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This paper discusses the problem of covering and hitting a set of line segments L in 
R

2 by a pair of axis-parallel congruent squares of minimum size. We also discuss the 
restricted version of covering, where each line segment in L is to be covered completely 
by at least one square. The proposed algorithms assume that the input segments are 
given in a read-only array. For each of these problems (i.e. covering, hitting and restricted 
covering problems), our proposed algorithm reports the optimum result by executing only 
two passes of reading the input array sequentially. All these algorithms need only O (1)

extra space. The solution of these problems also give a 
√

2 approximation for covering 
and hitting those line segments L by two congruent disks of minimum radius with same 
computational complexity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Covering a point set by squares/disks has drawn interest to the researchers due to its applications in sensor network. 
Covering a given point set by k congruent disks of minimum radius, known as k-center problem, is NP-Hard [18]. For k = 2, 
this problem is referred to as the two-center problem [7,11,12,14,15,24].

A line segment �i is said to be covered (resp. hit) by two squares if every point (resp. at least one point) of �i lies inside 
one or both of the squares. For a given set L of line segments, the objective is to find two axis-parallel congruent squares 
such that each line segment in L is covered (resp. hit) by the union of these two squares, and the size of the squares 
is as small as possible. There are mainly two variations of the covering problem: standard version and discrete version. 
In discrete version, the center of the squares must be on some specified points, whereas there are no such restriction in 
standard version. In this paper, we focus our study on the standard version of covering and hitting a set L of line segments 
in R2 by two axis-parallel congruent squares of minimum size.

As an application, consider a sensor network, where each mobile sensor is moving along different line segment. The 
objective is to place two base stations of minimum transmission range so that each of mobile sensors are always (resp. 
intermittently) connected to any of the base stations. This problem is exactly same as to cover (resp. hit) the line segments 
by two congruent disks (in our case axis-parallel congruent squares) of minimum radius.

✩ A preliminary version of this paper appeared in COCOON 2017, pages 457–468.
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Most of the works on the two-center problem deal with covering a given point set. Kim and Shin [17] provided an optimal 
solution for the two-center problem of a convex polygon where the covering objects are two disks. As mentioned in [17], the 
major differences between the two-center problem for a convex polygon P and the two-center problem for a point set S are (i) 
points covered by the two disks in the former problem are in convex positions (instead of arbitrary positions), and (ii) the 
union of two disks should also cover the edges of the polygon P . The feature (i) indicates the problem may be easier than 
the standard two-center problem for points, but feature (ii) says that it might be more difficult.

Related Works: In the context of sensor network, geometric k-covering problem has a long history, where the objective 
is to cover a given region by k (≥ 1) disks. If k = 1 and the objective is to place the base-station on the boundary of 
a convex region C to cover the entire inside of C is studied in [22], and an algorithm is proposed with time linear in 
the number of vertices of C . The same paper studies the problem with k = 2 (i.e., the 2-covering problem) where both 
the base-stations are placed on the same edge of C , and shows that it is also linear time solvable. In [9], the aforesaid 
problem is generalized for arbitrary k, but the restriction of placing the base-stations on the same edge of C is retained. The 
proposed algorithm produces a (1 + ε)-approximation result in O ((n + k) log(n + k) + k log(� 1

ε �)) time. The same paper also 
studied the unrestricted 2-covering problem for a convex region C , where the two base-stations can be placed anywhere 
on the boundary of C . The time complexity of the proposed algorithm is O (n2). The unrestricted version of the k-covering 
problem was studied in [10], where a 1.8841-factor approximation algorithm is proposed. Basappa et al. [6] improved the 
approximation factor for very high values of k.

If the objective is to cover a set of points S , the best-known algorithm for the well-known one-center problem runs in 
O (n) time, where n = |S| [19]. Drenzer [8] covered a given point set S by two axis-parallel squares of minimum size in 
O (n) time. Kim et al. [16] proposed an O (n2 log n) time algorithm for covering a given point set S by two disjoint rectangles 
where one of the rectangles is axis-parallel and other one is of arbitrary orientation, and the area of the larger rectangle is 
minimized. Two congruent squares of minimum size covering all the points in S , where each one is of arbitrary orientation, 
can be computed in O (n4 log n) time [1]. Almost linear time deterministic algorithm for the standard version of two-center 
problem for a point set S was first given by Sharir [24] that runs in O (n log9 n) time. Eppstein [11] proposed a randomized 
algorithm for the same problem with expected time complexity O (n log2 n). Later, Chan [7] improved the deterministic 
algorithm of Sharir to O (n(log n log log n)2). Recently, Tan and Jiang [26] have proposed a new deterministic algorithm for 
this problem, which needs only O (n log2 n) time. Hoffmann [13] solved the rectilinear three-center problem for a point set 
in O (n) time. However none of the algorithms in [1,8,13] can handle the line segments.

