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Preface

Spring school on Combinatorics has been a traditional meeting organized for over 35 years for
faculty and students participating in the Combinatorial Seminar at Faculty of Mathematics and
Physics of the Charles University. It is internationally known and regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been
the case for several years, this Spring School is supported by Computer Science Institute (IÚUK)
of Charles University, the Department of Applied Mathematics (KAM) and by some of our grants
(SVV, Progres). This year we are glad we can also acknowledge generous support by the RSJ
Foundation.
The Spring Schools are entirely organized and arranged by our students. The topics of talks are
selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science
Institute (IÚUK) of Charles University as well as from other participating institutions. In contrast,
the talks themselves are almost exclusively given by students, both undergraduate and graduate.
This leads to a unique atmosphere of the meeting which helps the students in further studies and
their scientific orientation.
This year the Spring School is organized in Deštné v Orlických horách (in Eagle Mountains in
northeastern Bohemia) with a great variety of possibilities for outdoor activities.

Tereza Klimošová, Ondřej Pangrác, Robert Šámal, Martin Tancer
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Series Talks

Matas Šileikis
matas@cs.cas.cz

Presented paper by J. Janson, T. Łuczak, A. Ruciński

Random regular graphs (chapter of a book Random graphs)
as part of series Topics about d-regular graphs

(https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032718)

Introduction
In the talk we will consider a r-regular graph chosen uniformly at random: how to generate it, how
to prove typical properties of it and how many r-regular graphs on n vertices there is. For fixed
r all this relies on understanding the distribution of short cycles in a certain random multigraph
known as the configuration model.

Definitions
Let 1 ≤ r = r(n) < n such that rn = 2m is even and denote Gn,r be a set of all r-regular graphs on
vertex set [n] = {1, 2, . . . , n} . A graph chosen uniformly at random from Gn,r is denoted by Gn,r

and called a random r-regular graph.
A configuration F is a partition of the set W = [n] × [r] into m = nr/2 pairs of vertices, called
edges of F and Φ denotes the set of configurations.
Given a configuration F ∈ Φ, let ϕ(F ) be the multigraph with vertex set V in which (i, j) ∈ E
if and only if F has a pair with one element in Wi and the other in Wj. We write Xk(F ) for the
number of k-tuple of edges in F such that ϕ(F ) forms a k-cycle. So X1(F ) is the number of edges
that correspond to a loop in ϕ(F ) and X2(F ) is the number of pairs of edges corresponding to a
multiple edge in ϕ(F ). Then we have

ϕ−1(Gn,r) = {F ∈ Φ : X1(F ) = X2(F ) = 0}.

Given a sequence of events En, we say that En holds asymptotically almost surely (a.a.s.) if the
probability P (En)→ 1 for n→∞.
A random variable Z has Poisson distribution with parameter λ ≥ 0 if P (Z = k) = λk

k!eλ .

Main result
Theorem 1 (Theorem 9.5 in [1]) For k = 1, 2, . . . , let Xk be the number of k-cycles in a ran-
domly chosen configuration. Then Xk converges to Poisson distribution with parameter λk =
1
2k (r − 1)k, jointly for all k.
In the talk I will define/remind what it means to converge in distribution (jointly).
We will see that the following is a corollary of Theorem 1.
Proposition 2 If r ≥ 2 is fixed and Q∗ holds a.a.s. for a random configuration, then Q holds a.a.s.
for the random r-regular graph.

Bibliography
[1] Janson, Svante, Tomasz Luczak, and Andrzej Rucinski. Random graphs. John Wiley & Sons, 2011.
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Aneta Šťastná
aneta.stastna@email.cz

Presented paper by Bollobás, Béla

Almost every d-regular graph is d-connected (with room to spare)
as part of series Topics about d-regular graphs

(https://doi.org/10.1017/CBO9780511814068)

Introduction
When speaking about connectivity of r-regular graphs, the best we can hope for them is to be
r-connected. The truth is even better: for almost every r-regular graph holds that if there exists a
small set separating it, then at least one of the components is rather small. We will create a cut-set
of vertices using neighbourhood of small connected subraph of G. For example, a triangle is present
with probability greater than 0 for n→∞, and so it can be used as the small connected subgraph.

Definitions
Let 1 ≤ r = r(n) < n and rn = 2m and denote Gn,r be the set of all r-regular graphs on n vertices.
A graph chosen uniformly at random from Gn,r is denoted by Gn,r and called a random r-regular
graph. We define

Γ(A) = {y | xy ∈ E(G) for some x ∈ A}
Given a sequence of (probability) events En, we say that En holds asymptotically almost surely
(a.a.s.) if the probability P (En)→ 1 for n→∞.
Denote C (n,m) the set of connected graphs G = (V,E) such that |V | = n and |E| = m.

Main theorem
The following theorem implies, in particular, that a.a.s. Gn,r is r-connected.
Theorem 1 (Theorem 7.32 from [1]) For r ≥ 3 and a0 ≥ 3, asymptotically almost surely Gn,r

is such that if V = A ∪ S ∪B, a = |A| ≤ |B|, s = |S| and there is no A−B edge, then
s ≥ r, if a = 1, (1)
s ≥ 2r − 3, if a = 2, (2)
s ≥ (r − 2)a, if 3 ≤ a ≤ a0 (3)

and s ≥ (r − 2)a0, if a ≥ a0. (4)

Some helpful propositions
Theorem 2 (Theorem 5.20 from [1]) There is an absolute constant c such that for 1 ≤ k ≤ n

|C (n, n+ k)| ≤
(
c

k

)n
2
nn+ (3k−1)

2

Bibliography
[1] Béla Bollobás. Random Graphs. Cambridge University Press, Cambridge, United Kingdom, 2001.
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Karel Král
kralka@iuuk.mff.cuni.cz

Introduction as part of series Quantum computing

Definitions
Definition 1 Unitary matrix: A ∈ Cn×n is unitary iff A−1 = A∗ (transpose and take complex
conjugates). Equivalent definition if for each v ∈ Cn we have ‖Av‖ = ‖v‖.
Definition 2 Tensor product let A ∈ Cm×n, B ∈ Cm′×n′ then A⊕B ∈ Cmm′×nn′ is the matrix

A1,1B A1,2B . . . A1,nB
A2,1B A2,2B . . . A2,nB
. . .

An,1B An,2B . . . An,nB


Thus for instance ( 1√

2
1√
2

1√
2 −

1√
2

)
⊕
(

0 1
−1 0

)
=


0 1√

2 0 1√
2

− 1√
2 0 − 1√

2 0
0 1√

2 0 − 1√
2

− 1√
2 0 1√

2 0


Elementary Gates

Definition 3 Quantum bits:

• Pure state of n qubits is |x〉 where x ∈ {0, 1}n. Pure states form an orthonormal basis of Cn.

• State of a single qubit is |ψ〉 = α0|0〉+ α1|1〉 where αi ∈ C such that |α0|2 + |α1|2 = 1.

• State of n qubits is |ψ〉 = ∑
x∈{0,1}n αx|x〉 where αx ∈ C such that ∑x∈{0,1}n |αx|2 = 1.

Definition 4 Gate unitary matrix that acts on a small number of qubits (say at most three).
Examples of single qubit gates:

• Bitflip X =
(

0 1
1 0

)

• Phaseflip Z =
(

1 0
0 −1

)

• Phasegate Rϕ =
(

1 0
0 eiϕ

)
(rotation phase by ϕ)

• Hadamard H =
( 1√

2
1√
2

1√
2 −

1√
2

)
we often say that H|0〉 = |+〉 and H|1〉 = |−〉.

• Controlled not CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Measurements
When we measure a vector |ψ〉 = ∑

x∈{0,1}n αx|x〉 we get the basis state |x〉 with probability |αx|2
and the state collapses to |x〉 (becomes |x〉 and all other information is lost).

Quantum Teleportation, Quantum Circuits, and Early Algorithms
Einstein Podolsky Rosen (EPR) pair |ψ〉 = 1√

2 |00〉+ 1√
2 |11〉.

Bibliography

[1] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press,
2009. Available online.

[2] Kitaev, A. Yu, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation Graduate Studies in Math-
ematics vol 47 (Providence, RI: American Mathematical Society).” (2002).

[3] Umesh Vazirani Quantum Mechanics and Quantum Computation.
https://www.coursetalk.com/providers/coursera/courses/quantum-mechanics-and-quantum-computation

[4] Ronald de Wolf Quantum Computing: Lecture Notes
https://homepages.cwi.nl/˜rdewolf/qcnotes.pdf

9



Veronika Slívová
slivova@iuuk.mff.cuni.cz

Algorithms as part of series Quantum computing

Grover algorithm
Algorithm for finding a solution for SAT instance.
Theorem 1 (Valiant, Vazirani) There exists a probabilistic polynomial-time algorithm A such
that for every Boolean formula ϕ with n variables:

ϕ ∈ SAT ⇒ Pr[A(ϕ) has unique solution] ≥ 1
n

and
ϕ /∈ SAT ⇒ Pr[A(ϕ) ∈ SAT ] = 0.

