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We study the parameterized complexity of the dominating set problem in geometric 
intersection graphs.

• In one dimension, we investigate intersection graphs induced by translates of a fixed 
pattern Q that consists of a finite number of intervals and a finite number of isolated 
points. We prove that Dominating Set on such intersection graphs is polynomially 
solvable whenever Q contains at least one interval, and whenever Q contains no 
intervals and for any two point pairs in Q the distance ratio is rational. The remaining 
case where Q contains no intervals but does contain an irrational distance ratio is 
shown to be NP-complete and contained in FPT (when parameterized by the solution 
size).

• In two and higher dimensions, we prove that Dominating Set is contained in W[1] for 
intersection graphs of semi-algebraic sets with constant description complexity. So far 
this was only known for unit squares. Finally, we establish W[1]-hardness for a large 
class of intersection graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A dominating set in a graph G = (V , E) is a subset D ⊆ V of vertices such that every node in V is either contained in D
or has some neighbor in D . The decision version of the dominating set problem (Dominating Set) asks for a given graph 
G and a given integer k, whether G admits a dominating set of size at most k. Dominating Set is a popular and classic 
problem in algorithmic graph theory. It has been studied extensively for various graph classes; we only mention that it is 
polynomially solvable on interval graphs, strongly chordal graphs, permutation graphs and co-comparability graphs and that 
it is NP-complete on bipartite graphs, comparability graphs, and split graphs. We refer the reader to the book [11] by Hales, 
Hedetniemi and Slater for an extensive overview of results on Dominating Set.

Dominating Set is also a model problem in parameterized complexity, as it is one of the few natural problems known to 
be W[2]-complete (with the solution size k as natural parameterization); see [6]. In the parameterized setting, Dominating 
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Set on a concrete graph class typically is either in P, FPT, W[1]-complete, or W[2]-complete. (Note that the problem cannot 
be on higher levels of the W-hierarchy, as it is W[2]-complete on general graphs.)

In this paper we study Dominating Set on geometric intersection graphs: Every vertex in V corresponds to a geometric 
object in Rd , and there is an edge between two vertices if and only if the corresponding objects intersect. Well-known 
graph classes that fit into this model are interval graphs and unit disk graphs. In R1, Chang [4] has given a polyno-
mial time algorithm for Dominating Set in interval graphs and Fellows, Hermelin, Rosamond and Vialette [8] have proven 
W[1]-completeness for 2-interval graphs (where the geometric objects are pairs of intervals). In R2, Marx [13] has shown 
that Dominating Set is W[1]-hard for unit disk graphs as well as for unit square graphs. For unit square graphs the problem 
is furthermore known to be contained in W[1] [13], whereas for unit disk graphs this was previously not known. (There are 
also some results about the approximability of Dominating Set on certain types of intersection graphs [7], but in this paper 
we focus on the complexity of computing exact solutions.)

Our contribution. We investigate the Dominating Set problem on intersection graphs of 1- and 2-dimensional objects, 
thereby shedding more light on the borderlines between P and FPT and W[1] and W[2].

For 1-dimensional intersection graphs, we consider the following setting. There is a fixed pattern Q , which consists of 
a finite number of points and a finite number of closed intervals (specified by their endpoints). The objects corresponding 
to the vertices in the intersection graph simply are a finite number of translates of this fixed pattern Q . More formally, for 
a real number x we define Q (x) := x + Q to be the pattern Q translated by x, and for the input {x1, . . . , xn}, we consider 
the intersection graph defined by the objects {x1 + Q , . . . , xn + Q }. The class of unit interval graphs arises by choosing 
Q = [0, 1]. Our model of computation is the word RAM model, where real numbers are restricted to a field K which is a 
finite extension of the rationals.

Remark 1 (Machine representation of numbers). As finite extensions of Q are finite dimensional vector spaces over Q, there 
exists a basis b1, . . . , bk with k = [K :Q], so that any real x ∈ K is representable in the form x = q1b1 + q2b2 + · · · + qkbk for 
some q1, . . . , qk ∈ Q. As k is fixed, any arithmetic operation that takes O (1) steps on the rationals will also take O (1) steps 
on elements of K .

We define the distance ratio of two point pairs (x1, x2), (x3, x4) ∈ R × R as |x1−x2|
|x3−x4| . We derive the following complexity 

classification for Q -Intersection Dominating Set.

Theorem 2. Q -Intersection Dominating Set has the following complexity:

(i) It is in P if the pattern Q contains at least one interval.
(ii) It is in P if the pattern Q does not contain any intervals, and if for any two point pairs in Q the distance ratio is rational.

(iii) It is NP-complete and in FPT if pattern Q is a (finite) point set which has at least one irrational distance ratio.

In Lemma 8 we show that any graph can be obtained as a 1-dimensional pattern intersection graph for a suitable choice 
of pattern Q . Consequently Q -Intersection Dominating Set is W[2]-complete if the pattern Q is part of the input.

For 2-dimensional intersection graphs, our results are inspired by a question that was not resolved in [13]: “Is Dominat-

ing Set on unit disk graphs contained in W[1]?” We answer this question affirmatively (and thereby fully settle the complexity 
status of this problem). Our result is in fact far more general: We show that Dominating Set is contained in W[1] when-
ever the geometric objects in the intersection graph come from a family of semi-algebraic sets that can be described by a 
constant number of parameters. (The result also holds in higher dimensions.) We also show that this restriction to shapes 
of constant-complexity is crucial, as Dominating Set is W[2]-hard on intersection graphs of convex polygons with a polyno-
mial number of vertices. On the negative side, we generalize the W[1]-hardness result of Marx [13] by showing that for any 
non-trivial simple polygonal pattern Q , the corresponding version of Dominating Set is W[1]-hard.

2. 1-dimensional patterns

In this section, we study the Q -Intersection Dominating Set problem in R1. If Q contains an unbounded interval, then 
all translates are intersecting; the intersection graph is a clique and the minimum dominating set is a single vertex. In what 
follows, we assume that all intervals in Q are bounded. We define the span of Q to be the distance between its leftmost 
and rightmost point. We prove Theorem 2 by studying each claim separately.

Lemma 3. Q -Intersection Dominating Set can be solved in O (n9w+3) time if Q contains at least one interval, where w is the ratio 
of the span of Q and the length of the longest interval in Q .