The standard and discrete versions of the two-center problem for a convex polygon P was first solved by Kim and 
Shin [17] in O (n log3 n log log n) and O (n log2 n) time respectively. Becker [5] et al. has shown an O (n3) time heuristic 
algorithm for covering n axis-parallel rectangles by two axis-parallel rectangles of minimum total area. Recently, He et 
al. [27] has studied a special case of discrete version of hitting problem where the objective is to hit a set of n axis-parallel 
line segments with one (in one-center) and two (in two-center) minimum axis-parallel squares along with the constraint 
that the center(s) of square(s) must be on some input line segment. The one-center case can be solved in O (n) time while 
the two-center case takes O (n2 log n) time.

As an extension of the k-center problem for points, the problem of enclosing other geometric objects are also studied in 
the literature. If the object of interest is a convex polygon with n vertices, in O (n) time it can be enclosed by a minimum 
area triangle [21] and by a minimum area parallelogram [23] of arbitrary orientation. Bhattacharya and Mukhopadhyay [4]
showed that minimizing the perimeter of the triangle enclosing a convex polygon can also be done in linear time. The 
algorithm for computing a convex k-gon of minimum area that covers a convex n-gon can be computed in O (n2 log k log n)

time [2]. Mitchell and Polishchuk [20] studied the perimeter minimization version of the problem, and proposed polynomial 
time algorithm. Alt et al. [3] studied an interesting version of packing problem, where a set P of convex polygons are given, 
and the objective is to find a rectangular suitcase S of minimum area such that each member of P can be accommodated 
in S with a suitable rotation and translation. They proposed an O (n(2α(n)α(k) log k + α(n) log n)) time algorithm for the 
problem, where k is the number of polygons to be packed, and n is the total number of vertices in those polygons. If the 
objective is to find a convex polygonal suitcase of minimum area, then the problem is NP-hard, and a PTAS is proposed in 
that paper. In [25], Schwartzkopf et al. studied an interesting variation of boundary covering problem of a convex polygon 
C using the annulus of a pair of homothetic rectangles R and r. Here the objective is to reduce the width of the annulus, 
or in other words the ratio λ of the side-lengths of R and r. In [25], it was shown that the lower bound of λ is 2. They also 
proposed a O (log2 n) time algorithm for computing R and r with λ = 2, where the number of vertices in C is n.

Our Work: We propose in-place algorithms for covering and hitting n line segments in R2 by two axis-parallel congruent 
squares of minimum size. We also study the restricted version of the covering problem where each object needs to be com-
pletely covered by at least one of the reported squares. We assume that the input segments are given in a read-only array.

• The proposed algorithms for the covering problem, the hitting problem and the restricted covering problem, report the 
optimum result by executing only two passes of reading the input array sequentially using O (1) work-space.

• The same algorithms work for covering/hitting a polygon, or a set of polygons by two axis-parallel congruent squares of 
minimum size.

• We show that the result of this algorithm can produce a solution for the problem of covering/hitting these line segments 
by two congruent disks of minimum radius with an approximation factor 

√
2.
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1.1. Notations and terminologies

Throughout this paper, unless otherwise stated a square is used to imply an axis-parallel square. We will use the follow-
ing notations and definition.

Symbols used Meaning

pq and |pq| The line segment joining two points p and q, and its length
x(p) (resp. y(p)) x- (resp. y-) coordinate of the point p
|x(p) − x(q)| Horizontal distance between a pair of points p and q
|y(p) − y(q)| Vertical distance between a pair of points p and q
s ∈ pq The point s lies on the line segment pq�ef gh An axis-parallel rectangle with vertices at e, f , g and h
size (S) Size of square S; it is the length of its one side
p ∈ S The point p lies on the area covered by the square S
L S(S), R S(S) Left-side of square S and right-side of square S
T S(S), B S(S) Top-side of square S and bottom-side of square S

Definition 1. A square is said to be anchored with a vertex of a rectangle R = �ef gh, if one of the corners of the square 
coincides with that vertex of R.

2. Covering line segments by two congruent squares

LCOVER problem: Given a set L = {�1, �2, . . . , �n} of n line segments (possibly intersecting) in R2, the objective is to 
compute two congruent squares S1 and S2 of minimum size whose union covers all the members in L.

In the first pass, a linear scan is performed among the objects in L, and four points “a”, “b”, “c” and “d” are identified 
with minimum x-, maximum y-, maximum x- and minimum y-coordinate respectively among the end-points of the mem-
bers in L. This defines an axis-parallel rectangle R = �ef gh of minimum size that covers L, where a ∈ he, b ∈ ef , c ∈ f g
and d ∈ gh. We use L = |x(c) − x(a)| and W = |y(b) − y(d)| as the length and width respectively of the rectangle R, and we 
assume that L ≥ W . We assume that S1 lies to the left of S2. The squares S1 and S2 may or may not overlap (see Fig. 1). 
We use σ = size(S1) = size(S2).

Lemma 1. (a) There exists an optimal solution of the problem where the left side of S1 (L S(S1)) and the right side of S2 (R S(S2)) pass 
through the points “a” and “c” respectively.

(b) The top side (T S) of at least one of S1 and S2 pass through the point “b”, and the bottom side (B S) of at least one of S1 and S2
pass through the point “d”.