Theorem 2 There is a quantum algorithm running in time poly(n)2n/2 that given any circuit
C : {0, 1}n → {0, 1} of polynomial size finds x ∈ {0, 1}n such that ϕ(x) whenever x.

Simon algorithm
Definition 3 (Simon’s problem) The input is a polynomial-size circuit for a function f : {0, 1}n →
{0, 1}n such that there exists a ∈ {0, 1}n satisfying:

∀x, y ∈ {0, 1}n : f(x) = f(y) ⇔ x = y ⊕ a.
Output is the string a.
Theorem 4 There is a polynomial-time quantum algorithm for Simon’s problem.

Shor algorithm
Theorem 5 There is a quantum algorithm that given a number N , runs in time polynomial in
log(N) and outputs prime factorization of N .

Bibliography

[1] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press,
2009. Available online.

[2] Kitaev, A. Yu, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation Graduate Studies in Math-
ematics vol 47 (Providence, RI: American Mathematical Society).” (2002).

[3] Umesh Vazirani Quantum Mechanics and Quantum Computation.
https://www.coursetalk.com/providers/coursera/courses/quantum-mechanics-and-quantum-computation

[4] Ronald de Wolf Quantum Computing: Lecture Notes
https://homepages.cwi.nl/˜rdewolf/qcnotes.pdf
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Standalone Talks

Jiří Beneš
mail@jiribenes.com

Presented paper by Nathaniel Johnston
Non-uniqueness of minimal superpermutations

(http://www.sciencedirect.com/science/article/pii/S0012365X1300157X)

Introduction
We examine the open problem of finding the shortest string that contains each of the n! permutations
of n symbols as contiguous substrings (i.e., the shortest superpermutation on n symbols). It has
been conjectured that the shortest superpermutation has length ∑n

k=1 k! and that this string is
unique up to relabelling of the symbols. We provide a construction of short superpermutations that
shows that if the conjectured minimal length is true, then uniqueness fails for all n ≥ 5. We will
then also show a concise proof[1] of a lower bound on the length of the minimal superpermutation,
thus disproving the forementioned conjecture.

Definitions
Definition 1 A superstring is a string containing each string si from a given set S = {s1, s2, . . . , sm}.
Definition 2 A superpermutation on n symbols [n] = {1, 2, . . . , n} is a superstring where S = Sn
is the set of all permutations of n symbols.

Results
Conjecture 3 The minimal superpermutation on n symbols is unique up to relabelling of the sym-
bols.
Theorem 4 There are at least ∏n−4

k=1 (n− k − 2)!k·k! distinct (up to relabelling) superpermutations
on [n] of length ∑n

k=1 k!
Theorem 5 [1] The length of the minimal superpermutation on n symbols is at least n!+(n−1)!+
(n− 2)! + n− 3.

Bibliography

[1] Robin Houston, Jay Pantone, Vince Vatter: A lower bound on the length of the shortest superpattern,
http://oeis.org/A180632/a180632.pdf
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Václav Blažej
vaclav.blazej@fit.cvut.cz

Presented paper by Andrey Kupavskii, János Pach, and Gábor Tardos
Tilings with noncongruent triangles

(https://arxiv.org/abs/1711.04504v3)

Is it possible to tile the plane with pairwise noncongruent triangles of the same area and perimeter?
If a xyz tiangle has a fixed perimeter and fixed xy side then the non-fixed vertex must be on an
ellipse with foci x and y. If a xyz triangle has a fixed area and fixed xy side then the third vertex
must an exact distance from the xy line. Therefore, if two triangles of the same area and perimeter
share a side, then they are congruent.
Theorem 6 Let k ≥ 4. In any tiling of a convex k-gon with finitely many triangles, there are two
triangles that share an edge.
There are counterexamples to polygon having only 3 sides (Fig. 1b) and when the number of tiling
triangles can be locally infinite (Fig. 1c).
The following theorem implies that the answer to the initial question is NO.
Theorem 4 Let T be tiling of the plane with triangles of unit perimeter, each of which has area at
least ε > 0. Then there are two triangles in T that share a side.
Theorem 5 Let T be a locally finite tiling of the plane with triangles, and suppose that the lengths
of their sides blong to interval [1, 2). Then there are two triangles in T that share a side.

(a) Plane tiling with two equilat-
eral triangle types.

(b) Triangle tiling with no two tri-
angles sharing a side.

(c) Locally infinite tiling of a
square, no two share a side.

(d) Part of a plane tiling (e) Segments of an edge
(f) Proof illustration for Theo-
rem 7
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Katarína Čekanová
katarina.cekanova@student.upjs.sk

Presented paper by Yoshihiro Asayama, Yuki Kawasaki, Seog-Jin Kim, Atsuhiro Nakamoto,
Kenta Ozeki

3-dynamic coloring of planar triangulations
(https://www.sciencedirect.com/science/article/abs/pii/S0012365X18302425)

Introduction
An r-dynamic k-coloring of a graph G is a proper k-coloring such that any vertex v has at least
min{r, degG(v)} distinct colors in NG(v). The r-dynamic chromatic number χdr(G) of a graph G is
the least k such that there exists an r-dynamic k-coloring of G.
Loeb, Mahoney, Reiniger, and Wise [1] showed that if G is a planar graph, then χd3(G) ≤ 10, and
there is a planar graph G with χd3(G) = 7. Thus, finding an optimal upper bound on χd3(G) for a
planar graph G is a natural interesting problem.

Main result
In this paper, authors give a brief review of r-dynamic coloring of plane graphs. They focus on
3-dynamic chromatic number of planar triangulations and show the following result.
Theorem 1 If G is a planar triangulation, then χd3(G) ≤ 5. The upper bound is sharp.
To show sharpness of the upper bound it suffices to consider graph of the octahedron, which is a
planar triangulation and its 3-dynamic chromatic number equals 5.
In this talk, we will focus on proof of Theorem 1. The proof will be done by induction on the order.
First we specify configurations appeared in planar triangulations G by discharging method. Then,
we introduce some reductions to apply such configurations and obtain a smaller triangulation G′.
Note that we do not apply the reductions if it destroys the simpleness, which guarantees that the
minimum degree of G′ is at least 3. Therefore by the induction hypothesis, there exists a 3-dynamic
5-coloring in G′, which satisfies that every vertex in G′ has distinct 3 colors in its neighborhood.
This allows us to avoid the difficulty of reducibility arguments.
Lemma 2 A planar triangulation has either a 3-vertex, a 5-vertex, a 4-4-edge, a 4-6-edge, or a
4-7-edge.

Figure 3: A 5-vertex contraction of v at {v2, v5}.

Lemma 3 Let G be a planar triangulation with a 5-vertex, and H be the planar triangulation
obtained from G by the 5-vertex contraction. If H is 3-dynamically 5-colorable, then so is G.
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Figure 4: A 4-4-edge contraction α and β of xy.

Lemma 4 Let G be a planar triangulation with a 4-4-edge, and H be the graph obtained from G by
the 4-4-edge contraction α or β. If H is 3-dynamically 5-colorable, then so is G.

Figure 5: A 4-6-edge contraction of xy at {a, d}.

Lemma 5 Let G be a planar triangulation with a 4-6-edge, and H be the graph obtained from G by
the 4-6-edge contraction. If H is 3-dynamically 5-colorable, then so is G.
Let G be a planar triangulation with 4-7-edge. In this case, we use an ordinary contraction of an
edge in a triangulation.
Lemma 6 Let G be a planar triangulation with a 4-7-edge, and H be the graph obtained from G by
the 4-7-edge contraction. If H is 3-dynamically 5-colorable, then so is G.

Bibliography

[1] S. Loeb, T. Mahoney, B. Reiniger, J. Wise. Dynamic coloring parameters for graphs with given genus, Discrete
Appl. Math. 235 (2018) 129–141.
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Martin Černý
martesing@gmail.com

Monge property for interval matrices

Introduction
A matrix M ∈ Rm×n is said to have a Monge property if for every i < k and j < l it holds that

mij +mkl ≤ mil +mkj.

This property proved itself useful when approaching hard problems as the famous travelling salesman
problem or the assignment problem. Although NP-hard in general, both problems are polynomially
solvable when the cost matrix is Monge. For many other geometrical or optimization problems
there are known algorithmical speed ups as well.
In this lecture we focus on Monge property for interval matrices. The study of interval analysis
allows us to cope with problems of computational precision as well as data inaccuracy. In interval
analysis we envelope our data into intervals and then perform calculations on these intervals instead
of real values. The methods of interval analysis then ensure that the result is included in the resulting
interval.
We present two definitions of interval Monge matrices, discuss their advantages and disadvantages
as well as some of their properties. After that, we present some results about applications of interval
Monge matrices in optimization problems.
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Pavel Koblich Dvořák
koblich@iuuk.mff.cuni.cz

Communication Complexity Lower Bound of Disjointness

Introduction
In this talk I will present an elegant proof of communication lower bound of disjointness. This
result was first proved by Kalyanasundaram and Schnitger [1], further simplified by Razborov [2]
and Bar-Yossef et al. [3]. This talk follows the lecture notes of Radhakrishnan [4].

