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a b s t r a c t

Consider two horizontal lines in the plane. A point on the top line and an interval on the
bottom line define a triangle between two lines. The intersection graph of such triangles
is called a simple-triangle graph. This paper shows a vertex ordering characterization of
simple-triangle graphs as follows: a graph is a simple-triangle graph if and only if there is
a linear ordering of the vertices that contains both an alternating orientation of the graph
and a transitive orientation of the complement of the graph.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let L1 and L2 be two horizontal lines in the plane with L1 above L2. A pair of a point on the top line L1 and an interval on
the bottom line L2 defines a triangle between L1 and L2. The point on L1 is called the apex of the triangle, and the interval
on L2 is called the base of the triangle. A simple-triangle graph is the intersection graph of such triangles, that is, a simple
undirected graph G is called a simple-triangle graph if there is such a triangle for each vertex and two vertices are adjacent if
and only if the corresponding triangles have a nonempty intersection. The set of triangles is called a representation of G. See
Figs. 1(a) and 1(b) for example. Simple-triangle graphs are also known as PI graphs [2,3,5], where PI stands for Point-Interval.
Simple-triangle graphs were introduced as a generalization of both interval graphs and permutation graphs, and they form
a proper subclass of trapezoid graphs [5]. Although a lot of research has been done for interval graphs, for permutation
graphs, and for trapezoid graphs (see [2,10,12,17,19,23] for example), there are few results for simple-triangle graphs [1,3,5].
The polynomial-time recognition algorithm has been given recently [18,25], but the complexity of the graph isomorphism
problem still remains an open question [24,26], which makes it interesting to study the structural characterizations of this
graph class.

A vertex ordering of a graph G = (V , E) is a linear ordering σ = v1, v2, . . . , vn of the vertex set V of G. We use u<σ v
to denote that u precedes v in σ . A vertex ordering characterization of a graph class G is a characterization of the following
type: a graph G is in G if and only if G has a vertex ordering fulfilling some properties. For example, it is known that a graph
G is an interval graph if and only if G has a vertex ordering σ such that for any three vertices u<σ v<σ w, if uw ∈ E then
uv ∈ E [21]. In other words, a graph is an interval graph if and only if it has a vertex ordering that contains no subordering
in Figs. 2(a) and 2(c). It is also known that a graph is a permutation graph if and only if it has a vertex ordering that contains
no subordering in Figs. 2(b) and 2(c). See [2,6,13] for other examples of vertex ordering characterizations.

This paper shows a vertex ordering characterization of simple-triangle graphs. We call a vertex ordering σ of a simple-
triangle graph G an apex ordering if there is a representation of G such that σ coincides with the ordering of the apices of
the triangles in the representation. See Fig. 1(d) for example. We characterize the apex orderings of simple-triangle graphs
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Fig. 1. A simple-triangle graph G, the representation of G, the Hasse diagram of linear-interval order P , and the apex ordering of G.

Fig. 2. Forbidden patterns. Lines and dashed lines denote edges and non-edges, respectively. Edges that may or may not be present is not drawn.

as follows: a vertex ordering σ of a graph G is an apex ordering if and only if σ contains no subordering in Figs. 2(c)–
2(e). Equivalently, we show that a vertex ordering σ of G is an apex ordering if and only if σ contains both an alternating
orientation of G and a transitive orientation of the complement G of G.

The organization of this paper is as follows. Before describing the vertex ordering characterization, we show in Section 2 a
characterization of the linear-interval orders, the partial orders associated with simple-triangle graphs. The vertex ordering
characterization of simple-triangle graphs is shown in Section 3. We remark some open questions and related topics in
Section 4.

2. Linear-interval orders

A partial order is a pair P = (V ,≺P ), where V is a finite set and≺P is a binary relation on V that is irreflexive and transitive.
The finite setV is called the ground set of P . A partial order P = (V ,≺P ) is called a linear order if for any two elements u, v ∈ V ,
u≺Pv or u≻Pv. A partial order P = (V ,≺P ) is called an interval order if for each element v ∈ V , there is a (closed) interval
I(v) = [l(v), r(v)] on the real line such that for any two elements u, v ∈ V , u≺Pv ⇐⇒ r(u) < l(v), that is, I(u) lies
completely to the left of I(v). The set of intervals {I(v) | v ∈ V } is called an interval representation of P .