Proof. Since S1 and S2 cover L optimally, we have a ∈ S1 and c ∈ S2. If a /∈ L S(S1), then the square S1 can be translated 
horizontally towards right so that L S(S1) passes through “a”. Similarly, if c /∈ R S(S2), then the square S2 can be translated 
horizontally towards left so that R S(S2) passes through “c”. Observe that, any point α ∈ L which was inside S1 (resp. S2) 

Fig. 1. Squares S1 and S2 are (a) overlapping, (b) disjoint.
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Fig. 2. (a) Configuration 1 and (b) Configuration 2 of squares S1 and S2.

before the translations, remains inside S1 (resp. S2) after the translations also. To prove the next part, we need to consider 
the following possibilities:

(i) d ∈ S1 and b ∈ S2: Here S1 is moved vertically up, and S2 is moved vertically down so that “d” lies on B S(S1) and “b” 
lies on T S(S2). As argued above, here also any point α ∈L which was inside S1 (resp. S2) before the translations, 
remains inside S1 (resp. S2) after the translations also.

(ii) d ∈S2 and b ∈S1: Here S2 is moved vertically up, and S1 is moved vertically down so that “b” lies on T S(S1) and “d” 
lies on B S(S2).

(iii) Both b,d ∈ S1: In this case, for the optimality of the size of S1, b ∈ T S(S1) and d ∈ B S(S1). As the size of S2 is same 
as that of S1, we can align B S(S2) with B S(S1) and T S(S2) with T S(S1).

(iv) Both b,d ∈S2: This case is similar to case (iii).

Thus, the lemma follows. �
Thus in an optimal solution of the LCOVER problem, a ∈ L S(S1) and c ∈ R S(S2). We need to consider two possible 

configurations of an optimum solution (i) b ∈ T S(S2) and d ∈ B S(S1), and (ii) b ∈ T S(S1) and d ∈ B S(S2). These are named 
as Configuration 1 and Configuration 2 respectively (see Fig. 2). The following observation is a consequence of Lemma 1.

Observation 1. (a) If the optimal solution of LCOVER problem satisfies Configuration 1, then the bottom-left corner of S1
will be anchored at the point h, and the top-right corner of S2 will be anchored at the point f .

(b) If the optimal solution of LCOVER problem satisfies Configuration 2, then the top-left corner of S1 will be anchored 
at the point e, and the bottom-right corner of S2 will be anchored at the point g .

We consider each of the configurations separately, and compute the two axis-parallel congruent squares S1 and S2 of 
minimum size whose union covers the given set of line segments L. If σ1 and σ2 are the sizes obtained for Configuration 1
and Configuration 2 respectively, then we report min(σ1, σ2).

Consider the rectangle R = �ef gh covering L, and take six points k1, k2, k3, k4, v1 and v2 on the boundary of R
satisfying |k1 f | = |ek3| = |hk4| = |k2 g| = W and |ev1| = |hv2| = L

2 (see Fig. 3). Throughout the paper we assume h as the 
origin in the co-ordinate system, i.e. h = (0, 0). The distance between a pair of points “a” and “b” in L∞ norm is given by 
d∞(a, b) = max(|x(a) − x(b)|, |y(a) − y(b)|).

The Voronoi partitioning line λ1 of the corners f and h of R = �ef gh with respect to the L∞ norm is the polyline 
k1z1z2k4, where the coordinates of its defining points are k1 = (L − W , W ), z1 = (L/2, L/2), z2 = (L/2, W − L/2) and 
k4 = (W , 0) (see Fig. 3(a)). Similarly, the Voronoi partitioning line λ2 of the corners e and g of R = �ef gh in L∞ norm 
is the polyline k3z1z2k2 where k3 = (W , W ) and k2 = (L − W , 0) (see Fig. 3(b)). Note that, if W ≤ L

2 , then the Voronoi 
partitioning lines λ1 for the point pair ( f , h), and λ2 for the point pair (e, g) will be the same, i.e., λ1 = λ2 = v1 v2, where 
v1 = ( L

2 , 0) and v2 = ( L
2 , W ). The property of “Voronoi diagram” suggests the following observations.

Observation 2. (a) For Configuration 1, all the points p inside the polygonal region ek1z1z2k4h satisfy d∞(p, h) < d∞(p, f ), 
and all points p inside the polygonal region k1 f gk4z2z1 satisfy d∞(p, f ) < d∞(p, h) (see Fig. 3(a)).

(b) Similarly for Configuration 2, all points p inside polygonal region ek3z1z2k2h, satisfy d∞(p, e) < d∞(p, g), and all 
points p that lie inside the polygonal region k3 f gk2z2z1, satisfy d∞(p, g) < d∞(p, e) (see Fig. 3(b)).
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Fig. 3. Voronoi partitioning line (a) λ1 = k1 z1 z2k4 of f and h in Configuration 1 (b) λ2 = k3 z1 z2k2 of e and g in Configuration 2.

Fig. 4. The points “b” and “d” lie on the same side of λ2 (a) W > L
2 (b) W ≤ L

2 .

Observation 3. If S1 and S2 intersect, then the points of intersection i1 and i2 will always lie on Voronoi partitioning line 
λ1 = k1z1z2k4 (resp. λ2 = k3z1z2k2) depending on whether S1 and S2 satisfy Configuration 1 or Configuration 2.