Communication Model
In the communication model with private randomness there is Alice and Bob and they know some
boolean function f : {0, 1}n×{0, 1}n → {0, 1}. Alice gets some x ∈ {0, 1}n and Bob gets y ∈ {0, 1}n
and each of them gets some private random bits rA, rb respectively. Their task is to compute f(x, y)
with high probability. Let π be a protocol and πo(x, y) be an output of this protocol. The randomized
communication complexity Rε(f) of the function f is the length of the optimal randomized protocol
π such that for every x, y ∈ {0, 1}n holds that PrrA,rB [f(x, y) 6= πo(x, y)] ≤ ε.

Alice Bob

f : {0, 1}n × {0, 1}n → {0, 1}

x ∈ {0, 1}n y ∈ {0, 1}n
rA = 0011100 . . . rB = 1100101 . . .

0

1

1

π(x, y)

Rεπ

PrrA,rB [f(x, y) 6= πo(x, y)] ≤ ε

Figure 6: Communication model with private randomness.

The function Disjointness (Disj) is 1 if the input x and y are disjoint (we interpret x and y in
{0, 1}n as characteristic vectors of subsets of [n]).
Theorem 1 R1/2−ε ≥ Ω(ε2n).

Proof Idea

• We will prove that Alice or Bob have to send a non-trivial information about each bit of their
input.

• From a short protocol π for Disj we derive a protocol τ for NAnd which reveal only small
information about the input, where

NAnd(a, b) = ¬(a ∧ b), a, b ∈ {0, 1}.

• We prove that such protocol τ can not exist.
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Information Theory
Let X, Y and Z be random variables over same finite set S. Let s ∈ S and ps = Pr[X = s], qs =
Pr[Y = s].
Definition 2 The entropy of X is

H(X) =
∑
x∈S

px log 1
px
.

Definition 3 The mutual information of X and Y is I(X : Y |Z) = H(X|Z) −H(X|Y Z), where
H(X|Z) = EzH(X|Z = z).
Lemma 4 (Chain rule) For random variables X1, . . . , Xn and Y holds that

1. H(X1, . . . , Xn) = ∑
iH(Xi|X<i).

2. I(X1, . . . , Xn : Y ) = ∑
i I(Xi : Y |X<i).

Definition 5 The Hellinger distance of X and Y is

h(X, Y ) =
√

1
2
∑
s

(√
ps −

√
qs
)2
.

Definition 6 The total variation of X and Y is

∆(X − Y ) = 1
2
∑
s

|ps − qs|.

Lemma 7 (Hellinger vs. total variation)
∆(X − Y ) ≤

√
2h(X, Y ).

Lemma 8 (Hellinger vs. information) Let a random variable B be distributed uniformly over
{b1, b2} and π(B) be a function (possibly randomized) of B. Then,

I
(
B : π(B)

)
≥ h2

(
π(b1), π(b2)

)
.

Lemma 9 (Cut and paste) Let π(x, y) denote the transcript of a randomized protocol of some
communication problem on input (x, y). Then, for all x, x′, y, y′,

h2
(
π(x, y′), π(x′, y)

)
= h2

(
π(x, y), π(x′, y′)

)
.
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Introduction
In this talk, we show the infinitude of primes using formal (especially regular) languages.

Building blocks
Definition 1 (Regular expression) The set of regular expressions RE(Σ) is the smallest set
closed under concatenation, union and Kleene star that contains ∅ and {x} ∀x ∈ Σ.
An expression is said to be regular if it belongs to the set of regular expressions.
Definition 2 (Regular languages) A language L ⊆ Σ∗ is regular if and only if it can be repre-
sented by a regular expression.
Definition 3 (Distinguishing extension) Given a language L ⊆ Σ∗, and a pair of strings x, y ∈
Σ∗, a distinguishing extension is a string z ∈ Σ∗ such that exactly one of the two strings xz, yz is
a member of L.
Theorem 4 (Myhill-Nerode) Let x ≡L y if there is no distingishing extension for x and y with
respect to L. Then L is regular if and only if ≡L induces finitely many equivalence classes.

Results
Proposition 5 For all n ∈ Z+, the language Ln = {w ∈ {a, b}∗ : |w|a − |w|b is divisible by n} is
regular.
Proposition 6 Let P be the set of all primes, and let L = ⋃

p∈P
Lp.

Then L = {w ∈ {a, b}∗ : |w|a − |w|b 6= ±1}.
Proposition 7 The language L = {w ∈ {a, b}∗ : |w|a − |w|b 6= ±1} is not regular.
Corollary 8 The set of all primes is infinite.

18



Miloš Chromý
chromy@ktiml.mff.cuni.cz

Presented paper by Tomoyuki Yamakami
The 2CNF Boolean Formula Satisfiability Problem and the Linear

Space Hypothesis
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Introduction
As a P versus NP, (Strong) Exponential time hypothesis ((S)ETH) is extensively used in computer
science. It appears in proofs of lower bounds of problems or optimality of algorithms.
For a k-SAT is no known algorithm which runs in so(n), which motivates formulation of (S)ETH.
Similary there is no known algorithm for 2-SAT which runs in o(n) space. This gives us motivation
for Linear space hypothesis (LSH). We can use LSH as a conditional for showing space optimality
of some algorithms and lower bounds on space complexity of some problems.
The talk is structured as follows. First I’ll define (S)ETH and give some fast preview on usage of
(S)ETH. Then, I’ll define sublinear space complexity class and reductions family which not hinders
sublinear space complexity class. Then we will see current limitations around 2-SAT problem.
Lastly I’ll define the Linear space hypothesis and show one of its application in lower bound on
space complexity.

ETH, SETH
Let sd = inf{c | d-SAT has 2cn algorithm}. Let s∞ = limd→∞sd.
Hypothesis 1 Exponential time hypothesis (ETH). sk > 0 for k ≥ 3.
Exercise 2 s2 = 0.
If the ETH is true, then it is not possible to find clique of size k neither independent set of size k
in a time no(k). Some other problems, such as graph k-colorability, finding Hamiltonian cycles can’t
be solved by algorithm better than cn for constant c > 1.
Hypothesis 3 Strong Exponential time hypothesis (SETH). s∞ = 1
SETH is used in parametrized complexity for proving lower bounds. For a graph of treewidth w,
SETH implies that the optimal time algorithm for runs in time (2− o(1))tnO(1).
It can be also used for optimality of polytime algorithm. For example orthogonal vector problem or
longest common subsequence of two vectors or edit distance of two strings can’t be solved in time
n2−ε for some ε > 0 if SETH holds.

Parameters, reductions and classes
Let have an input representation x. An |x| is a length of representation of x. A log-space size
parameter m(x) for a problem P is a mapping Σ∗ to N such that m must be computed using
log space (there exists a Turing machine which for input x outputs m(x) in unary using at most
c log |x| + d space for constants c, d > 0) and there exists a polynomial p satisfying m(x) ≤ p(|x|)
for all instances x of P .
Note 4 For a graph x we have a parameter number of vertices mv(x) and a parameter number of
edges me(x).
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For a CNF formula x we have standard parameters a number of variables mv(x) and a number of
clauses mc(x).
L is a class of problems which can be solved by a log space deterministic Turing machine. A class
NL contains problems solvable by a logspace nondeterministic Turing machine.
Definition 5 Let have a log space parameter m, a constant ε ∈ (0, 1) and some polylog function l.
A function f is sublinear for a parameter m if f(x) = m(x)εl(|x|).
Complexity class PsubLIN is a class of parametrized decision problems (P,m) solvable by deter-
ministic Turing machine in polynomial time in |x| and sublinear space for a parameter m.
Note 6 We can easily see that L ⊆ PsubLIN ⊆ P. We don’t know if any of inclusions is proper.
As for P we need logspace reductions, for a class PsubLIN we need even more restricted reduction.
For that let’s define four reductions.
Definition 7 A parametrized problem (P1,m1) is L-m-reducible (logspace reducible) to a para-
metrized problem (P2,m2), denoted by (P1,m1) ≤L

m (P2,m2) if there is a logspace computable func-
tion f and two constants k1, k2 > 0 such that for any instance x of a problem (P1,m1)

1. x ∈ P1 iff f(x) ∈ P2 and

2. m2(f(x)) ≤ m1(x)k1 + k2.

For a short-L-m-reduction (≤sL
m ) we just replace inequality 2. in previous defintion for an in-

equality (2’) m2(f(x)) ≤ k1m1(x) + k2.
Definition 8 Polynomial-time sub-linear-space reduction family (SLRF) is Turring re-
ducibilty using oracle machines. A parametrized problem (P1,m1) is SLRF-T -reducible to a
parametrized problem (P2,m2), denoted by (P1,m1) ≤SLRF

T (P2,m2) if there exists ε > 0, an oracle
Turing machine MP2 with a write-only query tape, a polynomial p, a polylog function l, constants
k1, k2, k3, k4 > 0 such that for every inst ace x of (P1,m1)

1. MP2 runs in at most p(|x|) time using at most m1(x)εl(|x|) space (query tape doesn’t have to
follow that restriction)

2. if MP2 makes a query to P2 with a word z on a query tape, then m2(z) ≤ m1(x)k1 + k2 and
|z| ≤ |x|k3 + k4, and

3. after performing query to P2 in a single step, M automatically erases the query tape and
changes inner state according to answer of P2 on z.