Note that since Q is a fixed pattern, the value of w does not depend on the input size and so Lemma 3 implies 
Theorem 2(i). We translate Q so that its leftmost endpoint lies at the origin, and we rescale Q so that its longest interval 



20 M. de Berg et al. / Theoretical Computer Science 769 (2019) 18–31
Fig. 1. Patterns in a window [y − w, y + 2w]. Intervals of U are red. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

has length 1. Consider an intersection graph G of a set of translates of Q . The vertices of G are Q (xi) for the given values xi . 
We call xi the left endpoint of Q i . Let + also denote the Minkowski sum of sets: A + B = {a + b | a ∈ A, b ∈ B}. If A or B is 
a singleton, then we omit the braces, i.e., we let a + B denote {a} + B . In order to prove Lemma 3, we need the following 
lemma first.

Lemma 4. Let D ⊆ V (G) be a minimum dominating set and let X(D) be the set of left endpoints corresponding to the patterns in D. 
Then for all y ∈R it holds that |X(D) ∩ [y, y + w]| � 3w.

Proof. We prove this lemma first for unit interval graphs (where Q consists of a single interval). The following observation 
is easy to prove.

Observation. In any unit interval graph there is a minimum dominating set whose intervals do not overlap.

Notice that the lemma immediately follows from this claim in case of unit interval graphs since then |X(D) ∩[y, y +1]| �
1 < 3 = 3w . Let Q be any other pattern, and suppose that |X(D) ∩ [y, y + w]| � 3w + 1. The patterns starting in [y, y + w]
can only dominate patterns with a left endpoint in [y − w, y + 2w], a window of width 3w . Let H be the set of patterns 
starting in [y − w, y + 2w] (see Fig. 1). Let I be a unit interval of Q , and let U the set of unit intervals that are the 
translates of I in the patterns of H . Notice that X(U ) is a point set that is also in a window of length 3w . By the claim 
above, we know that the interval graph G(U ) defined by U has a dominating set that contains non-overlapping intervals, in 
particular, a dominating set DU of size at most 3w . Since G(U ) corresponds to a spanning subgraph of G(H), the patterns 
D H

U corresponding to DU in H form a dominating set of G(H). Let H ′ denote the set of patterns starting in [y, y + w]. It 
follows that (D \ H ′) ∪ D H

U is a dominating set of our original graph that is smaller than D , which contradicts the minimality 
of D . �

We can now move on to the proof of Lemma 3.

Proof. We give a dynamic programming algorithm. We translate our input so that the left endpoint of the leftmost pattern 
is 0. Moreover, we can assume that the graph induced by our pattern is connected, since we can apply the algorithm to 
each connected component separately. The connectivity implies that the left endpoint of the rightmost pattern is at most 
(n − 1)w . Let 0 < k � n be an integer and let G(k) be the intersection graph induced by the patterns with left endpoints 
in [0, kw]. Let I(k) be the set of input patterns with left endpoints in [(k − 1)w, kw), and for a set D of patterns, let 
Dk = D ∩ I(k). We define the value of a subproblem A(k, S) as the size of the smallest subset D ⊆ V (G(k)) that dominates 
V (G(k − 1)) and for which Dk−1 ∪ Dk = S . By Lemma 4, it suffices to consider sets S with |S| � 6w . Set A(0, ∅) = 0 and 
A(1, S) = |S| for all S ⊆ I(1) with |S| � 6w . We claim that the following recursion holds for A(k, S):

A(k, S) = min
{

A(k − 1, S ′ ∪ Sk−1) + |Sk|
∣∣∣ S ′ ⊂ I(k − 2), |S ′| � 3w, S ′ ∪ S dominates I(k − 1)

}
.

Let T be a set realizing A(k − 1; S ′ ∪ Sk−1). Then T ∪ Sk is a feasible subset, which proves “�”. For the other direction 
(“�”), Lemma 4 implies that there is an optimum set D ⊂ V (G(k)), with |D| = A(k, S) that dominates V (G(k − 1)) (with 
D ∩ (I(k) ∪ I(k − 1)) = S) containing at most 3w patterns from each of I(k − 2), I(k − 1), and I(k). Note that D \ Sk
is a dominating set for V (G(k − 2)), since all patterns with left endpoint less than (k − 2)w can only be neighbors of 
patterns with left endpoint less than (k − 1)w . Similarly, patterns in I(k − 1) can only be dominated by Dk−2 ∪ S . Therefore, 
|D \ Sk| � A(k − 1, Dk−2 ∪ Sk−1), so |D| � A(k − 1, Dk−2 ∪ Sk−1) + |Sk|. By choosing S ′ = Dk−2, we see that the minimum on 
the right hand side is less or equal to |D| = A(k, S), which concludes the proof of the claim.

The table of values A(k, S) is computed from k = 2 up to k = �, where � � n + 1 is the largest integer such that [
(� − 1)w, �w

)
contains a left endpoint of a pattern (i.e., I(�) is non-empty), and the size of the optimal dominating 

set can be found by taking the minimum of all A(�, S) for which S dominates I(�). The number of subproblems for a 
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fixed value of k is 
∑6w

j=0

(n
j

)
� (n + 1)6w = O (n6w); thus the number of subproblems is O (n6w+1). Computing the value of a 

subproblem requires looking at O (n3w) potential subsets S ′ , and O (n2) time is sufficient to check whether S ∪ S ′ dominates 
I(k). Overall, the running time of our algorithm is O (n9w+3). �
Lemma 5. If Q is a point pattern so that the distance ratios of any two point pairs of Q are rational, then Q -Intersection Dominating 
Set can be solved in polynomial time.

Proof. By shifting and rescaling, we may assume without loss of generality that the leftmost point in Q is in the origin 
and that the x-coordinates of all points in Q are integers. (Note that this could not be done if the pattern contained an 
irrational distance ratio.) We define a new pattern Q ′ that results from Q by replacing point 0 by the interval [0, 1/3].

Now consider an intersection graph whose vertices are associated with xi + Q where x1 ≤ x2 ≤ · · · ≤ xn . We assume 
without loss of generality that the graph is connected and that all xi are integers. It can be seen that the intersection graph 
does not change, if every object xi + Q is replaced by the object xi + Q ′ . Since pattern Q ′ contains the interval [0, 1/3], we 
may simply apply Lemma 3 to compute the optimal dominating set in polynomial time. �
Lemma 6. If Q is a point pattern that contains two point pairs with an irrational distance ratio, then Q -Intersection Dominating 
Set is NP-complete.

Proof. The containment in NP is trivial; we show the hardness by reducing from Dominating Set on induced triangular 
grid graphs. (These are finite induced subgraphs of the triangular grid, which is the graph with vertex set V = Z2 and edge 
set E = {(

(a, b), (a + α, b + β)
) : |α| � 1, |β| � 1, α �= β

}
.) The NP-hardness of Dominating Set in induced triangular grid 

graphs is proven in Section 3. Note that Dominating Set is known to be NP-hard on induced grid graphs, but this does not 
imply the hardness on triangular grids, because induced triangular grid graphs are not a superclass of induced grid graphs.