Our algorithm consists of two passes. In each pass we sequentially read each element of the input array L exactly once. 
We consider W > L

2 only. The other case, i.e. W ≤ L
2 , can be handled in the similar way.

Pass-1: We compute the rectangle R = �ef gh, and the Voronoi partitioning lines λ1 and λ2 (see Fig. 3) for handling Con-
figuration 1 and Configuration 2. We now discuss Pass 2 for Configuration 1. The same method works for Configuration 2. 
For both the configurations, the execution run simultaneously keeping O (1) working storage.

Pass-2: λ1 splits R into two disjoint parts, namely R1 = region ek1z1z2k4h and R2 = region f k1z1z2k4 g . We initialize 
σ1 = 0, and read the elements in the input array L in sequential manner. For each element �i = [pi, qi], we identify its 
portion lying in one/both of R1 and R2. Now, considering Observations 1 and 2, we execute the following:

�i lies inside R1: Compute δ = max(d∞(pi, h), d∞(qi, h)).
�i lies inside R2: Compute δ = max(d∞(pi, f ), d∞(qi, f )).
�i is intersected by λ1: Let θ be the point of intersection of �i and λ1, pi ∈ R1 and qi ∈ R2. Here, we compute δ =

max(d∞(pi, h), d∞(θ, h), d∞(qi, f )).

If δ > σ1, we update σ1 with δ. Similarly, σ2 is also computed in this pass considering the pair (e, g) and their partitioning 
line λ2. Finally, min(σ1, σ2) is returned as the optimal size along with the centers of the squares S1 and S2.

Special Case: The points “b” and “d” lie on the same side of the Voronoi partitioning line in a configuration.
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Fig. 5. Two axis-parallel congruent squares S1 and S2 hit line segments in L.

Without loss of generality, we assume that the points “b” and “d” lie on the right side of λ2 (see Fig. 4), i.e. S1
and S2 satisfy Configuration 2. Here S2 must cover both the points “b” and “d”; hence the size of S2 must be at 
least W .

Fact 1. The size of two congruent axis-parallel squares to cover an axis-parallel rectangle R of length L and width 
W (W < L) will be max(W , L

2 ).

Here, we have two possibilities:
(i) W > L

2 : Refer to Fig. 4(a). In this case, the size of S2 will be exactly W , and W will be the optimal size of 
both the squares S1 and S2 for this instance of Configuration 2 since max(W , L

2 ) = W (see Fact 1). It needs 
to be noted that “b” and “d” may lie at the different side with respect to the other Voronoi partitioning line 
λ1, and in such a case, the size of S1 and S2 (that satisfy Configuration 1) are to be computed following the 
aforesaid algorithm of LCOVER problem and max(size(S1), size(S2)) (of Configuration 1) will be reported as 
the size of the congruent squares if this size is less than W .

(ii) W ≤ L
2 : Refer to Fig. 4(b). In this case, λ1 = λ2 and the size of S2 will be at least W . So we anchor the squares 

S1 and S2 either at (e, g) or at (h, f ) of the rectangle R. We follow the algorithm of LCOVER problem and 
determine the optimal size of the congruent squares.

Thus, we have the following result:

Theorem 1. Given a set of line segments L in R2 in an array, one can compute two axis-parallel congruent squares of minimum size 
whose union covers L by reading the input array only twice in sequential manner, and maintaining O (1) extra work-space.

Proof. The correctness of the algorithm follows from the facts that (i) we have only two configurations of the optimum 
solution (see Observation 1), (ii) in Configuration 1, for every point θ in the left-partition (resp. right-partition) d∞(θ, h) <

(resp. >) d∞(θ, f ) (similar observation holds in Configuration 2), and (iii) we are covering portions of the members in L in 
the left (resp. right) partition of λ1 by S1 (resp. S2).

The time complexity follows from the fact that we scan the input array only twice in sequential manner, for each input 
element, we computed θ for both Configuration 1 and Configuration 2 in O (1) time, and update σ1 and σ2 if needed. 
Finally we report min(σ1, σ2).

The extra space required for storing the variables e, f , g , h, λ1, λ2, σ1, σ2, δ is O (1). �
3. Hitting line segments by two congruent squares

Definition 2. A geometric object Q is said to be hit by a square S if at least one point of Q lies inside (or on the boundary 
of) S .

Line segment hitting (LHIT) problem: Given a set L = {�1, �2, . . . , �n} of n line segments in R2, compute two axis-parallel 
congruent squares S1 and S2 of minimum size whose union hits all the line segments in L.

The squares S1 and S2 may or may not be disjoint (see Fig. 5). Without loss of generality, we assume that S1 lies to the 
left of S2. We now describe the algorithm for this LHIT problem.

