By (ii), {e, f} is a crossing pair in H and also
e and f are not separated by cycles in G. The rest of this section is devoted to
(iii) implies (i).

For a drawing D of a graph K, a side is the closure of a face of D.
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Figure 3: An abstract representation of the elements introduced for the proof
of Theorem 4.

Proof. The hypotheses of (iii) are that e and f are not separated by cycles in
G, G− e and G− f are planar, and there is a Kuratowski subgraph H in which
{e, f} is a crossing pair. Let u and v be the ends of e.

Let DH be a 1-drawing of H in which e and f cross. The embedding DH [H−
e] shows that H − e is planar. Since H is not planar, no embedding of H − e
can have both u and v incident with the same face. By Theorem 6, there exists
a cycle C of H − e, together with distinct overlapping C-bridges BH

u and BH
v

containing u and v in their nuclei, respectively.
Since BH

u and BH
v overlap, they must be embedded in distinct sides of DH [C]

in DH [H − e]. Therefore e crosses at least one edge of C in DH , and, since f is
the only edge that crosses e in DH , f must be in C, while neither u nor v is in
C.

Let D be a planar embedding of G− e and let Bu and Bv be the C-bridges
in G−e containing u and v, respectively. If Bu = Bv, then there is a C-avoiding
uv-path P in Bu. Then P + e and C are disjoint cycles that show e and f are
separated by cycles in G, a contradiction.

Thus, Bu 6= Bv. Since BH
u ⊆ Bu and BH

v ⊆ Bv, Bu and Bv are overlapping
C-bridges in G. In particular, they are in different sides of C in D.

Let Gu and Gv be the subgraphs of G embedded in the side of C containing
u and v in D, respectively. Our goal is to prove there exist planar embeddings
of Gu and Gv such that, in both cases, C bounds a face and, in Gu, u and f
are cofacial, while in Gv, v and f are cofacial. This obviously implies that G
has a 1-drawing in which e and f are the crossing pair. We prove the result for
Gu and the result for Gv follows by symmetry.

We refer the reader to Figure 3 for a visual aid in what follows. Let F be
the face of D[C ∪Bu] incident with f but not bounded by C. There is a unique
cycle Cf in C ∪Bu that contains f and is contained in the boundary of F . To
see that Cf exists, the cycle C is one cycle that has F on one side and contains
f . Choose Cf to be (the) one that has a minimal subgraph of G on the side
containing F . This choice implies that every Cf -bridge embedded on the side
containing F has at most one attachment.
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Let R be the component of C∩Cf including f . As Bv overlaps Bu on C, Bu

has at least two attachments on C. Thus, R is the subpath of C that contains
f and joins two consecutive attachments of Bu. Let x and y be the two ends of
R, let P be the other xy-path in Cf , and let Q be the other xy-subpath of C.

We note that every (C ∪ P )-bridge in C ∪ Bu is a (P ∪ Q)-bridge and, if a
(C ∪P )-bridge B in C ∪Bu is contained in the face of C ∪P bounded by P ∪R,
then Att(B) is a single vertex in P .

To show that Gu has an embedding in which u and f are cofacial and C
bounds a face, we shall show that C ∪Bu has such an embedding. If u is in P ,
then D is already such an embedding, so we assume u is not in P . Recall that,
since C detaches u and v in G− e, u is not in C.

Therefore, there is a (C ∪ P )-bridge B∗u in C ∪Bu containing u. Because x
and y are consecutive attachments of Bu on C and Bv overlaps Bu on C, Bv

has an attachment w in Q− {x, y}. Thus,

(*) there is a C-avoiding vw-path Pv in Bv.

Suppose B∗u has an attachment z in Q−{x, y}; let P ∗ be a (C ∪P )-avoiding
uz-path in B∗u. Letting Q[w, z] denote the wz-subpath of Q, (Pv ∪ Q[w, z] ∪
P ∗)+e and P ∪R are disjoint cycles in G containing e and f , respectively. This
contradicts the assumption that e and f are not separated by cycles. Thus,

(**) Att(B∗u) is contained in P .

To show that C ∪Bu has an embedding in which u and f are cofacial and C
bounds a face, we first show that C ∪ P ∪ B∗u has such an embedding. For the
sake of contradiction, suppose that there is no such embedding of C ∪ P ∪B∗u.

By Corollary 7, there is a cycle C ′ in C ∪ P ∪ B∗u that detaches u and f .
Let B′u and B′f be the C ′-bridges containing u and f , respectively. Note that
B′u ⊆ B∗u and B′u and B′f are overlapping C ′-bridges.

To see that Q ⊆ C ′, suppose C ′ ⊆ B∗u ∪ P . Let z be any attachment of B′f .
Then there is a C ′-avoiding path P ′z in B′f − f joining an end of f to z. Choose
the labelling of x and y so that x is in P ′z.