We show that the infinite triangular grid can be realized as a Q -intersection graph, where the Q -translates are in a 
bijection with the vertices of the triangular grid. Therefore, any induced triangular grid graph is realized as the intersection 
graph of the Q -translates corresponding to its vertices.

Rescale Q so that it has span 1. It cannot happen that all the points are rational, because it would make all distance 
ratios rational as well. Let x∗ ∈ Q be the smallest irrational point. Let a ∈ Z, and consider the intersection of the translate 
ax∗ + Q with the set Z + Q . We claim that this intersection is non-empty only for a finite number of values a ∈ Z. Suppose 
the opposite. Since Q is a finite pattern, there must be a pair z, z′ ∈ Q such that ax∗ + z = b + z′ has infinitely many 
solutions (a, b) ∈ Z2. In particular, there are two solutions (a1, b1) and (a2, b2) such that a1 �= a2 and b1 �= b2. Subtracting 
the two equations we get (a1 − a2)x∗ = b1 − b2, which implies x∗ = b1−b2

a1−a2
. This is a contradiction since x is irrational.

Let y∗ = a′x∗ , where a′ is the largest value a for which ax∗ + Q intersects Z + Q . It follows that 
{

j ∈ Z 
∣∣ ( jy∗ + Q ) ∩

(Z + Q ) �= ∅} = {−1, 0, 1
}

.
Consider the intersection graph induced by the sets 

{
jy∗ + k + Q

∣∣ ( j, k) ∈ Z2
}

. The above shows that a fixed translate 
jy∗ + k + Q is not intersected by the translates ( j + α)y∗ + (k + β) + Q if |α| ≥ 2. It is easy to see that |β| ≥ 2 does not 
lead to an intersection either. Also note that α = β = ±1 does not give an intersection; however all the remaining cases are 
intersecting, i.e., if

(α,β) ∈ {
(−1,0), (−1,1), (0,−1), (0,0), (0,1), (1,−1), (1,0)

}

then ( j + α)y∗ + (k + β) + Q intersects jy∗ + k + Q . Thus, the intersection graph induced by 
{

jy∗ + k + Q
∣∣ ( j, k) ∈ Z2

}
is 

a triangular grid. �
Lemma 7. If Q is a point pattern that has point pairs with an irrational distance ratio, then Q -Intersection Dominating Set has an 
FPT algorithm parameterized by solution size.

Proof. In polynomial time, we can remove all duplicate translates, since a minimum dominating set contains at most one 
of these objects, and any minimum dominating set of the resulting graph is a dominating set of the original graph. Suppose 
our pattern consists of t points. In the duplicate-free graph, point i of the pattern translate may intersect point j of another 
translate, for some i �= j, so the maximum degree is t2 − t . Therefore we are looking for a dominating set in a graph of 
bounded degree. Hence, a straightforward branching approach gives an FPT algorithm: choose any undominated vertex v; 
either v or one of its at most t2 − t neighbors is in the dominating set, so we can branch t2 − t + 1 ways. If all vertices are 
dominated after choosing k vertices, then we have found a solution. This branching algorithm has depth k, with linear time 
required at each branching, so the total running time is O

(
t2k(|V | + |E|)). �

In the following lemma we show that any graph can be obtained as a 1-dimensional pattern intersection graph for a 
suitable choice of pattern Q . Thus Q -Intersection Dominating Set is W[2]-complete if the pattern Q is part of the input.
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Fig. 2. Increasing angular resolution in the neighborhood of a vertex.

Lemma 8. Let G be a graph with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}. Then there exists a finite pattern Q ⊆ R

and there exist real numbers x1, . . . , xn so that {vi, v j} ∈ E if and only if (xi + Q ) ∩ (x j ∩ Q ) �= ∅.

Proof. Define q = 2(n + m). For every edge ek , we let a(k) and b(k) with a(k) < b(k) denote the indices of its incident 
vertices. For k = 1, . . . , m, the pattern Q contains the two integers

4q+k − 4a(k) and 4q+k − 4b(k).

Furthermore define xi = 4i for i = 1, . . . , n.
First suppose ek = {vi, v j} ∈ E with i = a(k) and j = b(k). Then xi + Q and x j + Q both contain the number 4q+k , so 

that indeed (xi + Q ) ∩ (x j + Q ) �= ∅. Next suppose (xi + Q ) ∩ (x j + Q ) �= ∅. This means that there exist edges ek and e� and 
c ∈ {a(k), b(k)} and d ∈ {a(�), b(�)} so that

4i + (4q+k − 4c) = 4 j + (4q+� − 4d).

Since the exponents q + k and q + � are much larger than the other exponents in this equation, they must coincide with 
k = �. Without loss of generality, this leads to c = a(k) and d = b(k). The equation boils down to 4i −4a(k) = 4 j −4b(k) , which 
implies i = a(k) and j = b(k). Hence vertices vi and v j are indeed connected by an edge ek . �
Remark 9. In our handling of the problem, the pattern was part of the problem definition. Making the pattern part of the 
input leads to an NP-complete problem: Lemma 6 can be adapted to this scenario. If we also allow the size of the pattern 
to depend on the input, then the problem is W[2] complete (when parameterized by solution size) by Lemma 8.

We propose the following problem for further study, where the pattern depends on the input, but has fixed size.

Open question Let Q be the pattern defined by two unit intervals on a line at distance �. Is there an FPT algorithm 
(either with parameter k or k + �) on intersection graphs defined by translates of Q , that can decide if such a graph has 
a dominating set of size k? It can be shown that this problem is NP-complete, and Theorem 14 below shows that it is 
contained in W[1].

3. Dominating Set in the triangular grid

Theorem 10. Dominating Set is NP-hard on (induced) triangular grid graphs.

We do a reduction from Planar 3-SAT. Consider a formula of n variables and m clauses, and let G be the graph associated 
with the formula: the vertices are the clauses and the variables, and an edge connects a variable and a clause if the clause 
contains the variable.

For each variable x, we introduce a cycle of length m + 1, where we put the outgoing edges from x consecutively on 
neighboring vertices of the cycle in the same cyclic order as defined by a fixed planar drawing of the planar graph G . We 
obtain a new planar graph G ′ this way, which has maximum degree 3. We now consider a triangular grid drawing of G ′ , 
where the original vertices of G ′ are assigned to grid points, and the edges are replaced with grid paths. There is such a 
drawing onto a grid of polynomial size, and it can be computed in polynomial time [12].