For each line segment �i , we use L P (�i), R P (�i), T P (�i) and B P (�i) to denote its left end-point, right end-point, top 
end-point and bottom end-point using the relations x(L P (�i)) ≤ x(R P (�i)) and y(B P (�i)) ≤ y(T P (�i)). Now we compute 



S. Sadhu et al. / Theoretical Computer Science 769 (2019) 63–74 69
Fig. 6. D1 for y(L P (�a)) ≥ y(R P (�a)) and x(T P (�d)) < x(B P (�d)).

four line segments �a, �b, �c, and �d ∈ L such that one of their end-points “a”, “b”, “c” and “d”, respectively satisfy the 
following

a = min∀�i∈L
x(R P (�i)), b = max∀�i∈L

y(B P (�i))

c = max∀�i∈L
x(L P (�i)), d = min∀�i∈L

y(T P (�i))

We denote the other end point of �a , �b , �c and �d by “a′”, “b′”, “c′” and “d′”, respectively. The four points “a”, “b”, “c” 
and “d” define an axis-parallel rectangle R = �ef gh of minimum size that hits all the members of L (as per Definition 2), 
where a ∈ he, b ∈ ef , c ∈ f g and d ∈ gh (see Fig. 5). We use L = |x(c) − x(a)| and W = |y(b) − y(d)| as the length and width 
of the rectangle R, and assume L ≥ W .

Lemma 2. (a) The left side of S1 (resp. right side of S2) must not lie to the right of (resp. left of) the point “a” (resp. “c”), and (b) the 
top side (resp. bottom side) of both S1 and S2 cannot lie below (resp. above) the point “b” (resp. “d”).

Proof. If the left side of square S1 (where S1 lies to the left of S2) lies to the right of “a”, then the line segment �a is not 
covered by any of the squares. Similarly, if the right side of square S2 lies to the left of “c”, then the line segment �c is not 
covered by any of the squares. Similarly, if the top side (resp. bottom side) of both S1 and S2 lie below (resp. above) the 
point “b” (resp. “d”), then the line segment �b (resp. �d) is not covered by any of the squares. �

For the LHIT problem, we say S1 and S2 are in Configuration 1, if S1 hits both �a and �d , and S2 hits both �b and �c . 
Similarly, S1 and S2 are said to be in Configuration 2, if S1 hits both �a and �b , and S2 hits both �c and �d . Without loss 
of generality, we assume that S1 and S2 are in Configuration 1.

Definition 3. A square S “touches” a line segment � (outside S) if either (i) a corner of the S lies on the � or (ii) an end 
point of � lies on the boundary of S .

We compute polyline D1 (resp. D2) which is the locus of the “top-right” corner (resp. the “bottom-left” corner) of 
a square S that touches both “�a” and “�d” (resp. “�b” and “�c”). We will term D1 and D2 as the “reference lines” for
Configuration 1. Hence, the top-right corner of S1 (resp. bottom-left corner of S2) will lie on the “reference line” D1 (resp. 
D2).

Let T1 (resp. T2) be the line passing through h (resp. f ) with slope 1.
Our algorithm consists of the following steps:

1 Compute of the reference lines D1 and D2.
2 For each line segment �i ∈L, compute the size of the minimum square S1 (resp. S2) required to hit �i , �a and �d (resp. 

�i , �b and �c), where the top-right (resp. bottom-left) corner of S1 (resp. S2) lies on D1 (resp. D2).
3 Determine the pair (S1, S2) that hit all the line segments in L and max(size(S1), size(S2)) is minimized.

Computation of D1 and D2: The reference line D1 is computed based on the following four possible orientations of �a and 
�d

(i) y(L P (�a)) ≥ y(R P (�a)) and x(T P (�d)) < x(B P (�d)): Here D1 is the segment pq on T1 where p is determined (i) by its 
x-coordinate i.e. x(p) = x(d), if |ha| < |hd| (see Fig. 6(a)), (ii) by its y-coordinate i.e. y(p) = y(a), if |ha| ≥ |hd| (see 
Fig. 6(b)). The point q on T1 satisfy x(q) = x( f ).
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Fig. 7. D1 for y(L P (�a)) ≥ y(R P (�a)) and x(T P (�d)) ≥ x(B P (�d)).

Fig. 8. D1 for y(L P (�a)) < y(R P (�a)) and x(T P (�d)) > x(B P (�d)).

(ii) y(L P (�a)) ≥ y(R P (�a)) and x(T P (�d)) ≥ x(B P (�d)): Here,
if |ha| < |hd| (see Fig. 7(a)), then the reference line D1 is a polyline pqr, where (i) y(p) = y(a) and x(p) satisfies 
|x(p) − x(a)| = vertical distance of p from the line segment �d , (ii) the point q lies on T1 satisfying x(q) = x(d)

and (iii) the point r lies on T1 satisfying x(r) = x( f ).
If |ha| ≥ |hd| (see Fig. 7(b)), then the reference line D1 is a line segment pq, where p, q lies on T1, and p satisfies 
y(p) = y(a) and q satisfies x(q) = x( f ).

(iii) y(L P (�a)) < y(R P (�a)) and x(T P (�d)) ≤ x(B P (�d)): This case is similar to case (ii), and we can compute the respec-
tive reference lines.