As we saw in (*) above, there is a C-avoiding vw-path Pv in Bv. Extend
this path to x using the wx-subpath of Q, and finally extend to z using the
xz-subpath of P ′z. The result is a C ′-avoiding vz-path in G− {e, f}.

Consider the graph K consisting of (C − f) ∪ B∗u ∪ Bv. We have shown
that the C ′-bridge B′v in K that contains Bv has all the attachments of B′f as
attachments. Since B′f overlaps B′u, it follows that B′v overlaps B′u.

Therefore, Observation 5 shows that K + e is not planar. However, K + e
is contained in G− f , contradicting the hypothesis that G− f is planar. Thus,
Q ⊆ C ′, so C ′ consists of Q and an xy-path contained in B∗u ∪ P .

It follows that B′f = R and, therefore, B′u has an attachment in each com-
ponent of C ′ − {x, y}; in particular, we have the contradiction that B′u, and
therefore B∗u, has an attachment in Q− {x, y}, contradicting (**).

Consequently, u and f are cofacial in an embedding D1 of C ∪ P ∪ B∗u in
which C bounds a face. We first extend this to an embedding D2 of C ∪Bu in
which u and f are cofacial and C bounds a face.
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Figure 4

Let B be a (C ∪ P ∪ B∗u)-bridge in C ∪ Bu. If B is embedded by D in the
face of C ∪ P bounded by P ∪ R, then B has only one attachment and this is
in P . Thus, it may be added to D1 while retaining the facts that u and f are
cofacial and C bounds a face.

The remaining (C ∪P ∪B∗u)-bridges are embedded by D in the face of C ∪P
bounded by P ∪Q. These may all be added in that same face of D1, completing
the required embedding D2.

Finally, we add all the remaining (C∪P )-bridges in Gu to maintain the facts
that u and f are cofacial and C bounds a face. If B is embedded by D in the
face of C ∪ P bounded by P ∪Q, then we use that embedding in D2.

In the last case, suppose B is embedded by D in the face of C ∪P bounded
by P ∪ R (see Figures 4a and 4b). If B has an attachment in P − {x, y}, then
B ⊆ Bu is already embedded in D2. Therefore, Att(B) is contained in R.

If all the attachments of B are in one of the components of R − f , then we
can use the embedding of B in D to add B to D2. Thus, we may assume that
B has an attachment in each component of R− f .

If either Bu has an attachment z in Q−{x, y} or B has an attachment not in
{x, y}, then there are vertex-disjoint paths Pu ⊆ Bu from u to Q, and P ′ in B
joining attachments in each component of R− f such that V (Pu) ∩ V (P ′) = ∅.
Thus, the cycle in G containing e, Pu, Pv, and the zw-subpath of Q is disjoint
from the cycle containing f , P ′, and a subpath of R. That is, e and f are
separated by cycles, a contradiction.

Therefore Att(B) = Att(Bu) = {x, y}. This shows that we can add B in the
face of D2[C ∪ P ] bounded by P ∪Q. This completes the embedding of Gu for
which u and f are cofacial and C bounds a face.
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6 Final remarks

Let G be a nonplanar graph. We say that a pair of edges {e, f} of G is a
potential crossing pair if, for every Kuratowski subgraph H of G, e and f is a
crossing pair of H. Clearly, a crossing pair is also a potential crossing pair and,
as Theorem 4 (ii) shows, a potential crossing pair not separated by cycles is also
a crossing pair. This raises the question on the existence of potential crossing
pairs on graphs with crossing number at least 2. Given Theorem 4, such a pair
would necessarily be separated by cycles.

Conjecture 8. A non-planar graph G has crossing number at least 2 if and
only if it does not have a potential crossing pair.

Širáň’s analysis [15] is instructive here. Deleting any two edges of K6 results
in a graph with crossing number 1. Thus, there is necessarily a potential crossing
pair. Deleting any edge e of K6 results in a graph with crossing number 2, but
a simple case check shows there is no pair of edges that is in every K3,3. That
is, K6 − e has no potential crossing pair.

Regarding the proof of Theorem 4, we are aware of a shorter proof that shows
that (ii) and (i) are equivalent (see Silva’s thesis [14, Theorem 3.12]). This proof
uses the famous Two Disjoint Paths theorem, proved independently by many
authors [11, 12, 13, 17]. The proof relies on the fact that a pair of edges {e, f}
of a graph G is a crossing pair if and only if G− e− f has a planar embedding
such that the ends of e and f alternate in a face of the embedding. The proof of
the equivalence of (i) and (ii) using the Two Disjoint Paths Theorem is shorter
and somewhat straightforward. However, proving that (iii) implies (ii) seems
significantly more complicated and we were unable to make it work using only
the Two Disjoint Paths Theorem.
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