The edges are either edges of a variable cycle, or they are on a path from a variable cycle to a clause, which we will call 
literal paths.

We scale up this drawing by a factor of five and do some local modifications (that we describe below) in order to make 
this an induced triangular grid graph. At each vertex or bend where there are edges used whose angle is π

3 , we modify the 
surrounding area as seen in Fig. 2. It is easy to see that one can reroute the paths around a vertex or around a bend in a 
larger hexagon in all the other cases.

Next, we introduce another scaling by a factor of 6 so that each grid edge becomes at least six consecutive edges in 
the same direction. This way we get a graph which is still an induced subgraph of the triangular grid (due to the angular 
resolution being 2π

3 ), and the path between any pair of original vertices is represented by a path whose length is a multiple 
of six.
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Fig. 3. Adding an ear to a variable cycle. The black edges are edges of the variable cycle, the red edges are on the literal paths.

Fig. 4. Adding a detour to the path of a positive literal.

Fig. 5. Modifying the cycle connection of a negative literal. The black edges are edges of the variable cycle, the red edges are on the literal paths.

We make some extra modifications to the resulting graph. On each variable cycle, we number the vertices consecutively 
in such a way that the paths starting from the cycle get a number that is divisible by six (note that the two scalings make 
this possible). For a cycle C of length 6k, these vertices are denoted by C0, C6, . . . , C6(k−1) . We add an ear (a path of length 
two) that connects C3 and C4; see Fig. 3. It is easy to check that this can be done by adding a small triangle, and preserving 
the induced triangular grid graph property.

We introduce a small detour of length 1 on a literal path if the corresponding literal is positive. The detour is made as 
depicted in Fig. 4 to preserve the induced property. Finally, if a path corresponds to a negative literal, we introduce another 
modification at its connection with the variable cycle, which makes the path one longer, and connects to the cycle at a 
point whose number is congruent to one modulo three. See Fig. 5 for an example. Notice that the cycle length remains 
unchanged, and the induced property is preserved.

Notice that at this point, all literal paths have length of the form 3k + 1 for some integer k. We also number each literal 
path P consecutively, starting from the vertex P0 which is shared with the variable cycle, to the last vertex P3k+1, which 
is the vertex representing the clause. The resulting (induced) triangle grid graph is denoted by H . Notice that H can be 
constructed in polynomial time from a given planar 3-CNF formula.

Given a satisfying assignment, we can define a dominating set of size |E(H)|−3m
3 . This can be done by selecting vertices 

of the form C3� on cycles of true variables and C3�+1 on cycles of false variables. On the path of true literals, vertices of the 
form P3� are selected, and on the paths of false literals, vertices of the form P3�+2 are selected. It is routine to check that 
this is a dominating set; we note that the clause vertices are dominated by the last inner point of the path of their true 
literal(s).
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Lemma 11. A dominating set of H has at least |E(H)|
3 − m points; more specifically, a dominating set covers at least k points of

• the vertices of a variable cycle of length 3k;
• the inner vertices of a variable path of length 3k + 1.

Proof. We consider a cycle first. Notice that vertices of the form 3� + 2 have only neighbors inside the cycle; the neigh-
borhoods of these vertices are disjoint, therefore each of these neighborhoods along with the vertex itself must contain a 
distinct dominating point. Since the number of such vertices is k, every dominating set contains at least k dominating points 
from the cycle.

A similar argument applies on variable paths. The points of the form 3� + 2 (� = 0 . . .k − 1) only have neighbors that 
are inner vertices of the path, and the neighborhoods are disjoint, which means that there must be at least one dominating 
point in each of these k neighborhoods. �
Proof of Theorem 10. We have seen that H can be constructed in polynomial time, it is sufficient to prove that H has a 
dominating set of size |E(H)|

3 − m if and only if the original 3-CNF formula is satisfiable. We have already demonstrated that 
there is a dominating set of this size if the formula is satisfiable.

Let D be a dominating set of size |E(H)|
3 − m in H . By Lemma 11, the number of points of D in a literal path of length 

3k + 1 is exactly k, one point from each neighborhood of the points 3� + 2 (� = 0 . . .k − 1). Notice that the clause vertex 
can not be in D . Suppose that vertex P1 is in D . It follows that in the neighborhood of vertex P5, P4 must be the one 
in D , otherwise P3 would be uncovered. Continuing this pattern along the path we see that the vertices P3�+1 from each 
neighborhood will be in D — but that leaves P3k uncovered. Thus, P1 cannot be in D .

Now take a variable cycle of length 3k. The number of dominating points on the cycle is exactly k, one point in each 
neighborhood around the points 3� + 2. Notice that the ear means that one of these points is congruent to 0 or 1 modulo 
three (since the ear vertex has to be dominated by C3 or C4). We also know that P1 on a connecting literal path Q is not 
in D , so we can use a similar strategy as on the paths to verify that all the points of D in C are in fact congruent modulo 
three. We assign the variable TRUE if these points are congruent to 0, and FALSE if they are congruent to 1.

Now looking at any clause vertex, it must be dominated by the last inner vertex P3k of at least one literal path; going 
back along the path it follows the points of the form P3� are in D , thus P0 ∈ D . Since this point is on the variable cycle, it 
means that in case of a positive literal the variable is true, and in case of a negative literal the variable is false. Therefore 
the formula is satisfied by our assignment. �
4. Higher dimensional shapes: W[1] vs. W[2]

In this section we show that Dominating Set on intersection graphs of 2-dimensional objects is contained in W[1] if 
the shapes have a constant size description. First, we demonstrate the method on unit disk graphs, and later we state a 
much more general version where the shapes are semi-algebraic sets. In order to show containment, it is sufficient to give 
a non-deterministic algorithm that has an FPT time deterministic preprocessing, then a nondeterministic phase where the 
number of steps is only dependent on the parameter. More precisely, we use the following theorem.

Theorem 12 ([9]). A parameterized problem is in W[1] if and only if it can be computed by a nondeterministic RAM program accepting 
the input that

1. performs at most f (k)p(n) deterministic steps;
2. uses at most f (k)p(n) registers;
3. contains numbers smaller than f (k)p(n) in any register at any time;
4. for any run on any input, the nondeterministic steps are among the last g(k) steps.

Here n is the size of the input, k is the parameter, p is a polynomial and f , g are computable functions. The non-deterministic instruction 
is defined as guessing a natural number between 0 and the value stored in the first register, and storing it in the first register. Acceptance 
of an input is defined as having a computation path that accepts.

