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ON AN EXTENSION OF DIRAC’S THEOREM

FELIX JOOS AND JAEHOON KIM

Abstract. For a collection G = {G1, . . . , Gs} of not necessarily distinct graphs on the
same vertex set V , a graph H with vertices in V is a G-transversal if there exists a bijection
φ : E(H) → [s] such that e ∈ E(Gφ(e)) for all e ∈ E(H). We prove that for |V | = s ≥ 3
and δ(Gi) ≥ s/2 for each i ∈ [s], there exists a G-transversal that is a Hamilton cycle. This
confirms a conjecture of Aharoni. We also prove an analogous result for perfect matchings.

1. Introduction

Suppose that we are given a collection F = {F1, . . . , Fs} of not necessarily distinct subsets
of some finite set Ω. Then a set X ⊆ Ω such that X ∩ Fi 6= ∅ for each i ∈ [s] is often
called a ‘transversal’ of F or a ‘colourful’ object of F. In the case where F is the edge set
of a hypergraph, X is known as a hypergraph transversal. If X = {x1, . . . , xs} and xi ∈ Fi

for all i ∈ [s], then X is also called system of distinct representatives. Frequently, we seek
transversals with certain additional properties as for example |X ∩ Fi| = 1 for all i ∈ [s].

Other results that deal with transversals include results regarding transversals on Latin
squares, a colourful version of Carathéodory’s theorem by Holmsen, Pach and Tverberg [5],
a colourful version for a topological and a matroidal extension of Helly’s theorem by Kalai
and Meshulam [6] and a colourful version of the Erdős-Ko-Rado theorem by Aharoni and
Howard [2].

Surprisingly, the study of ‘transversals’ over collections of graphs has not received much
attention until recently (for results on this topic see for example [1, 7]). Here, we simply
take Ω to be the edge set of the complete graph on some vertex set V , the set F as a collection
of (the edge sets of) graphs with vertex set V , and we ask for transversals (which are then
collections of edges) with certain graph properties.

To be more precise, we define the following concept of transversals over a graph collection.
Let G = {G1, . . . , Gs} be a collection of not necessarily distinct graphs with common vertex
set V . We say that a graph H with vertices in V is a partial G-transversal if there exists
an injection φ : E(H) → [s] such that e ∈ E(Gφ(e)) for each e ∈ E(H). If in addition
|E(H)| = s, then H is a G-transversal (and φ a bijection). We also say that H is a
path/cycle/triangle/matching (partial)G-transversal if H is a path/cycle/triangle/matching
and similarly for other graphs.

Let us consider the following question.

Let H be a graph with s edges, G be family of graphs and G = {G1, . . . , Gs} be a

collection of not necessarily distinct graphs on the same vertex set V such that Gi ∈
G for all i ∈ [s]. Which properties imposed on G yield a G-transversal isomorphic

to H?

By considering the case when G1 = · · · = Gs, we need to study properties for G such
that H is a subgraph of each graph in G. However, this alone is not sufficient. To see
that, let |V | = s ≥ 5 and G be the collection of cycles with vertex set V . Consider s − 1
identical cycles G1, . . . , Gs−1 and another cycle Gs which is edge-disjoint from the others.
Then there do not exist Hamiltonian G-transversals; that is, one that is a Hamilton cycle
(on V ). Neither it is sufficient to impose the Turán condition on the number of edges. In [1]
(see also [7]), it is shown that there is a triple of n-vertex graphs G1, G2, G3 each having
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more than n2/4 edges with no triangle transversal. In fact, one needs to require (roughly)
at least 0.2557n2 edges in each Gi to guarantee the existence of a triangle transversal.

On the other hand, Aharoni [1] conjectured that Dirac’s theorem [4] can be extended to
a colourful version and here we confirm this conjecture.

Theorem 1. Let n ∈ N and n ≥ 3. Suppose G = {G1, . . . , Gn} is a collection of not

necessarily distinct n-vertex graphs with the same vertex set such that δ(Gi) ≥ n/2 for each

i ∈ [n]. Then there exists a Hamiltonian G-transversal.

For the same reason as the bound in Dirac’s theorem is sharp, we cannot improve upon
the minimum degree bound in Theorem 1. Cheng, Wang and Yi [3] recently proved a weaker
version of Theorem 1 with the condition δ(Gi) ≥ (1/2 + o(1))n.

We also prove the following theorem concerning perfect matchings.