Let P1 = (V ,≺1) and P2 = (V ,≺2) be two partial orders with the same ground set. The intersection of P1 and P2 is the
partial order P = (V ,≺P ) such that u≺Pv ⇐⇒ u≺1v and u≺2v; it is denoted by P = P1 ∩ P2. A partial order P is called a
linear-interval order (also known as a PI order [3]) if there exist a linear order L and an interval order PI such that P = L ∩ PI .
The linear-interval order can also be defined as follows. Recall that L1 and L2 are two horizontal lines with L1 above L2, and a
pair of a point on L1 and an interval on L2 defines a triangle between L1 and L2. A partial order P = (V ,≺P ) is a linear-interval
order if there is such a triangle T (v) for each element v ∈ V , and u≺Pv if and only if T (u) lies completely to the left of T (v).
See Figs. 1(b) and 1(c) for example. Notice that the ordering of the apices of the triangles gives the linear order L, and the
bases of the triangles give an interval representation of the interval order PI .

A linear order L = (V ,≺L) is called a linear extension of a partial order P = (V ,≺P ) if u≺Lv whenever u≺Pv. Hence, the
linear extension L of P has all the relations of P with the additional relations that make L linear. We define two properties of
linear extensions.

– Let 2 + 2 denote the partial order consisting of four elements a0, a1, b0, b1 whose only relations are a0≺Pb0 and
a1≺Pb1. A linear extension L = (V ,≺L) of P = (V ,≺P ) is said to fulfill the 2 + 2 rule if for every suborder 2 + 2
in P , either b0≺La1 or b1≺La0.
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Fig. 3. Alternating anticycles. An arrow a→ b denotes the relation a≺Pb, and a dashed arrow a 99K b denotes the relation a≺Lb but a⊀Pb.

– An alternating 2k-anticycle of a linear extension L = (V ,≺L) of P = (V ,≺P ) is an induced suborder consisting of
distinct 2k elements a0, b0, a1, b1, . . . , ak−1, bk−1 with ai≺Pbi and ai+1≺Lbi but ai+1⊀Pbi for any i = 0, 1, . . . , k − 1
(indices are modulo k). See Fig. 3 for example.

Notice that a linear extension L of P fulfills the 2 + 2 rule if and only if L contains no alternating 4-anticycle. These properties
characterize the linear-interval orders as follows.

Theorem 1. For a partial order P, the following conditions are equivalent:

(i) P is a linear-interval order;
(ii) P has a linear extension fulfilling the 2 + 2 rule;
(iii) P has a linear extension that contains no alternating 4-anticycle.

Proof. It is obvious that (ii) ⇐⇒ (iii). The implications (i) H⇒ (ii) and (iii) H⇒ (i) are proved by Lemmas 2 and 3,
respectively. □

Lemma 2. If a partial order P = (V ,≺P ) has a linear order L = (V ,≺L) and an interval order PI = (V ,≺I ) with P = L ∩ PI ,
then for any suborder 2 + 2 in P, the equivalences a0≺La1 ⇐⇒ b0≺La1 ⇐⇒ b0≺Lb1 ⇐⇒ a0≺Lb1 hold, where the suborder
2 + 2 consists of four elements a0, a1, b0, b1 whose only relations are a0≺Pb0 and a1≺Pb1.