Theorem 13. Dominating Set on unit disk graphs is contained in W[1].

Proof. Let P be the set of centers of the unit disks that form the input instance. For a subset D ⊆ P , let C2(D) and D2(D)

be the set of circles and disks of radius 2, respectively, centered at the points of D . (Note that D is a dominating set if and 
only if 

⋃
D2(D), the union of the disks in D2(D), covers all points in P .) Shoot a vertical ray up and down from each of 

the O (k2) intersection points between the circles of C2(D), and also from the leftmost and rightmost point of each circle. 
Each ray is continued until it hits a circle (or to infinity). The arrangement we get is a vertical decomposition [3] (see Fig. 6). 
Each face of this decomposition is defined by at most four circles. This is not only true for the 2-dimensional faces, but also 
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Fig. 6. Two faces of a vertical decomposition.

for the 1-dimensional faces (the edges of the arrangement) and 0-dimensional faces (the vertices). We consider the faces to 
be relatively open, so that they are pairwise disjoint.

In our preprocessing phase, we compute all potential faces of a vertical decomposition of any subset D ⊆ P by looking 
at all 4-tuples of circles from C2(P ). We create a lookup table that contains the number of input points covered by each 
potential face in O (n5) time.

Next, using nondeterminism we guess k integers, representing the points of our solution; let D be this point set. The rest 
of the algorithm deterministically checks if D is dominating. We need to compute the vertical decomposition of C2(D); this 
can be done in O (k2) time [3]. Finally, for each of the O (k2) resulting faces of 

⋃
D2(D), we can get the number of input 

points covered from the lookup table in constant time. We accept if these numbers sum to n. By Theorem 12 we can thus 
conclude that Dominating Set on unit disk graphs is in W[1]. �

In order to state the general version of this theorem, we introduce semi-algebraic sets. A semi-algebraic set is a subset 
of Rd obtained from a finite number of sets of the form {x ∈ Rd | g(x) � 0}, where g is a d-variate polynomial with integer 
coefficients, by Boolean operations (unions, intersections, and complementations). Let �d,�,s denote the family of all semi-
algebraic sets in Rd defined by at most s polynomial inequalities of degree at most � each. If d, �, s are all constants, we 
refer to the sets in �d,�,s as constant-complexity semi-algebraic sets.

Let F be a family of constant complexity semi-algebraic sets in Rd that can be specified using t parameters a1, . . . , at . 
If the expressions defining F are also polynomials in terms of the parameters, then we call F a t-parameterized family of 
semi-algebraic sets. For example, the family of all balls in R3 is a 4-parameterized family of semi-algebraic sets, since any ball 
can be specified using an inequality of the form (x1 −a1)

2 + (x2 −a2)
2 + (x3 −a3)

2 −a2
4 � 0. As another example, the family 

of all triangles in the plane is a 6-parameterized algebraic set, since any triangle is the intersection of three half-planes, and 
any half-plane can be specified using two parameters.

Theorem 14. Let F be a t-parameterized family of semi-algebraic sets, for some constant t. Then Dominating Set is in W[1] for 
intersection graphs defined by F .

The proof is very similar to the proof of the special case of unit disks. We give a proof sketch before introducing the 
machinery required for the full proof.

Proof sketch of Theorem 14. By definition, any set S ∈F can be specified using t parameters a1, . . . , at . Thus we can repre-
sent S by the point p(S) := (a1, . . . , at) in Rt . Conversely, for a point (a1, . . . , at) ∈Rt , let S(a1, . . . , at) be the corresponding 
semi-algebraic set. Now we define, for any set S ∈F , a region R(S) as follows:

R(S) := {(a1, . . . ,at) ∈Rt : S(a1, . . . ,at) ∩ S �= ∅}.
Thus for any two sets S1, S2 ∈F we have that S1 ∩ S2 �= ∅ if and only if p(S1) ∈ R(S2).

Now consider a set S ⊂ F of n sets from the family F . We proceed in a similar way as in the proof of Theorem 13, 
where the sets R(S) for S ∈ S play the same role as the radius-2 disks in that proof. Consider any subset D ⊆ S , and note 
that D is a dominating set if and only if 

⋃
S∈D R(S) contains the point set {p(S)|S ∈ S}.

Now we can decompose the arrangement defined by {R(S) : S ∈ D} into polynomially many cells using a so-called 
cylindrical decomposition [1]; note that such a decomposition is made possible by the fact that the regions R(S) are semi-
algebraic. (This decomposition plays the role of the vertical decomposition in the proof for unit disks.) Each cell of the 
cylindrical decomposition is defined by at most t′ regions R(S), for some t′ = O (1). Thus, for each subset of at most t′
regions R(S), we compute all cells that arise in the cylindrical decomposition of the subset. The number of possible cells is 
polynomial in n.
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In the preprocessing phase, we compute for each possible cell the number of points p(S) contained in it, and store the 
results in a lookup table. The next phase of the algorithm is the same as for unit disks: we guess a solution, compute the 
cells in the cylindrical decomposition of the corresponding arrangement, and check using the lookup table if the guessed 
solution is a dominating set. �
Definition 15 (First order formula). A first-order formula (of the language of ordered fields with parameters in R) is a formula 
that can be constructed according to the following rules:

1. If Q ∈R[X1, · · · , Xd], then Q � 0, where � ∈ {=, >, <}, is a formula.
2. If φ and ψ are formulas, then their conjunction φ ∧ ψ , their disjunction φ ∨ ψ , and the negation ¬φ are formulas.
3. If φ is a formula and x is a variable ranging over R, then (∃x)φ and (∀x)φ are formulas

A formula that can be obtained by using only the first two of the above steps is called quantifier-free. The realization of a 
formula � with t free variables is Reali(�) = {x ∈Rt | �(x) = true}. A semi-algebraic set is the realization of a quantifier-free 
first-order formula. Our definition of a semi-algebraic family is equivalent to saying that it is defined by a first order formula 
�(a, x) in the following sense: let �a(x) = �(a, x) for all a ∈ Rt . Then the sets in the family are S(a) = S(a1, . . . , at) =
Reali(�a(x)) (a ∈ Rt). Note that � must have constant complexity, i.e., the degree of the polynomials, the number of 
inequalities and the number of variables is a constant.

Proof of Theorem 14. Throughout this proof, h1, h2, . . . denote computable functions. Consider a quantifier-free first order 
formula �(a, x) that defines our t-parameterized family. The condition S(a) ∩ S(a′) �= ∅ is equivalent to


(a,a′) =
(
(∃x) : �(a, x) ∧ �(a′, x)

)
.