We get the short-SLRF-T -reducibilty (≤sSLRF
T ) by changing the first inequality in condition 2.

above by an inequality m2(z) ≤ k1m1(x) + k2.
For any reduction ≤r, a problem (P,m) is ≤r-complete for a given class C of problems if P ∈ C and
every problem Q in C is ≤r-reducible to P .
Fact 9 Class PsubLIN is closed under ≤sSLRF

T -reductions.
There are problems X and Y such that X ≤SLRF

T Y and X 6≤sSLRF
T Y .

2-SAT and Linear space hypothesis
Definition 10 2-SATk is a collection of all 2-CNF formulas where each variable has at most k
occurrences in whole formula.
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Proposition 11 For each index k ≥ 3 2-SATk is NL-complete.
Theorem 12 Theorem For a certain constant c > 0 and a polylog function l, 2-SAT with n variables
and m clauses can be solved in polynomial time using n1−c/

√
lognl(m+ n) space.

Lemma 13 Lemma Let m ∈ {mv,mc} and k ≥ 3.

• (2-SATk,m)≡sL
m (2-SAT3,m) and

• (2-SAT3,mv)≡sL
m (2-SAT3,mc).

Hypothesis 14 Linear space hypothesis (LSH) for 2-SAT3. For any choice of ε ∈ (0, 1)
and any polylog function l, no deterministic Turing machine solves 2-SAT3 parametrized by mv

simultaneously in polynomial time using mv(x)εl(|x|) space, where x refers to an input instance to
2-SAT3.
Theorem 15 If LSH for 2-SAT3 holds, then

• L6=NL,

• ≤sSLRF
T (2SAT3,mv)6⊆ PsubLIN,

• (2-SAT,mv)6∈PsubLIN and

• there are two parametrized decision problems (P1,m1) and (P2,m2) in ≤sSLRF
T (2-SAT3,mv)

such that (P1,m1) 6≤sSLRF
T (P2,m2) and (P2,m2) 6≤sSLRF

T (P1,m1).

Note 16 Alternative problem for LSH formulation. For any directed graph G = (V,E) of
degree (indegree plus outdegree) at most k and two designated vertices s and t. Is there any path
from s to t?

Application of LSH as conditional
1NFA Search problem (Search-1NFA)
We have a 1NFA M = (Q,Σ, δ, q0, F ) with no λ-moves, and a parameter 1n for n ∈ N. Find a
string x of the length n accepted by M (i.e. x is written on read-only tape of M and M enters a
final state F before it reads whole input string x).
A log space parameter for this problem is mn(x) = |Q||Σ|n.
Theorem 17 Assuming LSH for 2-SAT3, for every fixed value ε ∈ (0, 1/2), there is no polytime
O(n1/2−ε)-space algorithm for (Search-1NFA,mn) problem.
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Introduction
A set of points in Rd is acute, if any three points of this set form an acute triangle. In 1962 Danzer
and Grünbaum [2] posed the following question: what is the maximum size f(d) of an acute set
in Rd? They proved a linear lower bound f(d) ≥ 2d − 1 and conjectured that this bound is tight.
However, in 1983 Erdős and Füredi [3] disproved this conjecture in large dimensions. Through the
time, there has been improvements in the lower bound on f(d):

1983 Erdős and Füredi [3] prove f(d) ≥ 0.5 · 1.154d. Their proof is a nonconstructive application
of the probabilistic method.

2009 Ackerman and Ben-Zwi [1] prove f(d) ≥ c
√
d · 1.154d, where c is a particular constant.

2011 Harangi [4] proves f(d) ≥ c · 1.2d. He uses similar approach to Erdős and Füredi.

Two results
We show two improvements, both constructive. In the first theorem we prove f(d+2) ≥ f(d) which
implies
Theorem 1 There is an acute d-dimensional set witnessing f(d) ≥ 2d/2 = 1.414d.
Second theorem is just stronger version of the firs one. The method in the first theorem is slightly
improved to the statement that follows.
Theorem 2 There is an acute d-dimensional set of size Fd+1, hence f(d) ≥ Fd+1 = 1.618d.
Here Fd is d-th Fibonacci number given by the first terms F1 = F2 = 1 and recurrence Fd+2 =
Fd+1 + Fd. Both results are quite easy and uses a simple argument that we double some points
when finding a particular witnessing set one/two dimensions higher.
In the first theorem we double all points such that both copies lies on a very small circle (in two
new dimensions) around the latter point. In the second case, when searching for an acute set in
Rd, we double the points on a particular half-plane with at least Fd−1 points.
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Rank Estimators in Robust Regression—With an Application of
Birkhoff’s Theorem

Linear regression. Given data X ∈ Rn×p and y ∈ Rn, find β ∈ Rp such that
y ≈ Xβ

Rank estimators. Find β ∈ Rp by solving

min
β∈Rp

F (β) = min
β∈Rp

n∑
i=1

aβi (yi − xTi β),

where aβi ∈ R are given scores and xTi rows of X.
Assumption. The scores aβi are monotone and do not depend on the residual values yi−xTi β, but
on the order only. That is, the scores for nondecreasingly sorted residuals are

α1 ≤ · · · ≤ αn

Proposition 1 Under Assumption, F (β) is convex and piecewise linear and

F (β) = max
π∈Sn

n∑
i=1

απ(i)(yi − xTi β).

Linear programing formulation. The problem

min
β∈Rp

F (β) = min
β∈Rp

max
π∈Sn

n∑
i=1

απ(i)(yi − xTi β)

has a linear programming formulation with n! constraints

min z;
n∑
i=1

απ(i)(yi − xTi β) ≤ z ∀π ∈ Sn

Problem statement. Given β∗ ∈ Rp, check whether it is optimal.
Lemma 2 Optimality of β∗ is equivalent to feasibility of∑

π∈Sn
γπ

n∑
i=1

απ(i)xi = 0, γπ ≥ 0,
∑
π∈Sn

γπ = 1.

Reminder.

• B ∈ Rn×n is doubly stochastic if B ≥ 0 and ∑n
i=1 bij = ∑n

j=1 bij = 1

• Birkhoff’s theorem: Each doubly stochastic matrix is a convex combination of (at most n2 −
2n+ 2) permutation matrices

Theorem 3 β∗ is optimal iff ∃G, a positive multiple of a doubly stochastic matrix, such that

0 =
n∑
i=1

xi
n∑
j=1

αjGij.
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Computational complexity of crossing number problem

The crossing number cr(G) of a graph G is the minimum number of pairwise edge crossings in a
drawing of G in the plane. Determining the crossing number of a given graph G is a notoriously hard
algorithmic problem in topological graph theory. This problem remains NP-hard even when the
input graph G is obtained by adding one edge to a planar graph [1] (such G is called almost-planar
or near-planar).
In this talk we would like to report on recent original results concerning the computational com-
plexity of the crossing number problem. These results have been obtained in collaboration with
Gelasio Salazar, Marek Derňár, and Carsten Thomassen. Namely, we survey the following:

I. (ISAAC 2015, [2]) It is NP-hard to minimize the number of mutual edge crossings of two
graphs which are simultaneously embedded into an orientable surface of genus 4 or more
(actually, we improve from genus 6 in [2] to genus 4). This remains true even if the inputs
are restricted to simple 3-connected graphs.

II. (by-product of [2]) The (ordinary) crossing number problem remains NP-hard even if the
input is restricted to almost-planar graphs having a bounded number, namely at most 8
(again improved from the note in [2]), vertices of degree greater than 3. This strengthens the
result of [1].

III. (SoCG 2016, [3]) The problem whether a graph G can be drawn with at most k crossings
does not have a polynomial kernel in the parameter k. This means that, under complexity-
theoretic assumptions, there is no polynomial-time algorithm that would transform the graph
G into a (smaller) graph G0 of size polynomial in k and associated k0, such that cr(G) ≤ k if
and only if cr(G0) ≤ k0.

IV. (SIDMA, [4]) It is NP-hard to determine whether the crossing number of a graph is even or
odd. (Note that it is hence unlikely that this decision problem would be in NP.)