Theorem 2. Let n ∈ N and n ≥ 2 even. Suppose G = {G1, . . . , Gn/2} is a collection of not

necessarily distinct n-vertex graphs with the same vertex set such that δ(Gi) ≥ n/2 for each

i ∈ [n]. Then there exists a G-transversal that is a perfect matching.

2. The proofs

We write [n] = {1, . . . , n} and [m,n] = {m,m+1, . . . , n}. We denote by δ(G) the minimum
degree of a graph G. For a digraph D, we let A(D) be the arc set of D, and d−D(x) and d+D(x)

refer to the indegree and outdegree of a vertex x ∈ V (D), respectively. We denote by N−
D (x)

the in-neighbourhood of x ∈ V (D).
It will be also useful to specify a particular injection/bijection for a (partial) G-transversal.

To this end, we say that (H,φ) is a partial G-transversal if φ : E(H) → [s] is injective and a
G-transversal if φ is bijective. If i /∈ φ(E(H)) for some i ∈ [s], we say i is missed by φ and φ
misses i.

Proof of Theorem 1. Assume for a contradiction that there do not exist Hamiltonian
G-transversals. It is routine to check the statement for n ∈ {3, 4}, so we may assume that

n ≥ 5. Let V be the common vertex of the graphs in G. For each e ∈
(V
2

)

, let

c(e) := {i ∈ [n] : e ∈ E(Gi)}.

Claim 1. There exists a partial G-transversal that is a cycle of length n− 1.

Proof of claim: Let (C,φ) be a partial G-transversal which has the largest number of edges
among all paths and cycles. Among cycles and paths with the same number of edges, we
prefer cycles.

Suppose C = (x1, . . . , xℓ+1) is an ℓ-edge path with ℓ ∈ [3, n − 1] (it is easy to see that
ℓ ≥ 3 as n ≥ 5 by simply picking the edges of C greedily). Consider the (ℓ − 1)-edge path
P = (x1, . . . , xℓ). The partial G-transversal given by φ restricted to E(P ) misses at least
two integers, say, 1 and 2. Then 1, 2 /∈ c(x1xℓ), as otherwise (x1, . . . , xℓ, x1) forms an ℓ-edge
cycle partial G-transversal which contradicts the choice of (C,φ). Let

I1 := {i ∈ [ℓ− 2] : 1 ∈ c(x1xi+1)} and I2 := {i ∈ [2, ℓ − 1] : 2 ∈ c(xixℓ)}.

Note that we have

|NG1(x1) \ V (P )|+ |NG2(xℓ) \ V (P )| ≤ n− ℓ,(1)

otherwise, by the pigeonhole principle, there exists y ∈ V \V (P ) such that (x1, . . . , xℓ, y, x1)
forms an (ℓ+1)-edge cycle partial G-transversal, again a contradiction to the choice of (C,φ).
Since δ(Gi) ≥ n/2 for all i ∈ [n] and 1, 2 /∈ c(x1xℓ), equation (1) implies that

|I1|+ |I2| ≥ n/2 + n/2− |NG1(x1) \ V (P )| − |NG2(xℓ) \ V (P )| ≥ ℓ.

As I1 ∪ I2 ⊆ [ℓ − 1], there exists an integer j ∈ I1 ∩ I2 ⊆ [2, ℓ − 2]. Hence deleting xjxj+1

from E(P ) and adding x1xj+1, xjxℓ yields a partial G-transversal that is a cycle of length ℓ,
which is a contradiction to the choice of (C,φ). Hence we may assume that C is a cycle.
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In view of the statement, we may assume that C = (x1, . . . , xℓ, x1) is an ℓ-edge cycle for
some ℓ ∈ [3, n − 2] and there are two integers, say 1 and 2, that are missed by φ. Observe
that ℓ ≥ n/2 + 1, since otherwise we have

|NG1(x1) \ V (C)| ≥ 1 and |NG2(xℓ) \ V (C)| ≥ 1,

and we obtain two not necessarily distinct vertices y, z ∈ V \V (C) with 1 ∈ c(x1y), 2 ∈ c(xℓz).
Then (y, x1, . . . , xℓ, z) is a partial G-transversal which is either path or cycle with ℓ+1 edges
and this contradicts the choice of (C,φ).

We claim that, for each v ∈ V \ V (C) and i ∈ [2], we have NGi
(v) ⊆ V (C). Suppose not.