(iv) y(L P (�a)) < y(R P (�a)) and x(T P (�d)) > x(B P (�d)): There are two possible subcases:
(A) If �a and �d are parallel or intersect (after extension) at a point to the right of he (Fig. 8(a, b)), then the 

reference line D1 is a polyline pqr, where (a) if |ha| < |hd| (Fig. 8(a)), then (1) y(p) = y(a) and |x(p) − x(a)| =
the vertical distance of p from �d , (2) the points q and r lie on T1 satisfying x(q) = x(d) and x(r) = x( f ), (b) 
if |ha| > |hd| (Fig. 8(b)), then (1) x(p) = x(d) and |y(p) − y(d)| = the horizontal distance of p from �a , (2) the 
points q and r lie on T1 satisfying y(q) = y(a) and x(r) = x( f ).

(B) If extended �a and �d intersect at a point to the left of he (Fig. 8(c, d)), then D1 is a polyline pqrs, where
(i) the line segment pq is such that for every point θ ∈ pq, the horizontal distance of θ from �a and the 
vertical distance of θ from �d are same.
(ii) the line segment qr is such that for every point θ ∈ qr, we have
if |ha| < |hd| then |x(θ) − x(a)| = vertical distance of θ from �d (Fig. 8(c)), else |y(θ) − x(d)| = horizontal 
distance of θ from �a , (Fig. 8(d))
(iii) the point s lies on T1 satisfying x(s) = x( f ).

In the same way, we can compute the reference line D2 based on the four possible orientations of �b and �c . The break 
points/end points of D2 will be referred to as p′ , q′ , r′ , s′ depending on the appropriate cases. From now onwards, we refer 
the position of the square S1 (resp. S2) by mentioning the position of its top-right corner (resp. bottom-left corner).

Definition 4. The distance d∞(p, �) (in L∞ norm) of a point p from a line segment � is defined by the L∞ distance of p to 
its closest point lying on the line �.

Lemma 3. The point p ∈ D1 (resp. p′ ∈ D2) gives the position of minimum sized axis-parallel square S1 (resp. S2) that hit �a and �d
(resp. �b and �c ).
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Fig. 9. Event points for LHIT problem under Configuration 1.

Proof. From the principle of construction of the D1 (resp. D2), it follows that among all points z lying on D1 (resp. D2), 
max(d∞(z, �a), d∞(z, �d)) (resp. max(d∞(z, �b), d∞(z, �c))) is minimized when z = p ∈D1 (resp. z = p′ ∈D2). �
Computation of minimum sized squares S1 and S2 to hit a line segment �i : Let LV (resp. LH ) denotes the vertical (resp. 
horizontal) half-line below (resp. to the left of) the point p ∈ D1. Similarly, L′

V (resp. L′
H ) denotes the vertical (resp. hori-

zontal) half-line above (resp. to the right of) the point p′ ∈ D2. Observe that, if a line segment �i ∈L intersects with any of 
LH or LV , or if �i lie completely below LH and to the left of LV , then it (�i) will be hit by any square that hits both �a and 
�d . Similarly, if a line segment �i intersects with any of L′

H or L′
V ; or if �i lies completely above L′

H and to the right of L′
V , 

then it (�i) will be hit by any square that hits both �b and �c . Thus, such line segments will not contribute any event point 
on D1 (resp. D2).
Computation of event points on the reference lines D1 and D2: For each of the line segments �i ∈ L, we create two event 
points e1

i ∈ D1 and e2
i ∈D2, as follows:

(i) If �i lies completely above D1 (resp. D2), then we compute the event point e1
i = (xi1 , yi1 ) on D1 (resp. e2

i = (xi2 , yi2 )

on D2) satisfying yi1 = y(B P (�i)) (resp. xi2 = x(R P (�i))). (see the points e1
1 for �1 and e2

4 for �4 in Fig. 9).
(ii) If �i lies completely below D1 (resp. D2), we compute the event point e1

i = (xi1 , yi1 ) on D1 (resp. e2
i = (xi2 , yi2 ) on D2) 

satisfying xi1 = x(L P (�i)) (resp. yi2 = y(T P (�i))). (see e1
3 for �3 and e2

6 for �6 in Fig. 9).
(iii) If �i intersects with D1 (resp. D2) at point p1 (resp. q1), then we create the event point e1

i on D1 (resp. e2
i on D2) 

according to the following rule:
(a) If the x(B P (�i)) > x(p1) (resp. x(T P (�i)) < x(q1)), then we take p1 (resp. q1) as the event point ei

1 (resp. ei
2) (see 

e1
4 for �4 in Fig. 9).

(b) If x(B P (�i)) < x(p1) then if B P (�i) lies below D1 then we consider the point of intersection by D1 with the vertical 
line passing through the B P (�i) as the point e1

i (see e1
2 for �2 in Fig. 9), and

if B P (�i) lies above D1 then we consider the point of intersection D1 with the horizontal line passing through 
B P (�i) as the event point e1

i (see e1
5 for �5 in Fig. 9).

(c) If x(T P (�i)) > x(q1) then if T P (�i) lies above D2 then we consider the point of intersection by D2 with the vertical 
line passing through T P (�i) as the event point e2

i , and if T P (�i) lies below D2 then we consider the point of 
intersection D2 with the horizontal line passing through T P (�i) as the event point e2

i .