The unifying motif of these results is a careful exploitation of the hardness construction of almost-
planar graphs by Cabello and Mohar [1]. In a very brief sketch, the original construction of [1]
defines two planar graphs, “red” and “blue” one, both attached to a common rectangular “very
thick frame”. This gives a planar graph again, but then adding an edge between the red and the
blue graph forces these two subgraphs to overlay each other, as sketched in Fig. 7. Determining the
crossing number of the resulting graph is NP-hard.
To prove (I), we use the red and blue graphs of [1] as two separate graphs, and we add to them
special gadgets which confine specified pieces of the red and the blue graphs to the same four handles
of the surface. This, in turn, emulates the common frame of the original construction, and so it
proves hardness of the joint crossing number problem (I). We can also combine parts of our new
gadgets with the original frame in order to reduce the total number of vertices which have to be
attached to the frame, implying (II).
In (III) and (IV), we use another modification of the construction, now concerning the crossing
number of so-called tiles, which are graphs T drawn on a plane strip such that specified two vertices
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Figure 7: An illustration of the construction of an almost-planar graph taken from [1].

of T are fixed to the left boundary and another two specified vertices of T are fixed to the right
boundary of the strip. The construction of [1] can also be interpreted such that we have a planar
tile and twist one boundary of it, and then the crossing number problem of such a twisted planar
tile is also NP-hard. A nice property of the latter problem is that, if we combine several instances
of twisted planar tiles, the resulting crossing number can be the minimum of the crossing numbers
of these instances. Additional arguments along this basic idea then prove each of (III) and (IV).
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Constant query time (1 + ε)-approximate distance oracle for planar
graphs
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Introduction
A distance oracle is a data structure which keeps precomputed distance information and returns
distance between any pair of the given vertices u, v efficiently. The efficiency is measured by the
memory needed for the data structure (oracle size), the time for answering the query (query time)
and the time for building the data structure for a given graph G (preprocessing time). In this talk we
will be interested in oracles for planar graphs. For weighted planar digraphs it was proven in [2] that
for any oracle size S ∈ [n, n2] there is an exact distance oracle with query time O(max {1, (n1.5)

S
}).

Definition 1 (α-approximate oracle) The oracle is called (α)-approximate if it returns distance
d̃G(u, v) s.t.

dG(u, v) ≤ d̃G(u, v) ≤ dG(u, v)
for every u, v in G.
In this article authors give (1 + ε)-approximate oracle with O(1) with nearly linear preprocessing
time and nearly linear size.

Main result
Theorem 2 Let G be an undirected planar graph with n vertices and non-negative weights and let
ε > 0. There is (1 + ε)-approx. distance oracle for G with O(1) query time, O(n log n( logn

ε
+ f(ε)))

size and O(n log n( log3 n
ε2 + f(ε))) where f(ε) = 2O( 1

ε
).

Definitions
Definition 3 (Shortest path separator) A set P of shortest paths in graph G is a shortest path
separator of G if G[V (G)\W ], W = ∪Q∈PV (Q), has at least t ≥ 2 nonempty connected components
G1, G2, . . . , Gt.
The separator is called α-balanced if for each Gi holds |V (Gi)| ≤ α|V (G)|.
Definition 4 (Boundary) For a subgraph Gi of G, a set B(Gi) of paths is a boundary of Gi if
B(Gi) separates Gi and the rest of G and for every path Q ∈ B(Gi), there is an edge connecting Q
and Gi.
Definition 5 (α-balanced recursive subdivision) α-balanced recursive subdivision is a struc-
ture which decomposes G into subgraphs G1, . . . , Gt by α-balanced shortest path separator. Each Gi

is then decomposed recursively until the subgraphs reach predefined size.

Oracle with additive stretch
The recursive subdivision from the following lemma will be used in our oracle.
Lemma 6 [3] Given a graph G and a shortest path spanning tree Tr of G, a 1

2-balanced recur-
sive subdivision TG of G can be computed in O(n log n) time s.t. for each internal node X of TG
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|P(X)| = O(1) and for each node X, |B(X)| = O(1). Moreover, for each node X of TG and each
root path Q of Tr, if Q ∈ B(X), then Q ∈ P(X ′) for some ancestor X ′ of X in TG.
Lemma 7 [4] For a path Q in G, ε > 0 and D ≥ d(Q), a set PQ of O(1

ε
) vertices in V (Q) can

be selected in O(|V (Q)|) time such that for any pair of vertices u and v shortest-separated by Q,
dG(u, v) ≤ minp∈PQ dG(u, p) + dG(p, v) ≤ dG(u, v) + εD.

Theorem 8 For graph G and ε0 > 0, there is an oracle which gives a distance d̃(u, v) with
dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) for any vertices u,v in O(1) query time, O(n(log n/ε0 +
f(ε0))) size and O(n(log3 n/ε2

0 + f(ε0))) preprocessing time.
From the theorem above for ε0 = ε

7c for graph G s.t. dG(u, v) ≥ d(G)
c

for every two vertices u, v we
have oracle from the main theorem. For other graphs G we will use the scaling technique from [1].

Scaling
Lemma 9 [5] For G and γ ≥ 1, connected subgraphs G(γ, 1), . . . , G(γ, nγ) of G with the following
properties can be computed in O(n log n) time:

1. For each vertex u in G, there is at least one G(γ, i) that contains u and every v with
dG(u, v) ≤ γ.

2. Each vertex u in G is contained in at most 18 subgraphs.

3. Each subgraph G(γ, i) has radius r(G(γ, i)) ≤ 24γ − 8.
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Introduction
We will be interested in the problem of halving a pizza so that two people could have the same
amount of each ingredient. The most classical result in the topic is the “ham sandwich” theorem
which claims that for any d ∈ N, any d measurable subsets of Rd with finite measure can be bisected
with a single (d − 1)-dimensional hyperplane. In particular, for a pizza (which we can consider as
a 2-dimensional object) we are allowed to have only one type of topping on it if we want to bisect
it with a single cut. In order to halve a pizza with more toppings, we need to either cut along some
more complicated curve or use more cuts. We will focus on the latter and in particular we will show
that two more toppings may be added if we are allowed to use two cuts.

Preliminaries
Definition 1 A mass distribution µ on Rd is a finite measure on Rd (i.e. µ(Rd) < ∞) such that
all open subsets are µ-measurable and µ(S) = 0 for every lower-dimensional subset S of Rd.
Definition 2 Let L be a finite set of oriented hyperplanes (i.e. for each l ∈ L we have two half-
spaces, the negative half-space l− and the positive half-space l+). Define λ(p) = |{l ∈ L : p ∈ l+}|.
Denote by R+ the set {p ∈ Rd : λ(p) is even} and by R− the set {p ∈ Rd : λ(p) is odd}.
Therefore, any set L induces a partition Rd = R+ ∪R−.
Definition 3 For any mass distributions µ1, . . . , µn and any finite set L of oriented hyperplanes,
we say that L simultaneously bisects µ1, . . . , µn if µi(R+) = µi(R−) for any 1 ≤ i ≤ n.

Main results
Theorem 4 Let µ1, . . . , µ4 be mass distributions in R2. Then there exist two lines l1, l2 such that
{l1, l2} simultaneously bisects µ1, . . . , µ4.
Theorem 5 Let µ1, . . . , µ5 be mass distributions in R3. Then there exist two planes l1, l2 such
that {l1, l2} simultaneously bisects µ1, . . . , µ5.
One may also impose some restrictions on the lines, but at the cost of reducing the number of mass
distributions.
All the proofs rely on the Borsuk-Ulam theorem:
Theorem 6 (Borsuk-Ulam) For any continuous function f : Sk−1 → Rk there exists a point p ∈
Sk−1 such that f(p) = f(−p).
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Introduction
In 1959, Erdős and Galai showed that every graph of degeneracy at least d contains a cycle of
length at least d + 1. On the other hand, the decision whether a graph contains a cycle of length
at least d + 2 is trivially NP-complete. In this paper, the authors give an algorithm that finds a
cycle of length d + k in time 2O(k)|V (G)|O(1) for 2-connected graphs. They also derive a similar
algorithm for a path of length d + k for connected graphs. For path the natural NP-completeness
barrier is a decision about d+2-long path on general graphs. Moreover, the provided results are in a
sense optimal since finding a (1 + ε)d-long path (cycle) is NP-complete for connected (2-connected)
graphs.
Since both results are quite similar, only the one for cycles will be presented.

Tools
The main tool is to derive the definition of segments (Definition 1) and then to show an equivalency
with the original problem (See Figure 8). The advantage of this definition is that it is more suitable
for standart FPTtechniques, such as color coding. Using this technique we derive the promissed
algorithm.
Definition 1 (System of T -segments) We say that a set {P1, . . . , Pr} of paths in G is a system
of T -segments if it satisfies the following conditions.

(i) For each i ∈ {1, . . . , r}, Pi is a two-terminal T -segment (See Definition 2),

(ii) P1, . . . , Pr are internally vertex-disjoint, and

(iii) the union of P1, . . . , Pr is a linear forest.

Definition 2 (Two-Terminal segments) P is a two-terminal T -segment if it has at least three
vertices, both end-vertices of P are in T and internal vertices of P are not in T .

Figure 8: Basic idea of the equivalence of path and segments.
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Introduction
In this talk we are going to study notion of treedepth of simple graphs and obstructions for having
small treedepth. There is a famous result that if a graph G has treewidth at least kc, where c is
some constant, then it contains k × k grid as a minor. In this talk we are going to prove result of
similar flavor, but for the notion of treedepth. Namely that if a graph G has treedepth at least kc,
where c is some constant, then it contains either k × k grid as a minor or complete binary tree of
height k as a minor or path on 2k vertices.

Preliminaries
G � H means that G is a minor of H, i.e. G can be obtained from H by a sequence of vertices and
edges deletions and edge contractions.
If T is a rooted tree then by u ≤T w we denote that w is an ancestor of u in T .
The treedepth of a graph G, denoted by td(G), can be defined in many equivalent ways.