We can use quantifier elimination [2] on the formula 
(a, a′) to gain an equivalent quantifier-free formula �(a, a′), where 
the maximum degree � and the number of inequalities s are at most singly exponential in t . Let h1 be a singly exponential 
function for which h1(t) � max{2t, �, s}. For any a ∈Rt , let �a(a′) = �(a, a′).

Consider an intersection graph corresponding to a finite set of parameter values A ⊂ Rt . Let V be the vertex set of our 
intersection graph: V = {S(a) | a ∈ A}. Furthermore, let R be the function that assigns any S(a) ∈ V the shape R(S(a)) =
Reali(�a).

In the verification phase, we will guess a dominating vertex set D, and we are going to apply a cylindrical algebraic 
decomposition to the semi-algebraic sets R(D) = {R(S) | S ∈ D}. Each semi-algebraic set in R(D) can have at most h2(t)
connected components.

Every cell in the cylindrical decomposition can be defined by a tuple of connected components, and the tuple size 
depends only on the dimension and the degree of polynomials used for our semi-algebraic sets. In our case, the dimension 
is t and the degrees are at most h1(t), therefore the tuple size can be upper bounded by a function of t , let it be h3(t).

Our algorithm is as follows. In the preprocessing phase, we enumerate all possible cells in (nh2(t))h3(t) = poly(n) time, 
and in each cell in O (n) time we count the number of points covered from A, and save the information in a lookup table.

Next, we make the k guesses, that correspond to the vertex identifiers of the dominating set D. We create the cylindrical 
algebraic decomposition for R(S) {S ∈D}. For each cell covered by 

⋃
S∈D R(S), we sum the entries from the lookup table. 

We accept if the result is n. Note that the guesses, the decomposition and the lookup together take h4(k) time. �
W[1]-hardness for simple polygon translates. We generalize a proof by Marx [13] for the W[1]-hardness of Dominating Set

in unit square/unit disk graphs. Our result is based on the observation that many 2-dimensional shapes share the crucial 
properties of unit squares when it comes to the type of intersections needed for this specific construction. We prove the 
following theorem.

Theorem 16. Dominating Set is W[1]-hard for intersection graphs of the translates of a simple polygon in R2.

Our proof uses the same global strategy as Marx’s proof [13] for the W[1]-hardness of Dominating Set for intersection 
graphs of squares. (For completeness, we give an overview of the proof in Appendix A.) To apply this proof strategy, all we 
need to prove is that the family of shapes for which we want to prove W[1]-hardness has a certain property, as defined 
next.

We say that a shape S ⊆ R2 is square-like if there are two base vectors b1 and b2 and for any n there are two small offset 
vectors u1 = u1(n) and u2 = u2(n) with the following properties. Define S(i, j) := S + iu1 + ju2 for all −n2 � i, j � n2, and 
consider the set K := {S(i, j) : −n2 � i, j � n2}. Note that K consists of (2n2 + 1)2 translated copies of S whose reference 
points form a (2n2 + 1) × (2n2 + 1) grid. Also note that S = S(0, 0). For the shape S to be square-like, we require the 
following properties:
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• K is a clique in the intersection graph, i.e.,

for all − n2 � i, j � n2 we have: S ∩ S(i, j) �= ∅.

• “Horizontal” neighbors intersect only when close:

for all − n2 � j � n2 we have: S ∩ (b1 + S(i, j)) �= ∅ ⇐⇒ i � 0.

• “Vertical” neighbors intersect only when close:

for all − n2 � i � n2 we have: S ∩ (b2 + S(i, j)) �= ∅ ⇐⇒ j � 0.

• Distant copies of K are disjoint:

for all − n2 � i, j, i′, j′ � n2 we have: |k| + |�| � 2 ⇒ S(i, j) ∩ (kb1 + �b2 + S(i′, j′)) = ∅.

Moreover, we require that each of the vectors can be represented on O (logn) bits. It is helpful to visualize a square grid, 
generated by a pair of orthogonal unit vectors b1 and b2, where we place the centers of unit squares with small offsets 
compared to the grid points. We are requiring a very similar intersection structure here. See Fig. 10 for an example of a 
good choice of vectors.

Since the above properties are sufficient for the construction given by Marx [13], we only need to prove the following 
theorem.

Theorem 17. Every simple polygon is square-like.

We give a short overview of the proof technique. First, we would like to define a “horizontal” direction, i.e., a good vector 
b1. A natural choice would be to select a diameter of the polygon (see b0 in Fig. 8), however that would result in S and 
b1 + S intersecting each other at vertices. That would pose a severe restriction on the offset vectors; therefore, we use a 
perturbed version of a diameter, making sure that the intersection of S and b1 + S is realized by a polygon side from at 
least one party. The direction of this polygon side also defines a suitable direction of the offset vector u2: because of the 
second property, choosing u2 to be parallel to this direction ensures the independence with respect to the choice of j.

Next, we define the other base vector b2. This definition is based on laying out an infinite sequence of translates hori-
zontally next to each other (Fig. 9). We want a translate of this sequence to touch the original sequence in a “non-intrusive” 
way: small perturbations of b2 + S should only intersect S , but stay disjoint from b1 + S or −b1 + S . This is fairly easy 
to achieve; again with a small perturbation of our first candidate vector we can also ensure that the intersection between 
b2 + S and S is not a vertex-vertex intersection. Finally, a suitable direction for the offset vector u1 is given by the polygon 
side taking part in the intersection between b2 + S and S .

We now give the formal proof of Theorem 17.

Proof. Let P be a simple polygon, and let p and q be two endpoints of a diameter of P . Let b0 = q − p. Since P is a polygon, 
both p and q are vertices. Let sp and sq be unit vectors in the direction of the side of P that follows vertex p and q in the 
counter-clockwise order. Let ε > 0 be a small number to be specified later. Consider the intersection of P and the translate 
b0 +εsq + P . If ε is small enough, then depending on the angle of sp and sq , this intersection is either the point b0 +εsq , or 
part of the side with direction sq , or it is an intersection of positive area. Fig. 8 illustrates the third case. In the first case, let 
b1 = b0 + εsq; in the second and third case, let b1 = b0 − εsp . Furthermore, let s1 = b1 − b0. We will later use s1 to define 
the offset vector u2.