Lemma 4. (i) An event e1
i on D1 shows the position of the top-right corner of the minimum sized square S1 that hits �a, �d and �i , and 

an event e2
i on D2 shows the position of the bottom-left corner of the minimum sized square S2 that hits �b, �c and �i .

(ii) The square S1 whose top-right corner is at e1
i on D1 hits all those line segments � j whose corresponding event points e1

j on D1

satisfies x(h) ≤ x(e1
j ) ≤ x(e1

i ). Similarly, the square S2 whose bottom-left corner is at ei
2 on D2 hits all those line segments � j whose 

corresponding event point e2
j on D2 satisfies x(e1

i ) ≤ x(e1
j ) ≤ x( f ).

Proof. Follows from the method of generating the event points on the “reference line”. �
Thus for each line segment �i ∈ L, we have two parameters σi1 and σi2 , where σi1 (resp. σi2 ) denotes the size of the 

minimum square required to hit �i , �a and �d (resp. �i , �b and �c ). It is to be noted that p and p′ are also the event points 
on D1 and D2, respectively (see Lemma 3). We now compute two minimum sized squares S1 and S2 to hit all the line 
segments in L as follows:

Let σmin1 (resp. σmin2 ) denote the size of the minimum square S1 (resp. S2) required to hit the line segments �a and 
�d (resp. �b and �c). Initially we compute these σmin1 and σmin2 which are determined by the position of the point p and 
p′ lying on D1 and D2, respectively. Then for each line segment �i ∈ L, we compute σi1 and σi2 , and compare between 
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Fig. 10. The end-points “b” and “d” lie on the same side of λ2 (a) W > L
2 (b) W ≤ L

2 .

them. Our objective is to reduce the size of the larger square; hence if σi1 ≤ σi2 , then we choose the square S1 to hit �i , 
otherwise we choose square S2. If σi1 ≤ σi2 , then we compare σi1 with σmin1 . If σi1 > σmin1 , then we update σmin1 as σi1 , 
otherwise σmin1 remains same. On the other hand, if σi1 > σi2 , we compare σi2 with σmin2 , and update σmin2 as σi2 only 
if σmin2 is less than σi2 . After all the line segments have been processed sequentially, the max(σmin1 , σmin2 ) will give the 
minimum size of the congruent squares S1 and S2 to hit all the line segments of L in Configuration 1. It is to be noted 
that while processing the line segments in L sequentially, for each line segment �i ∈L, we need to generate the two event 
points (e1

i , e
2
i ), compute (σi1 , σi2 ), and use it to update (σmin1 , σmin2 ), and use the same locations for processing the next 

line segment � j ∈L. Hence, the aforesaid steps can be executed in linear time using O (1) space.
Similarly, in the same pass, we can determine the optimal size of the congruent squares S1 and S2 in Configuration 2. 

For Configuration 2, we use separate locations to store the corresponding reference lines, the event points (e1
i , e

2
i ) and the 

aforesaid variables (σi1 , σi2 ) which needs O (1) space. Hence, we can compute optimal size of the congruent squares for 
both the Configuration 1 and Configuration 2 during the same pass by processing each line segments in L sequentially in 
the aforesaid way.

Finally we consider that configuration for which the size of the congruent squares is minimized. This entire process takes 
linear amount of time.

Special Case: The end-points “b” and “d” lie on the same side of the Voronoi partitioning line in a configuration.
The two Voronoi partitioning lines for the pair of vertices (e, g) and ( f , h) of the rectangle R = �ef gh are λ1

and λ2, respectively (see Fig. 3).
Without loss of generality, we assume that end-points “b” and “d” of the line segments �b and �d , respectively 

lie on the right side of λ2 (see Fig. 10), i.e. S1 and S2 satisfy Configuration 2. The square S2 must cover both 
these end-points “b” and “d”, and hence the size of the S2 must be at least W . Now there are two possibilities:
(i) W > L

2 : Refer to Fig. 10(a). In this case, the size of S2 will be exactly W and this W will be the optimal size 
of both the squares S1 and S2 under this Configuration 2 since max(W , L

2 ) = W (see Fact 1 in Section 2). It 
needs to be noted that “b” and “d” may lie at the different side with respect to the other Voronoi partitioning 
line λ1, and if such is the case, then the size of S1 and S2 (that satisfy Configuration 1) are to be computed 
following the aforesaid algorithm for LHIT problem and report max(size(S1), size(S2)) (of Configuration 1) as 
the size of the congruent squares if this size is less than W .

(ii) W ≤ L
2 : Refer to Fig. 10(b). In this case, λ1 = λ2 and the size of S2 will be at least W . So we anchor the 

squares S1 and S2 either at (e, g) or at (h, f ) of the rectangle R. In this case, the reference lines D1 and D2
will be two parallel rays of slope 1 originating from the corresponding two anchored vertices and we follow 
the algorithm for LHIT problem and determine the optimal size of the congruent squares in linear time.

Theorem 2. The LHIT problem can be solved optimally by reading the input array only two times in sequential manner using O (1)

extra work-space.