Proof. For an element v of PI , let I(v) denote the interval of v in the interval representation of PI . We first show that
a0≺La1 H⇒ b0≺La1. Suppose for a contradiction that a0≺La1≺Lb0. Since a0≺Pb0, the interval I(a0) lies completely to the
left of I(b0). Then since a0≺La1≺Lb0, the interval I(a1) must intersect both I(a0) and I(b0). Since a1≺Pb1, the interval I(a1)
lies completely to the left of I(b1), and consequently, I(a0) lies completely to the left of I(b1), that is, a0≺Ib1. From a1≺Pb1,
we also have a0≺La1≺Lb1, which implies a0≺Pb1, contradicting the definition of 2 + 2. Thus, a0≺La1 H⇒ b0≺La1. By similar
arguments, we have the other implications b0≺La1 H⇒ b0≺Lb1 H⇒ a0≺Lb1 H⇒ a0≺La1. We note that this proof is implicit
in [5]. □

Lemma 3. If a partial order P = (V ,≺P ) has a linear extension L = (V ,≺L) that contains no alternating 4-anticycle, then there
is an interval order PI = (V ,≺I ) with P = L ∩ PI . The interval order PI and its interval representation can be obtained in O(n2)
time from P and L, where n is the number of elements of P.

Proof. We prove the lemma by showing an algorithm to construct an interval representation of PI from P and L. We note
that this algorithm is inspired by the algorithms that solve the sandwich problems for chain graphs and for threshold
graphs [7,11,16,22,25]. As in Fig. 3, we use in this proof an arrow a → b to denote the relation a≺Pb, and a dashed arrow
a 99K b to denote the relation a≺Lb but a⊀Pb. Notice that for a partial order Q , the intersection L ∩ Q = P if and only if Q
has all the relations of→ but has no relations of 99K. The following facts are central to the proof of the correctness of the
algorithm.

Claim 4. L contains no alternating anticycle.

Proof. Suppose for a contradiction that L contains an alternating anticycle. Let C be an alternating 2k-anticycle of Lwith the
least number of elements, and let a0, b0, a1, b1, . . . , ak−1, bk−1 be the consecutive elements of C with ai → bi and ai+1 99K bi
for any i = 0, 1, . . . , k − 1 (indices are modulo k). Since L contains no alternating 4-anticycle, we have k ≥ 3. We consider
the relation between a0 and b1. If a0 → b1 then the elements a0, b1, a2, b2, a3, b3, . . . , ak−1, bk−1 induce an alternating
(2k − 2)-anticycle, contradicting the minimality of C . If b1 → a0 then a1 → b0 by the transitivity of ≺P , a contradiction. If
a0 99K b1 then the elements a0, b0, a1, b1 induce an alternating 4-anticycle, a contradiction. Therefore, we have b1 99K a0.
Similarly, we have bi+1 99K ai for any i = 0, 1, . . . , k − 1. However, it follows from ai → bi that L is not a linear order, a
contradiction. □
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An element a of P is said to beminimal if there is no element b of P with b≺Pa. Let S be the set of all minimal elements of P .

Claim 5. There is a minimal element a ∈ S such that for any element b ∈ V \ S, if a≺Lb then a≺Pb. In other words, there is an
element a ∈ S that has no element b ∈ V \ S with a 99K b.

Proof. Suppose for a contradiction that for any minimal element a ∈ S, there is an element b ∈ V \ S with a 99K b. Notice
that for any element b ∈ V \ S, there is a minimal element a ∈ S with a → b. Thus, starting at some vertex in V , we can
grow a walk alternating between S and V \ S without stopping. The first time the walk revisits a previously visited vertex,
we obtain an alternating anticycle, contradicting that L contains no alternating anticycle. □

Algorithm 1: Constructing of the interval representations
Data: The partial order P = (V ,≺P ) and the linear extension L = (V ,≺L) of P
Result: An interval representation {I(v) = [l(v), r(v)] | v ∈ V } of PI = (V ,≺I ) with P = L ∩ PI

1 S ← ∅, i← 0;
2 repeat
3 i← i+ 1;
4 foreach element a ∈ V \ S do
5 if a has no element b ∈ V with b ≺P a then
6 S ← S ∪ {a};
7 l(a)← i;
8 end
9 end

10 i← i+ 1;
11 foreach element a ∈ S do
12 if a has no element b ∈ V \ S with a ≺L b but a ̸≺P b then
13 V ← V \ {a}, S ← S \ {a};
14 r(a)← i;
15 end