1. Treedepth of G is the minimum height of a forest F so that G ⊆ Clos(F ).

2. Treedepth of G is the minimum number of colors that need to be used to color vertices,
so that for any connected subgraph H of G, it contains a vertex with unique color within this
subgraph.

3.

td(G) =


1 if |G| = 1
minv∈V (G) 1 + td(G \ v) if G is connected and |G| > 1
maxC∈cc(G) td(C) otherwise

A tree decomposition of a graph G is a pair (T,W) where T is a tree and W = {Wt}t∈V (T ) is a
family of sets Wt ⊆ V (G) such that:

• ⋃t∈V (T ) = V (G), and every edge of G has both ends in some Wt,

• for every v ∈ V (G), sets Wt containing v form a connected subtree of T .

Width of a tree decomposition (T,W) is defined as maxt∈V (T ) |Wt|−1 and a treewidth of G, denoted
tw(G), is the minimum width of a tree decomposition of G.
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Main Theorem
There is a constant C such that every graph G with treedepth ≥ Ck5 log2 k satisfies one or more of
the following conditions:
• G has treewidth ≥ k,
• G has the complete binary tree of height k as a minor,
• G contains a path of order 2k.

Various lemmas along the way

1. td(G) ≤ log2(|V (G)|)
2. If (T,W) is a width-w tree decomposition of a graph G, then td(G) ≤ (w + 1) · td(T )

(in particular tw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) · log n)
3. td(Pk) = dlog(k + 1)e, where Pk is a path on k vertices
4. td(Bh) = h, where Bh is a full binary tree with height h
5. For every rooted tree T and h ≥ 0 and k ≥ 1, if Bh 6�rooted T and Pk 6� T ,

then td(G) ≤ h · (dlog(k + 1)e+ 1).
6. Every tree with treedepth≥ d contains a subcubic (with degrees≤ 3) subtree of order≥ 2

√
d−2.

7. Let h, c ≥ 1 and suppose G is a connected graph with maximum degree ≤ c such that Bh 6� G
and P2h 6� G. Then |V (G)| ≤ cO(h2).

Concluding proof
Ultimate goal: Every graph G contains a path of order 2h or has a Bh−minor where

h = Ω
 r

1
4

log
1
2 (tw(G) + 1)

 , r = td(G)
tw(G) + 1 .

Definiton (Greedy rooted tree decomposition)
• A greedy rooted tree decomposition of a connected graph G is a rooted tree T with the

following properties:
1. V (T ) = V (G)
2. G ⊆ Clos(T )
3. for every child-parent pair xy ∈ E(T ), there exists w ≤T x such that {w, y} ∈ E(G)

• For each x ∈ V (G), we define BagT,G ⊆ V (G) by
BagT,G(x) := {x} ∪ {y : there exists w such that w ≤T x <T y and {w, y} ∈ E(G)}.

Given a graph G we fix a greedy rooted tree decomposition T of width tw(G) for G and we know
that td(T ) ≥ r. Then we construct sequence of three trees:

1. Specific spanning tree F ⊆ G.

2. Subcubic rooted subtree S ⊆ T of order |V (S)| = 2Ω
√
r.

3. Subtree Q ⊆ F ⊆ G with maximum degree ≤ tw(G) + 2 and V (S) ⊆ V (Q).
We conclude by observing that Q contains a path of length 2h or a Bh-minor where h is as stated
before.
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Introduction
In 1975, Pippenger and Golumbic conjectured that every n-vertex graph has at most nk/(kk − k)
induced cycles of length k ≥ 5. In the paper, the new upperbound 2nk/kk is proven.

The result
The induced density of a graph H in a graph G, denoted by i(H,G), is the number of induced copies
of H in G divided by

(
|V (G)|
|V (H)|

)
. The inducibility of a graph H, denoted by ind(H), is the limit of the

sequence i(H,n) where i(H,n) is the maximum induced density of H in an n-vertex graph.
Let G is an n-vertex graph and (z1, z2, z3, . . . , zk) is a k-tuple of vertices of G. We say that the
k-tuple is good if z2z1z3z4 · · · zk is an induced cycle of length k in G.

Theorem 1 Every n-vertex graph G contains at most 2nk/kk induced copies of a cycle Ck of
length k ≥ 5.

Definition 2 Let G be a graph and D = (z1, z2, z3, . . . , zk) be a good k-tuple. We define a weight
w(D) of D as

w(D) =
k∏
i=1

1
ni

,

where

• n1 is n,

• n2 is the number of neighbors of z1,

• n3 is the number of neighbors of z1 that are not neighbors of z2,

• ni for i = 4, . . . , k − 1 is the number of vertices x such that z2z1z3z4 · · · zi−1x is an induced
path of length i, and

• nk is the number of vertices x such that z2z1z3z4 · · · zk−1x is an induced cycle of length k.

Note 3 (AM-GM inequality) Every nonnegative real numbers x1, x2, . . . , xk satisfy:( k∏
i=1

xi
) 1
k≤ x1 + x2 + · · ·+ xk

k
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Introduction
For a family S of sets, we can define its intersection graph, whose vertices are in one-to-one corre-
spondence to elements from S, and two vertices are adjacent if and only if their corresponding sets
intersect. In such a way we can define many graph classes, depending on the objects we consider as
elements of S. For example, interval graphs are intersection graphs of intervals on the real line, and
unit disk graphs are intersection graphs of unit radius disks on the plane. In the talk we introduce
the class of simple-triangle graphs and present a characterization of simple-triangle graphs in terms
of certain vertex orderings

Definitions
Let L1 and L2 be two horizontal lines on the plane. A triangle is a pair (p, I), such that p is a point
which belongs to L1 and I is an interval contained in L2. The interval I is the base and the point
p is the apex of the triangle. A graph G which is an intersection graph of set S of such triangles is
called a simple-triangle graph and S is called the representation of G.

L1

L2

Figure 9: A cycle C4 is a simple-triangle graph.

A pair P = (V,≺P ), where V is a finite set and ≺P⊆ V ×V is a partial order if ≺P is irreflexive and
transitive. It is a linear order if it is partial and for every u, v ∈ V it holds that u ≺P v or v ≺P u.
It is an interval order if it is partial and for each v ∈ V there exists an interval I(v) = [l(v), r(v)]
on the real line such that u ≺P v if and only if r(u) < l(v). It is an linear-interval order if there
exist a linear order L = (V,≺L) and an interval order PI = (V,≺PI ) such that P = L ∩ PI (i.e
u ≺P v ⇔ u ≺PI v and u ≺L v). A pair L = (V,≺L) is a linear extension of partial order
P = (V,≺P ) if it is a linear order and if u ≺L v whenever u ≺P v for each u, v ∈ V .
An orientation of a graph G is acyclic if it has no directed cycle. It is transitive if for any u, v, w ∈
V (G) if u→ v and v → w then u→ w. It is alternating if it is transitive on every induced subgraph
Cn of G, for n ≥ 4.
A graph G is a comparability graph if and only if G has a vertex ordering σ such that for any
u ≺σ v ≺σ w if uv, vw ∈ E(G), then uw ∈ E(G). Equivalently, it has a vertex ordering that
contains no subordering shown in Fig. 10 (b). A complement G of comparability graph G is called
a cocomparability graph.
A vertex ordering σ of G satisfies the C4 rule if for every induced C4 = (u, v, w, x) in G it holds
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u v w
(a)

u v w
(b)

u v w
(c)

u v w x
(d)

u v w x
(e)

Figure 10: Forbidden patterns

that u ≺σ v ⇔ w ≺σ v ⇔ w ≺σ x ⇔ u ≺σ x. It satisfies the 2K2 rule if for every induced
2K2 = {uw, vx} in G it holds that u ≺σ v ⇔ w ≺σ v ⇔ w ≺σ x⇔ u ≺σ x.

Theorems
Theorem 1 For a graph G the following conditions are equivalent:

1. G is a simple-triangle graph,

2. G has a cocomparability ordering fulfilling the C4 rule,

3. G has a vertex ordering that contains no subordering shown in Fig. 10 (c),(d),(e),

4. G has a comparability ordering fulfilling the 2K2 rule,

5. G has a vertex ordering that contains no subordering shown in Fig. 10 (b),(d),(e).

Theorem 2 A graph G is a simple-triangle graph if and only if there exists an alternating orien-
tation of G and a transitive orientation of G such that the union of the oriented edges of G and G
forms an acyclic orientation of the complete graph.
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Introduction
The top tree data structure maintains a forest with some other data on paths or in individual
trees. It provides methods for adding and removing edges and for accessing the data, all of them
with logarithmic time complexity. Among similarly described data structures, top tree is one
of the most general ones. Examples of stored data include: lengths of paths; minimal weight
of edge on a path allowing decreasing all weights on the path by the same amount; tree diameter,
median, or center.