Proof. Our algorithm for LHIT problem needs two sequential passes over the input line segments. In the first pass, we 
compute the four line segments �a , �b , �c and �d which are required to determine the rectangle R = �ef gh and the two 
reference lines D1, D2. In the second pass, we compute the optimal size of the congruent squares by reading the input 
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Fig. 11. Covering L by two disks D1 & D2.

array for both type of configurations. Finally, we report that configuration for which the size of the congruent squares is 
minimized. �
4. Restricted version of LCOVER problem

In the restricted version of the LCOVER problem, each line segment in L is to be covered completely by at least one of 
the two congruent axis-parallel squares S1 and S2. We compute the axis-parallel rectangle R = �ef gh passing through the 
four points “a”, “b”, “c” and “d” as in our algorithm for LCOVER problem. As in the LCOVER problem, here also we have two 
possible configurations for optimal solution. Without loss of generality, we assume that S1 and S2 satisfy Configuration 1. 
We consider two reference lines D1 and D2, each with unit slope that passes through h and f , respectively. These reference 
lines D1 and D2 are the locus of the top-right corner of S1 and bottom-left corner of S2, respectively. For each line segment 
�i , we create an event point e1

i = (xi1 , yi1 ) on D1 (resp. e2
i = (xi2 , yi2 ) on D2) as follows:

(i) If �i lies completely above D1 (resp. D2), then the event point e1
i on D1 (resp. e2

i on D2) will satisfy yi1 = y(T P (�i))

(resp. xi2 = x(L P (�i))).
(ii) If �i lies completely below D1 (resp. D2) then the event point e1

i on D1 (resp. e2
i on D2) will satisfy xi1 = x(R P (�i))

(resp. yi2 = y(B P (�i))).
(iii) If �i intersects with D1 then we create the event point e1

i on D1 as follows:
Let the horizontal line through T P (�i) intersect with D1 at point p, and the vertical line through B P (�i) intersect with 
D1 at point q. If x(p) > x(q), then we take p (else q) as the event point on D1.

(iv) If �i intersects with D2, then we create the event point e2
i on D2 as follows:

Let the vertical line through B P (�i) intersect with D2 at point p, and the horizontal line through T P (�i) intersect with 
D2 at point q. If x(p) > x(q), then we take q (else p) as the event point on D2.

Theorem 3. The restricted version of LCOVER problem can be solved optimally by reading the input array only two times in sequential 
manner using O (1) extra work-space.

Proof. Observation similar to Lemma 4 for the LHIT problem also holds for this problem where S1 and S2 cover L with 
the restriction mentioned in the problem. Thus, here we can follow the same technique as in LHIT problem to prove the 
said result. �
5. Covering/hitting line segments by two congruent disks

In this section, we consider problems related to LCOVER, LHIT and restricted LCOVER problem, called two-center problem, 
where the objective is to cover, hit or restricted-cover the given line segments in L by two congruent disks so that their 
(common) radius is minimized. Fig. 11 demonstrates a covering instance of this two-center problem. Here, the algorithm is: 
first, we compute two axis-parallel squares S1 and S2 whose union covers/hits all the members of L optimally as described 
in the previous section. Then, we report the circum-circles D1 and D2 of S1 and S2 respectively as an approximate solution 
of the two-center problem.

Lemma 5. A lower bound for the optimal radius r∗ of two-center problem for L is the radius r′ of in-circle of the two congruent squares 
S1 and S2 of minimum size that cover/hit/restricted-cover L; i.e. r′ ≤ r∗ .

Proof. We suppose that r∗ < r′ , D1 and D2 (of radius r′) be the in-circles of S1 and S2. Let D3 and D4 (of radius r∗) 
be the optimum solution for the two-center problem, and S3 and S4 be the minimum size squares covering D3 and D4
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respectively. Thus, S3 and S4 is also a solution for covering L by two axis-parallel congruent squares. Since r∗ < r′ , the 
size of S3 (S4) is less than the size of S1 (S2). This leads to the contradiction that (S1, S2) is the optimum solution to 
cover/hit/restricted-cover L. �
Theorem 4. Algorithm stated in Section 5, generates a 

√
2 approximation result for LCOVER, LHIT and restricted LCOVER problems 

for the line segments in L.

Proof. The radius r of the circum-circle D1 and D2 of the squares S1 and S2 is 
√

2 times of the radius r′ of their in-circles. 
Lemma 5 says that r′ ≤ r∗ . Thus, we have r = √

2r′ ≤ √
2r∗ . �

6. Conclusion

In this paper, we have computed two axis-parallel congruent squares of minimum size that cover or hit a set of line 
segments L in R2, by reading the input array only two times in a sequential manner using O (1) extra work-space. We have 
also considered a restricted version of the covering problem, where each line segment in L is to be covered completely 
by at least one of the two congruent axis-parallel squares, and to solve it optimally, we have shown a two-pass algorithm 
for it. Our algorithm gives a 

√
2 approximation result to cover or hit the given line segments by two congruent disks of 

minimum size. It remains a challenge to design an exact algorithm to cover (resp. hit) a given set of line segments L by 
two congruent disks of minimum size.
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