Imagine that b1 is the horizontal direction, and consider the set P∞ = {kb1 + P | k ∈ Z} (Fig. 9). Its top and bottom 
boundary are infinite periodic polylines, with period length |b1|. Take a pair of horizontal lines that touch the top and 
bottom boundary. By manipulating ε in the definition of b1, we can achieve a general position in the sense that both of 
these lines touch the respective boundaries exactly once in each period, moreover, there is a value μ, such that there are 
no vertices other than the touching points in the μ

2 -neighborhood of the touching lines. Let p′ and q′ be vertices touched 
by the bottom and top lines inside P , and let b′

0 = q′ − p′ . Similarly as before, the direction of the sides following p′ and 
q′ counter-clockwise are denoted by sp′ and sq′ . If the intersection of P and the translate b′

0 + εsq′ + P has zero area, then 
let b2 = b′

0 + εsq′ ; otherwise, (if the area of the intersection is positive), let b2 = b′
0 − εsp′ . We denote by s2 the difference 

b2 −b′
0. If s2 and s1 are parallel, then we can define s2 similarly, by replacing the sides sp′ and sq′ with the sides that follow 

p′ and q′ in clockwise direction. The new direction of s2 will not be parallel to the old one, therefore it will not be parallel 
to s1.

We need to choose the values of u1 and u2. Let u1 = ε
2n2 s2 and let u2 = ε

2n2 s1. We claim that if ε is small enough, then 
P is square-like for the vectors b1, b2, u1, u2. It is easy to check that for a small enough value of ε, the first condition is 
satisfied, namely that P ∩ P (i, j) �= ∅ for all − n2 � i, j � n2.

Next, we show that for i � 0, the intersection of P and b1 + P (i, j) is non-empty. Consider the small grid of points 
q − iu1 − ju2, −n2 � i, j � n2 (see Fig. 7). This grid fits into a parallelogram whose sides are parallel to s2 and s1. Notice 
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Fig. 7. A good choice of b1,b2 and offsets.

Fig. 8. Defining b1.

Fig. 9. Defining b2.

Fig. 10. Part of the grid kb1 + �b2 + P .

that if ε is small enough, then q − iu1 − ju2 for all −n2 � i < 0 and −n2 � j � n2 is contained in b1 + P , thus the intersection 
P ∩(b1 + iu1 + ju2 + P ) is non-empty if i � 0. Moreover, (if ε is small enough), then no other type of intersection can happen 
by moving b1 + P slightly: the only sides that can intersect b1 + P (i, j) from P are adjacent to q. Therefore, if q is outside 
b1 + P (i, j), then the intersection is empty — which is true for i > 0. A similar argument works for the intersection of P
and b2 + P (i, j).

Let R0 be a minimum area parallelogram containing P whose sides are parallel to b1 and b2 (see Fig. 10). Notice that the 
side lengths of this parallelogram are at most |b1| + ε and |b2| + ε respectively. Let P̄ = ⋃

K = ⋃
−n2�i, j�n2 P (i, j). Notice 

that P̄ is contained in the slightly larger rectangle R that we get by extending all sides of R0 by 2ε.
Now consider the rectangle translates kb1 + �b2 + R . Since ε is small enough, if either k or � is at least two then 

R ∩ (kb1 + �b2 + R) = ∅, so specifically, P̄ is disjoint from kb1 + �b2 + P̄ . It remains to show that P̄ is disjoint from 
kb1 + �b2 + P̄ if |k| = |�| = 1. Consider P̄ and b1 + b2 + P̄ for example. They could only intersect inside R ∩ (b1 + b2 + R); 
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however, if ε <
μ
4 , then this is contained in the μ wide horizontal strip defined earlier. By the definition of this strip, it also 

means that there is an intersection point q that is within distance O (ε) from both q′ and b1 + b2 + p′ . This would mean 
that |b1| = O (ε), and thus it can be avoided by choosing a small enough ε.

Finally, we note that all restrictions on the value of ε are dependent on the polygon P itself, thus the length of the short 
vectors u1 and u2 is �(n−2), and a precision of O (n−2) is sufficient for all the vectors, thus the vectors can be represented 
on O (log n) bits. �

We remark that it is fairly easy to further generalize the above theorem to other families of objects, we can allow objects 
with certain curved boundaries for example. A simple example of an object that is not square-like is a pair of perpendicular 
disjoint unit segments: for any choice of offset vectors, the set K does not form a clique (as required by the first property 
of square-like objects).

W[2]-hardness for convex polygons. We conclude with the following hardness result; the reduction uses a basic geometric 
idea that has been used for hardness proofs before [10,14]. Note the crucial difference between the setting in this theorem, 
where the polygons defining the intersection graph can be different and have description complexity dependent on n, versus 
the previous settings (where we had constant description complexity and some uniformity among the object descriptions).

Theorem 18. Dominating Set is W[2]-hard for intersection graphs of convex polygons.

Proof. A split graph is a graph that has a vertex set which can be partitioned into a clique C and an independent set I . It 
was shown by Raman and Saurabh [15] that Dominating Set is W[2]-hard on split graphs. Thus it is sufficient to show that 
any split graph can be represented as the intersection graph of convex polygons.

Let G = (C ∪ I, E) be an arbitrary split graph. Let Q ′ be a regular 2|I|-gon and let Q be the regular I-gon defined by 
every second vertex of Q ′ . Notice that Q ′ \ Q consists of small triangles, any subset of which together with Q forms a 
convex polygon.

The polygons corresponding to I are small equilateral triangles, placed in the interior of each small triangle of Q ′ \ Q . 
The polygon corresponding to a vertex v ∈ C whose neighborhood in I is NI (v) is the union of Q and the small triangles 
corresponding to the vertices of NI (v).

In this construction, the polygons corresponding to C all intersect (they all contain Q ), and the polygons corresponding 
to I are all disjoint. Finally, for any pair of vertices u ∈ C and v ∈ I the polygon of u contains the polygon of v if and only 
if uv ∈ E . �
5. Conclusion

We have classified the parameterized complexity of Dominating Set in intersection graphs defined by sets of various 
types in R1 and R2. More precisely, in R1, we gave a classification for the case when the intersection graph is defined 
by the translates of a fixed pattern that consists of points and intervals that is independent of the input. In R2, we have 
identified a fairly large class of W[1]-complete instances, namely, if our intersection graph is defined by a subset of a 
constant description complexity family of semi-algebraic sets. Even though our results hold for a large class of geometric 
intersection graphs, there are still some open problems. In particular, the complexity of Dominating Set on the following 
types of intersections graphs is unknown.

• translates of a 1-dimensional pattern that contains two unit intervals at some distance � (given by the input) (FPT vs. 
W[1]?)