Hierarchical clusterization
The data structure is based on a hierarchical partitioning of the sets of edges of individual underlying
trees into so called clusters. Each cluster is a subtree with just two boundary vertices, which can be
shared with neighbouring clusters; either it is an edge or it consists of two subclusters. The hierarchy
of clusterization (in the left image) is stored as a binary top tree (in the right image):

ab bc

ac

cd

ad

de ef

df

dg gh

dh

df

af

dcba

g

h

e

f

Types of clusters (from left to right in the following image):
• base cluster (just an edge),
• compress cluster,
• rake cluster.
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User interface
User data are associated with clusters. We have direct access to data in root clusters and we are
supposed to update the data when the top tree structure is being changed; user-defined routines
are called in such a case.
Methods:
• link (adds an edge),
• cut (removes an edge),
• expose (changes the boundary vertices of a root cluster),
• non-local_search (binary-like search preserving non-local properties).

User-defined routines:
• split (when root cluster is being destroyed making root clusters from its children),
• destroy (when base root cluster is being destroyed),
• create (when base cluster is being created),
• join (when cluster is being created out of two root clusters).
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Introduction
A minimum feedback arc set of a directed graph (digraph) G is a smallest set of arcs whose removal
makes G acyclic. We show lower bound of the cardinality which is denoted by β(G). Using this
result we prove an upper bound of length of cycles contained in an Eulerian digraph.

Notation
β(G) . . . the minimum size of a feedback arc set
g(G) . . . the length of the shortest cycle in G
cut . . . a partition of the vertices of a digraph into two disjoint subsets
2-cycle-free . . . between any pair of vertices, there do not exists arcs in two different directions
S . . . set of short arcs, its length is at most n

2
L . . . set of long arcs, its length is grater than n

2
si . . . for a vertex vi is si the number of short arcs connecting vi with some vj where j > i
ti . . . the number of long arcs of length i
Ai . . . set of vertices {v1, . . . , vi}
Ci . . . cut (Ai, V \ Ai)
ci . . . the number of arcs crossing cut Ci, note cn = 0
F (s1, . . . , sn; t1, . . . , tn) := ∑n

i=1

(
si+1

2

)
+ (n− i)ti

F (m,n) := minF (s1, . . . , sn; t1, . . . , tn))

Theorems
Theorem 1 Every Eulerian digraph G with n vertices and m arcs has β(G) ≥ m2

2n2 + m
2n .

Lemma 2 In any cut (A,A\V ) of an Eulerian digraph, the number of arcs from A to V \A equals
the number of arcs from V \ A to A.
Lemma 3 F (m,n) = tm− (t2 − t)n2 , where t = dm

n
e.

Corollary 4 Every Eulerian digraph G with n vertices and m arcs has g(G) ≤ 6n2

m
.

Theorem 5 Every Eulerian digraph G with n vertices and m arcs has an Eulerian subgraph with
minimum degree at least m2

24n3 .
Proposition 6 Every Eulerian digraph with n vertices and m arcs has a cycle of length at least
1 + b

√
m
n
c.
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Introduction
A collection of compact convex subsets of R2 is said to tile the plane if no two of them share an
interior point and their union is equal to R2. In this article authors focus on tiling the plane with
equilateral triangles such that no two of them share a side and the side lengths of the triangles are
bounded from below by a positive constant. The main result is the following Theorem.
Theorem 1 Let T be a tiling of the plane with equilateral triangles such that the side lengths of
the triangles are bounded from below by a positive constant and no two triangles share a side. Then
the triangles in T have at most three different side lengths, a, b and c with a = b+ c (where b may
be equal to c) and the tiling is periodic.

Definitions
Let T be a fixed tiling of the plane with equilateral triangles satisfying requirements of Theorem 1.
Definition 2 An edge of a triangle T ∈ T is subdivided if some interior point of this edge is a
vertex of another triangle T ′ ∈ T . Otherwise, it is called uncut.

A B C D E F

Figure 11: AB is subdivided, CD and EF are uncut.

Definition 3 The edge AB continues at A if A is the interior point of an edge e of another triangle
of the tiling and e also contains some interior points of the edge AB.

A B C D E F

Figure 12: Edge AB continues at A but does not continue at B, edge CD continues at both C and
D, and edge EF does not continue either at E and F .
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Definition 4 A triangle of the tiling is called:
small – if all three of its sides are uncut;
large – if all three sides are subdivided;
improper – if it has an uncut side and also a side that does not continue in either direction.

Figure 13: The blue triangle is large and the red triangle is small.

Lemmas
The proof Theorem 1 is based on the following lemmas.
Lemma 5 If an edge AB is subdivided and does not continue at A, then there is a unique triangle
ADE in the tiling such that D is an interior point of AB. The edge AD is uncut.
Lemma 6 For any improper triangle T in T there are two other triangles, U, V ∈ T such that U
is improper and the sum of the side lengths of U and V does not exceed the side length of T .
Lemma 7 There is no improper triangle in the tiling.
Lemma 8 If the edge AB of a triangle ABC in T continues at A, then BC is uncut.
Lemma 9 Every triangle in T is either large or small. The sides of the large triangles do not
continue in either direction, and each of them contains in its interior precisely one vertex.
Lemma 10 Let T = ABC be a large triangle in the tiling and T1, T2 and T3 be the large triangles
containing A, B and C, respectively, in the interior of one of their edges. Then the side length of
T is the average of the side lengths of T1, T2 and T3.
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Introduction
Many combinatorial structures provide intuitive “merging” and “breaking” operations (for example
for graphs we can think of disjoint unions, induced subgraphs or contractions). Hopf monoids are
an algebraic structure reflecting these operations as product and coproduct. Besides the algebraic
point of view the talk will present a geometric perspective by introducing generalized permutahedra.
Connecting these two perspectives turns out to be fruitful for finding nice antipode formulas and,
consequently, unifying already known reciprocity results as well as developing new ones. All used
notions and concepts will be explained during the talk.

Hopf monoids
Definition 1 A set species P consists of

a) for each finite set I, a set P [I]
b) for each bijection σ : I → J , a map P [σ] : P [I] → P [J ], s.t. P [σ ◦ τ ] = P [σ] ◦ P [τ ] and

P [id] = id
Definition 2 A connected Hopf monoid in set species H consists of:

a) a set species H s.t. H[∅] is a singleton (connectedness)
b) product and coproduct maps

H[S]× H[T ] µS,T−−→ H[I] and H[I] ∆S,T−−−→ H[S]× H[T ]
for each finite set I and decomposition I = S t T .

Moreover, the (co)product maps should satisfy 4 axioms below.
Axioms:

a) (Co)Associativity: product and coproduct are associative
b) Compatibility: “merging then breaking” = “breaking then merging”
c) Naturality: “relabeling maps” respect merging and breaking
d) Unitality: merging and breaking is trivial, whenever the underlying decomposition is trivial

Hopf monoid structures can be defined on (hyper-)graphs, matroids, posets, set partitions, paths, . . .
Fix a field k.
Definition 3 A vector species P consists of:

a) for each finite set I, a vector space P[I]
b) for each bijection σ : I → J , a linear map P[σ] : P[I]→ P[J ].

Definition 4 A connected Hopf monoid in vector species H consists of:
a) a vector species H s.t. H[∅] = k (connectednes)
b) linear maps

H[S]⊗H[T ] µS,T−−→ H[I] and H[I] ∆S,T−−−→ H[S]⊗H[T ]

40



for each decomposition I = S t T .
Moreover, the linear maps should satisfy the axioms above.
Definition 5 Let H be a connected Hopf monoid in vector species. The antipode of H is the
collection of maps

sI : H[I]→ H[I],
one for each finite set I, given by s∅ = id and

sI =
∑

I=S1t···tSk,
k≥1, Si 6=∅

(−1)kµS1,...,Sk ◦∆S1,...,Sk for I 6= ∅

Figure 14: Example of an antipode formula for graphs

Generalized permutahedra
Let RI be the real vector space with basis I. Use ei for basis vector in RI and i for element in I.

Definition 6 The standard permutahedron πn is the
convex hull of the n! permutations of I = [n] = {1, . . . , n},
i.e.

πI := conv{(ω(1), . . . , ω(n) : ω ∈ Sn} ⊂ RI

Definition 7 (Generalized permutahedron)
informally: deformation of standard permutahedron

a) move vertices while preserving edge directions
b) translate facets without passing vertices

formally: normal fan of generalized permutahedra is a
coarsening of the normal fan of the standard permutahedron
πI
Some subclasses of generalized permutahedra: graphic zonotopes, hypergraphic polytopes, simpli-
cial complex polytopes, nestohedra, associahedra, standard permutahedra, . . .

Hopf monoid of generalized permutahdra
For a decomposition S t T = I and p ∈ GP[S], q ∈ GP[T ] we have

p× q ∈ GP[I]
Define the product to be

p · q := p× q

There exist generalized permutahedra p|S ⊂ RS and p/S ⊂ RT s.t.
pS,T = p|S × p/S

Define the coproduct to be
∆S,T (p) = (p|S, p/S)
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Theorem 8 (Antipode) The antipode of the Hopf monoid GP of generalized permutahedra is
given by the following cancellation-free and grouping-free formula.
For generalized permutahedra p ⊂ RI we have

sI(p) = (−1)|I|
∑
q≤p

(−1)dim qq

where we sum over all nonempty faces q of p.