Then there exists i ∈ [2] and u, v ∈ V \V (C) with uv ∈ E(Gi). As we have dG3−i
(v) ≥ n/2 >

|V \V (C)|, we have, by symmetry, xℓv ∈ E(G3−i). Consequently, (x1, . . . , xℓ, v, u) contradicts
the choice of (C,φ). Thus, for each v ∈ V \ V (C) and i ∈ [2], we have NGi

(v) ⊆ V (C).
Fix some v ∈ V \ V (C). Let

I1 := {i ∈ [ℓ] : 1 ∈ c(vxi+1)} and I2 := {i ∈ [ℓ] : 2 ∈ c(vxi)},

where we identify xℓ+1 with x1. Then

|I1|+ |I2| ≥ δ(G1) + δ(G2) ≥ n > ℓ,

and there exists an integer j ∈ I1 ∩ I2. Hence deleting xjxj+1 from E(C) and adding
vxj , vxj+1 yields partial G-transversal that is a cycle of length ℓ+1, which is a contradiction
to the choice of (C,φ). This proves Claim 1. −

By Claim 1, there exists a cycle partial G-transversal (C,φ) with C := (x1, . . . , xn−1, x1).
By relabelling colours, we may assume that φ(xixi+1) = i for each i ∈ [n − 1] where we
identify xn with x1. Hence φ misses n. Let {y} = V \ V (C). We consider the following
auxiliary digraph D on vertex set [n] such that

A(D) =
⋃

i∈[n−1]

{xiz : z 6= xi+1, i ∈ c(xiz)}.

As δ(Gi) ≥ n/2 for all i ∈ [n− 1] and thus d+D(x) ≥ n/2− 1 for all x ∈ V (C), we obtain that
|A(D)| ≥ (n− 1)(n/2 − 1). Let

I := {i ∈ [n− 1] : xiy ∈ A(D)} and I ′ := {i ∈ [n− 1] : xi+1y ∈ E(Gn)}.

We claim that d−D(y) ≤
n
2 −1. Otherwise, we have |I|+|I ′| ≥ d−D(y)+δ(Gn) > n−1 = |V (C)|.

So, there exists j ∈ I ∩ I ′ and thus (E(C) \ {xjxj+1}) ∪ {xjy, yxj+1} is the edge set of a
Hamiltonian G-transversal, which is a contradiction.

Hence, we assume from now on that d−D(y) ≤ n
2 − 1. By our definition of D, we have

d+D(y) = 0 and thus

|A(D − y)| ≥ (n− 1)
(n

2
− 1

)

−
n

2
+ 1 > (n− 1)

(

n

2
−

3

2

)

.(2)

Let us assume for now that there exists a vertex, say x1, such that d−D−y(x1) > n/2 − 1.
Consequently, we conclude that

|{i ∈ [2, n − 2] : i ∈ c(x1xi)}| = d−D−y(x1) ≥
n

2
−

1

2
.(3)

Let

I1 := {i ∈ [n− 1] : xiy ∈ E(G1)} and In := {i ∈ [n− 1] : xi+1y ∈ E(Gn)}.

Clearly, |I1|+ |In| ≥ n, so there exists a j ∈ I1 ∩ In. We may assume that j 6= 1 as otherwise
(E(C) \ {x1x2}) ∪ {x1y, x2y} is the edge set of a Hamiltonian G-transversal, which is a
contradiction.

Let (P, φ′) with P = (x2, . . . , xj , y, xj+1, . . . , xn−1, x1) be a path partial G-transversal
that arises from φ by deleting {x1x2, xjxj+1} from its domain and by setting φ′(xjy) := 1
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and φ′(xj+1y) := n. Observe that φ′ misses (only) j. We write P = (x1, . . . , xn) such that
x1 = x2. Let

J1 := {i ∈ [n− 2] : j ∈ c(x1xi+1)} and Jn := {i ∈ [n− 2] : xi ∈ N−
D−y(x1)}.

If j ∈ c(x1xn), then there is a Hamiltonian G-transversal, which is a contradiction; so
|J1| ≥ δ(Gj). Also, as x

n−1 ∈ {xn−1, y}, the definition of D ensures that xn−1 /∈ N−
D−y(x1).

Hence (3) implies that |Jn| ≥ n/2 − 1/2 and thus |J1| + |J2| ≥ n. Since J1 ∪ J2 ⊆ [n − 2],
there exist at least two integers in J1∩Jn and at least one of them, say k, satisfies xk+1 6= y.
Moreover, xk 6= y as y /∈ N−

D−y(x1). Hence, φ′(xkxk+1) ∈ c(xkxn) and (E(P ) \ {xkxk+1}) ∪

{x1xk+1, xkxn} forms a Hamiltonian G-transversal, which is a contradiction.