• translates of a 2-dimensional pattern that contains two disjoint perpendicular unit intervals (FPT vs. W[1]?)
• n translates of a regular n-gon (W[1] vs. W[2]?)
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Appendix A. A generalization of a proof by Marx

In this section, we show that Dominating Set is W[1]-hard for intersection graphs of square-like objects. We give an 
overview of the proof by Marx [13], highlighting the main differences for square-like objects.

Marx uses a reduction from Grid Tiling [5] (although he does not explicitly state it this way). In a grid-tiling problem 
we are given an integer k, an integer n, and a collection S of k2 non-empty sets Ua,b ⊆ [n] × [n] for 1 � a, b � k. The goal is 
to select an element ua,b ∈ Ua,b for each 1 � a, b � k such that
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Fig. 11. (i) The construction by Marx for disks. (ii) Construction with translates of square-like shapes.

• If ua,b = (x, y) and ua+1,b = (x′, y′), then x = x′ .
• If ua,b = (x, y) and ua,b+1 = (x′, x′), then y = y′ .

One can picture these sets in a k × k matrix: in each cell (a, b), we need to select a representative from the set Ua,b so 
that the representatives selected from horizontally neighboring cells agree in the first coordinate, and representatives from 
vertically neighboring sets agree in the second coordinate.

Let Q be a square-like object, and b1, b2, u1, u2 the corresponding vectors. The original reduction places k2 gadgets, 
one for each Ua,b . A gadget contains 16 blocks of Q -translates, labeled X1, Y1, X2, Y2, . . . , X8, Y8, that are arranged along 
the edges of a square—see Fig. 11. For square-like objects, we place the reference points of the blocks in the grid kb1 +
�b2, k, � ∈ Z. Initially, each block X� contains n2 Q -translates, denoted by X�(1), . . . , X�(n2) and each block Y� contains 
n2 + 1 Q -translates denoted by Y�(0), . . . , Y�(n2). The argument j of X�( j) can be thought of as a pair (x, y) with 1 ≤
x, y � n for which f (x, y) := (x − 1)n + y = j. Let f −1( j) = (ι1( j), ι2( j)) = (1 + � j/n�,1 + ( j mod n)).

For the final construction, in each gadget at position (a, b), delete all Q -translates X�( j) for each � = 1, . . . , 8 and 
(ι1( j), ι2( j)) /∈ Ua,b . This deletion ensures that the gadgets represent the corresponding set Ua,b . The construction is such 
that a minimum dominating set uses only Q -translates in the X-blocks, and that for each gadget (a, b) the same Q -translate 
X�( j) is chosen for each 1 � � � 8. This choice signifies a specific choice ua,b = (x, y). To ensure that the choice for ua,b
in the same row and column agree on their first and second coordinate, respectively, there are special connector blocks 
between neighboring gadgets. The connector blocks are denoted by A, B, C and D in Fig. 11, and they each contain n + 1
Q -translates.

Defining the blocks. In every block, the place of each Q -translate is defined with regard to the reference point of the block, 
z. The reference point of each Q -translate is of the form z + αu1 + βu2 where α and β are integers. We say that the offset
of this Q -translate is (α, β). The offsets of X and Y -blocks are defined as follows.

offset(X1( j)) = ( j,−ι2( j)) offset(Y1( j)) = ( j + 0.5, j + 0.5)

offset(X2( j)) = ( j, ι2( j)) offset(Y2( j)) = ( j + 0.5,−n)

offset(X3( j)) = (−ι1( j),− j) offset(Y3( j)) = ( j + 0.5,− j − 0.5)

offset(X4( j)) = (ι1( j),− j) offset(Y4( j)) = (−n,− j − 0.5)

offset(X5( j)) = (− j, ι2( j)) offset(Y5( j)) = (− j − 0.5,− j − 0.5)

offset(X6( j)) = (− j,−ι2( j)) offset(Y6( j)) = (− j − 0.5,n)

offset(X7( j)) = (ι1( j), j) offset(Y7( j)) = (− j − 0.5, j + 0.5)

offset(X8( j)) = (−ι1( j), j) offset(Y8( j)) = (n, j + 0.5)

We remark some important properties. First, two Q -translates can intersect only if they are in the same or in neighboring 
blocks. Consequently, one needs at least eight Q -translates to dominate a gadget. The second important property is that 
Q -translate X�( j) dominates exactly Y�( j), . . . , Y�(n2) from the “previous” block Y� , and Y�+1(0), . . . , Y�+1( j − 1) from the 
“next” block Y�+1. This property can be used to prove the following key lemma.

Lemma 19 (Lemma 1 of [13]). Assume that a gadget is part of an instance such that none of the blocks Yi are intersected by 
Q -translates outside the gadget. If there is a dominating set � of the instance that contains exactly 8k2 Q -translates, then there 
is a canonical dominating set �′ with |�′| = |�|, such that for each gadget G , there is an integer 1 � jG � n such that �′ contains 
exactly the Q -translates X1( jG), . . . , X8( jG) from G .

In the gadget Ga,b , the value j defined in the above lemma represents the choice of sa,b = (ι1( j), ι2( j)) in the grid tiling 
problem. Our deletion of certain Q -translates in X-blocks ensures that (ι1( j), ι2( j)) ∈ Ua,b . Finally, in order to get a feasible 
grid tiling, gadgets in the same row must agree on the first coordinate, and gadgets in the same column must agree on 
the second coordinate. These blocks have n + 1 Q -translates each, with indices 0, 1, . . . , n. We define the offsets in the 
connector gadgets the following way.
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offset(A j) = (− j − 0.5,−n2 − 1) offset(B j) = ( j + 0.5,n2 + 1)

offset(C j) = (n2 + 1,−ι2( j)) offset(D j) = (−n2 − 1, ι2( j))

Using this definition, it is easy to prove the following lemma.

Lemma 20. Let � be a canonical dominating set. For “horizontally” neighboring gadgets G and H representing jG and jH , the 
Q -translates of the connector block A are dominated if and only if ι1( jG) ≤ ι1( jH ); the Q -translates of B are dominated if and 
only if ι1( jG) ≥ ι1( jH ). Similarly, for vertically neighboring blocks G ′ and H ′ , the Q -translates of block C are dominated if and only if 
ι2( jG ′ ) � ι2( jH ′ ); the Q -translates of D are dominated if and only if ι2( jG ′ ) ≥ ι2( jH ′ ).

With the above lemmas, the correctness of the reduction follows. A feasible grid tiling defines a dominating set of size 
8k2: in gadget Ga,b , the dominating Q -translates are X�

(
f (sa,b)

)
, � = 1, . . . , 8. On the other hand, if there is a dominating 

set of size 8k2, then there is a canonical dominating set of the same size that defines a feasible grid tiling.
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