Application: Reciprocity results
Theorem 9 (Reciprocity) Let H be a connected Hopf monoid, ζ : H[I]→ k be a character and
χ be the associated polynomial invariant. Let s be the antipode of H. Then

χI(x)(−1) = ζI(sI(x)),
more generally

χI(x)(−n) = χI(sI(x))(n).
Theorem 10 (Reciprocity for basic character and generalized permutahedra) At a nat-
ural number n, the basic invariant of a generalized permutahedron p ⊂ RI is given by

χI(p)(n) = (# of p-generic functions y : I → [n])
where y is p-generic iff py is a point. Moreover,

(−1)IχI(p)(−n) =
∑

y:I→[n]
(# of vertices of py)

where py is the y-maximum face of p.
Application to graphs: The basic polynomial invariant is the chromatic polynomial of graphs,
which equals

χI(g)(n) = (# of proper colorings y : I → [n] of g with n colors)
and
(−1)IχI(g)(−n) = (# of compatible pairs of acyclic orientations of g and n-colorings y : I → [n])
(−1)IχI(g)(−1) = (# of acyclic orientations of g)
(Stanley’s reciprocity theorem for graphs, 1973)
Similar results using basic characters for
• Matroids (Billera-Jia-Reiner polynomial, 2009)
• Matroids (Bergmann polynomial reciprocity)
• Posets (Stanley’s reciprocity theorem for posets, 1970)
• Hypergraphs (Aval, Karaboghossian, Tanasa, 2018)
• . . .
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Introduction
A cycle or a path (in graph G)is Hamiltonian if it contains all vertices of G. A graph is called
Hamiltonian if it has a Hamiltonian cycle and Hamiltonian-connected if there is a Hamiltonian
path between any two vertices in the graph. A cut is set of vertices whose removal disconnects the
graph.
In 1931Whitney[6] proved that 4-connected planar triangulations are Hamiltonian and later Tutte[5]
extended this to all 4-connected planar graphs. Ozeki and Zamfirescu have strengthend results on
the Hamiltonicity of 3-connected planar graphs with a specified number of 3-cuts. Brinkmann and
Zamfirescu[1] states that every 3-connected planar graph with at most three 3-cuts is Hamiltonian.
Jackson and Yu[3] showed that plane triangulations with at most three separating triangles is
Hamiltonian.
The two following notions help to classify nonplanar graphs. Crossing number cr(G) of graph G
is the minimum number of edge crossings over all plane drawings of G. The genus of a graph G
is the smallest k such that the graph can be embedded on a sphere with k handles. Grünbaum[2]
conjectured that every 4-connected graph of genus 1 is Hamiltonian.
Kawarabayashi and Ozeki[4] showed that every 4-connected projective-planar graph is Hamiltonian-
connected. Since any graph with crossing number 1 can be embedded into the projective plane,
it follows that every 4-connected graph with crossing number at most 1 is Hamiltonian-connected.
Brinkmann showed that if e and f are the crossing edges in a 4-connected graph G with crossing
number 1, then G contains a Hamiltonian cycle avoiding e and f .
In this paper, authors show the following result:
Theorem 1 Every 4-connected graph with crossing number at most 2 is Hamiltonian.
In this talk, we will present a proof of Theorem 1. First, we will focus on some necessary related
results. Afterwards we will discuss some application of Theorem 1. And at the end we give a tabular
overview of certain Hamiltonian properties of 3-connected graphs with few crossings and a small
number of 3-cuts. Bibliography
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Introduction
Definition 1 For a positive integer t, a t-spanner of a graph G is a spanning subgraph H such that
the distance between every pair of vertices in H is at most t times of that in G.
That is, a subgraph H = (V,EH) of G = (V,E) is said to be a t-spanner if dH(u, v) ≤ t · dG(u, v)
for any u, v ∈ V .
We consider the following problem.
Definition 2 Let t be a positive integer. We call Minimum t-Spanner Problem the problem of
finding a t-spanner with minimum number of edges in a given graph.
Minimum t-Spanner Problem is known to be NP-hard in general graphs, and also in planar graphs
for t ≥ 5. We show that it is NP-hard in planar graphs for t in {2, 3, 4} (for t = 1 it is trivial, since
the optimal solution is obtained by removing parallel edges).
We also present a fixed-parameter algorithm for this problem in which the number of removed edges
is regarded as a parameter.

NP-hardness
Definition 3 For a subgraph H of G, the set of edges in H is denoted by E(H). For a vertex set
X ⊆ V , let δG(X)denote the set of all edges in G connecting X and V \X.
Definition 4 Let t be a positive integer. We call Dominating Set with Degree-k-Constraint the
problem of finding a minimal dominating set containing every vertex of degree at least k.
Definition 5 A graph G = (V,E) is nearly k-edge-connected if the minimum degree of G is at least
k − 1. And |δG(X)| ≤ k − 1 =⇒ |X| ≤ 1 or |V \X| ≤ 1 for any X ⊆ V .
Lemma 6 Let t be a positive integer. For a graph G = (V,E), its subgraph H = (V,EH) is a
t-spanner if and only if dH(u, v) ≤ t for any uv ∈ E \ EH .
Lemma 7 Dominating Set with Degree-k-Constraint in nearly k-edge-connected planar graphs is
NP-hard for k ∈ {4, 5, 6}.
Lemma 8 Dominating Set with Degree-(t+ 2)-Constraint in nearly (t+ 2)-edge-connected planar
graphs can be reduced to Minimum t-Spanner Problem in planar graphs.

FPT algorithm
Definition 9 An algorithm parameterized by k is called a fixed-parameter algorithm(or an FPT
algorithm) if its running time is bounded by f(k) · (|V |+ |E|)O(1) for some function f .
Lemma 10 For a positive integer t, there exists a FPT algorithm for Minimum t-Spanner Problem
parameterized by k that runs in O

(
k (k2t (t+ 1))k+1 + |V ||E|

)
time where k is the number of re-

moved edges.
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Introduction
Having a fair die is cool. You can throw and every outcome will have the same probability. But
if you throw with more fair dice not every sum has the same probability. In this talk we examine
question: How looks a sack of independent dice (not neccessary fair) with any number of sides, for
which all totals are equally likely.
Problem 1 You can change number of dots on any side of two six-sided dice. Change them in such
a way that every result of throw with changed dice has the same probability as throw with standard
dice.
Problem 2 Find a sack with three dice such that if all dice are thrown every outcome form the set
{0, 1, 2, . . . , 11} are equally likely.
Dice can have any number of sides with any probability.
Problem 3 For every k ≤ n construct dice that have all sums in {0, 2, . . . 2n − 1} equaly likely.

Definitions
Definition 4 A die d of order n ≥ 2 is a finite probability space whose sample space is the set
〈n〉 = {0, 1, 2, . . . , n− 1}.
Probability of side with number j is pd(j).
Definition 5 Dice d is semifair if
• each pd(j) is either 0 or equal to pd(0), which is nonzero,
• it is palindromic: pd(n− j − 1) = pd(j).

Definition 6 A partition Π is interval free if no part contains consecutive elements of [l].

Theorems
Theorem 7 A sack is fair if and only if
• each die in it is semifair,
• each total is obtained from a unique effective roll.

Theorem 8 Every partition-factorization sack S arises from an interval free partition of an ordered
factorization, both of which are uniquely determined by S.
Theorem 9 Every fair sack S of size m and total t equals Sa,Π for Π a uniquely determined iterval
free partition with m parts of an ordered factorization a of t.
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Introduction
The problem of finding low-density identifying codes was introduced in relation to fault diagnosis
in arrays of processors. The aim is to find a small subset of vertices C such that every vertex is
uniquely identified by his neighbours from C. Most interest was dedicated to graphs with a grid
topology. This paper studies the problem for king grids.
Definition 1 Graph G is a king grid if it is a strong product of two paths P1 and P2 ( G = P1�P2).
Definition 2 Graph Kk is a king strip if Kk = PN � Pk.
Definition 3 Let G = (V,E) be a graph and N [v] denote closed neighbourhood of v ∈ V . For
subset C ⊆ V , let C[v] = N [v] ∩ C. Subset C is an identifying code if C[v] 6= {} and C[v] 6= C[u]
for all distinct u, v ∈ V .

Because G can be infinite we define density of C in G a little bit more carefully as

d(C,G) = lim sup
r→∞

|C ∩Br(v0)|
|Br(v0)|

where Br(v0) is a ball of radius r around an arbitrary vertex v0. The infimum of the density of an
identifying code in G is denoted by d?(G).

Results
Using the discharging method we prove the following theorems:
Theorem 4 If G is a (finite or infinite) king grid, then d?(G) ≥ 2

9 .
Theorem 5 If G is a finite king grid, then d?(G) > 2

9 .
Theorem 6 If Kk is a king grid and k ≥ 6, then d?(Kk) > 2

9 + 8
81k .

Theorem 7 For k ≥ 5:

d?(Kk) ≤


2
9 + 6

18k if k ≡ 0 mod 3
2
9 + 8

18k if k ≡ 1 mod 3
2
9 + 7

18k if k ≡ 2 mod 3
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