Therefore, we may assume that d−D−y(xi) ≤ n/2− 1 for all i ∈ [n− 1]. We define

J :=
{

i ∈ [n− 1] : d−D−y(xi) =
⌊n

2
− 1

⌋}

.

Then (2) implies that

⌊n

2
− 1

⌋

|J |+
⌊n

2
− 2

⌋

(n− 1− |J |) ≥ |A(D − y)| > (n− 1)

(

n

2
−

3

2

)

.

Hence, we have

|J | > (n− 1)

(

n

2
−
⌊n

2

⌋

+
1

2

)

≥
n− 1

2
.

Let J ′ := {i ∈ [n−1] : xi+1y ∈ E(Gn)}. Clearly, |J |+ |J ′| ≥ n and so there exists a j ∈ J ∩
J ′. Let (Q,φ′) with Q = (y, xj+1, xj+2, . . . , xn−1, x1, . . . , xj) be a path partial G-transversal
that arises from φ by deleting {xjxj+1} from its domain and by setting φ′(xj+1y) := n.
Observe that φ′ misses j. We write Q = (x1, . . . , xn) such that x1 = y. Let

J1 := {i ∈ [n− 2] : j ∈ c(x1xi+1)} and Jn := {i ∈ [2, n − 2] : xi ∈ N−
D−y(x

n)}.

If j ∈ c(x1xn), then there is a Hamiltonian G-transversal, which is a contradiction; so
|J1| ≥ δ(Gj) ≥ n/2. Note that x1 = y /∈ N−

D−y(x
n) and xn−1 = xj−1 /∈ N−

D−y(x
n) by the

definition of D. As xn = xj ∈ J , we infer that |Jn| = ⌊n/2−1⌋. We obtain |J1|+|Jn| ≥ n−1.

As J1 ∪ Jn ⊆ [n − 2], there exists an integer k ∈ J1 ∩ Jn ⊆ [2, n − 2]. Since xk 6= y = x1,
we conclude that φ′(xkxk+1) ∈ c(xkxn) and (E(P ) \ {xkxk+1}) ∪ {x1xk+1, xkxn} contains a
Hamiltonian G-transversal. This is the final contradiction. �

Proof of Theorem 2. We use similar notation as in the proof of Theorem 1; in particular,
let V be the common vertex set of the graphs in G and for each e ∈

(V
2

)

, let

c(e) := {i ∈ [n/2] : e ∈ E(Gi)}.

For a partial G-transversal (M,φ), we refer to |E(M)| as the size of (M,φ). We assume for
a contradiction that there does not exist a matching G-transversal.

It is easy to see that G contains a matching partial G-transversal of size n/2 − 1. In-
deed, consider a matching partial G-transversal (M,φ) of maximum size ℓ. Assume for a
contradiction that ℓ < n/2 − 1 and φ misses 1 and 2, say. Clearly, {1, 2} ∩ c(xx′) = ∅ for

all xx′ ∈
(V \V (M)

2

)

. Fix two vertices x, x′ ∈ V \ V (M). Let the weight of an edge e = uv
be 11∈c(xu) + 11∈c(xv) + 12∈c(x′u) + 12∈c(x′v). Since δ(Gi) ≥ n/2 for i ∈ [2], we deduce that
the sum of the weights of the edges in M is at least n. Hence there is an edge e = yy′ in M
with weight at least 3. Replacing e by {xy, x′y′} or {x′y, xy′} yields a contradiction to our
assumption that the size of (M,φ) is maximum.

For a contradiction, we assume that there is no matching G-transversal. Let ℓ := n/2−1.

For a matching partial G-transversal (N,φ), we let Dφ
N be a digraph with vertex set V and

A(Dφ
N ) := {xy : φ(xz) ∈ c(xy), y 6= z, xz ∈ E(N)}.
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Claim 1. d−
Dφ

M

(x) ≤ ℓ − 1 for all matching partial G-transversals (M,φ) of size ℓ and

x ∈ V \ V (M).

Proof of claim: We define D := Dφ
M . We assume for a contradiction that d−D(x) ≥ ℓ. Let

{x′} = V \ (V (M) ∪ {x}). Say φ misses 1. Clearly, 1 /∈ c(xx′). As δ(G1) ≥ n/2 and
d−D(x) ≥ ℓ, there exists an edge yy′ ∈ V (M) such that yx ∈ A(D) and 1 ∈ c(x′y′). However,
then removing yy′ from M and adding xy and x′y′ yields a matching G-transversal, which
is a contradiction. −

Claim 2. d−
Dφ

M

(x) ≤ ℓ for all matching partial G-transversals (M,φ) of size ℓ and x ∈ V .

Proof of claim: We define D := Dφ
M . We assume for a contradiction that d−D(x) ≥ ℓ+1 and φ

misses 1, say. By Claim 1, we conclude that x ∈ V (M). Let y be the neighbour of x in M and
φ(xy) = 2, say. Let {z, z′} = V \V (M). Suppose i ∈ c(yz̃) for some i ∈ [2], z̃ ∈ {z, z′}. Then
let (M ′, φ′) be the matching partial G-transversal where (M ′, φ′) arises (M,φ) by deleting xy

from M , adding yz̃, and assigning i on yz̃. Hence, for D′ := Dφ′

M ′ , we obtain d−D′(x) ≥ ℓ+ 1,
which is a contradiction to Claim 1. So we may assume that {1, 2} ∩ (c(yz) ∪ c(yz′)) = ∅.

Let V ′ := V \ {x, y, z}. Then |NG2(y) ∩ V ′| ≥ n/2− 1 and |NM (NG1(z)) ∩ V ′| ≥ n/2− 1.
Consequently, there exists a vertex u ∈ V ′ ∩ NG2(y) ∩ NM (NG1(z)). Observe that u /∈
{x, y, z, z′}. Let u′ be the neighbour of u in M . Let (M ′′, φ′′) be the matching partial G-
transversal whereM ′′ arises M by deleting xy, uu′ and adding uy, u′z and φ′′ arises from φ by

assigning u′z to 1 and uy to 2. We write D′′ for Dφ′′

M ′′ and observe that d−D′′(x) ≥ d−D(x)−1 as

y ∈ N−
D′′(x) \N

−
D (x) and N−

D (x) \N−
D′′(x) ⊆ {u, u′}. However, exploiting Claim 1, (M ′′, φ′′)

yields a contradiction. −

Claim 3. For all matching partial G-transversals (M,φ) of size ℓ, there are at least n/2
vertices x ∈ V (M) with d−

Dφ

M

(x) ≥ ℓ− 1.

Proof of claim: We define again D := Dφ
M . Observe that the number of arcs in D is at

least 2ℓ2, as d+D(x) ≥ ℓ for all x ∈ V (M). Assuming that there are at most n/2 − 1 = ℓ

vertices x ∈ V (M) with d−D(x) ≥ ℓ − 1, implies in view of Claims 1 and 2 that |A(D)| ≤
ℓ2 + ℓ(ℓ− 2) + 2(ℓ− 1) < 2ℓ2, which is a contradiction. −

Let (M,φ) be some matching partial G-transversal of maximum size. In view of the above,

the size of M equals ℓ and so φ misses 1, say. Let {z, z′} = V \ V (M) and D := Dφ
M . By

Claim 3 and as δ(G1) ≥ n/2, there exists xy ∈ V (M) with d−D(x) ≥ ℓ−1 and 1 ∈ c(yz). Say,
φ(xy) = 2. Let (M ′, φ′) arise from (M,φ) by deleting xy from M , adding yz and assigning yz

to 1. Let D′ := Dφ′

M ′ .

Claim 4. The following hold:

(a) |N−
D′(x) ∩ (V \ {x, z, z′})| ≥ ℓ− 1;

(b) |NG2(z
′) ∩ (V \ {x, y, z′})| ≥ n/2.

Proof of claim: Statement (a) is obvious. To see (b), we first observe that if 2 ∈ c(xz′),
then we can delete xy from M and add xz′ and yz and obtain a matching G-transversal.
Moreover, if 2 ∈ c(yz′), then the matching that arises from M by deleting xy, adding yz′,
and assigning 2 to yz′ contradicts Claim 1. This proves (b). −

Observe that NG2(z
′)∩(V \{x, y, z′}) ⊆ V (M ′). Let A be the set of vertices that are joined

by an edge in M ′ to a vertex in NG2(z
′) ∩ (V \ {x, y, z′}). Consequently, A ⊆ V \ {x, z, z′}

and |A| ≥ n/2 by Claim 4(b). As |V \ {x, z, z′}| = n − 3 < n/2 + ℓ − 1 ≤ |A| + |N−
D′(x) ∩

(V \ {x, z, z′})|, there is a vertex u ∈ A∩N−
D′(x)∩ (V \ {x, z, z′}). Let v be the neighbour of

u in M ′. Deleting uv and adding ux and vz′ to M ′ gives rise to a matching G-transversal.
This is the final contradiction and completes the proof. �
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