/* Claim 5 ensures that at least one element of S fulfills the if condition. */
16 end
17 until V = ∅;

The algorithm to construct an interval representation of PI is given as Algorithm 1. At the end of the loop on lines 4–9,
S has all the minimal elements of the suborder of P induced by V (recall that elements may be removed from V at line 13).
Hence, Claim 5 ensures that S has at least one element fulfilling the if condition at line 12. Since such an element is removed
from V and S at line 13, we can see by induction that Algorithm 1 eventually terminates. For any two elements a, b ∈ V , the
if condition at line 5 ensures that r(a) < l(b) whenever a→ b, and the if condition at line 12 ensures that a ̸99K b whenever
r(a) < l(b); the interval order PI has all the relations of→ but has no relations of 99K. Hence, Algorithm 1 gives an interval
representation of PI with P = L ∩ PI . The tests in lines 5 and 12 take O(n) time for each element, and hence the loops on
lines 4–9 and 11–16 take O(n2) time. Therefore the running time of this algorithm is O(n2), and we have Lemma 3. □

3. Apex orderings

An orientation of a graph G is an assignment of a direction to each edge of G. A transitive orientation of G is an orientation
such that for any three vertices u, v, w of G, if u → v and v → w then u → w. A transitively oriented graph is used to
represent a partial order P = (V ,≺P ), where an edge u → v denotes the relation u≺Pv. A graph is called a comparability
graph if it has a transitive orientation. For a graph G = (V , E), the complement of G is the graph G = (V , E) such that for any
two vertices u, v ∈ V , uv ∈ E ⇐⇒ uv ̸∈ E. The complement of a comparability graph is called a cocomparability graph. The
vertex ordering characterizations of these graph classes are known as follows. Recall that if σ is a vertex ordering of G, we
use u<σ v to denote that u precedes v in σ .

– A graph G = (V , E) is a comparability graph if and only if there is a vertex ordering σ of G such that for any three
vertices u<σ v<σ w, if uv ∈ E and vw ∈ E then uw ∈ E. In other words, a graph is a comparability graph if and only if
it has a vertex ordering that contains no subordering in Fig. 2(b). We call such an ordering a comparability ordering.

– A graph G = (V , E) is a cocomparability graph if and only if there is a vertex ordering σ of G such that for any three
vertices u<σ v<σ w, if uw ∈ E then uv ∈ E or vw ∈ E [15]. In other words, a graph is a cocomparability graph if and
only if it has a vertex ordering that contains no subordering in Fig. 2(c). We call such an ordering a cocomparability
ordering.

Cocomparability graphs form a superclass of trapezoid graphs, and hence, every simple-triangle graph is a cocompara-
bility graph. In order to characterize simple-triangle graphs, we define the following vertex ordering properties.
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– Let C4 = (u, v, w, x) denote a chordless cycle of length 4. A vertex ordering σ of G is said to fulfill the C4 rule if for
every cycle C4 in G, the equivalences u<σ v ⇐⇒ w<σ v ⇐⇒ w<σ x ⇐⇒ u<σ x hold.

– Let 2K2 denote the graph consisting of four vertices u, v, w, xwhose only edges are uw and vx. A vertex ordering σ of
G is said to fulfill the 2K2 rule if for every subgraph 2K2 in G, the equivalences u<σ v ⇐⇒ w<σ v ⇐⇒ w<σ x ⇐⇒
u<σ x hold. We note that the 2K2 rule is also used to characterize co-threshold tolerance graphs [20].

Notice that a vertex ordering of G fulfills the C4 rule if and only if it is a vertex ordering of the complement G of G fulfilling of
the 2K2 rule. These rules characterize the simple-triangle graphs as follows.

Theorem 6. For a graph G, the following conditions are equivalent:

(i) G is a simple-triangle graph;
(ii) G has a cocomparability ordering fulfilling the C4 rule;
(iii) G has a vertex ordering that contains no subordering in Figs. 2(c)–2(e);
(iv) G has a comparability ordering fulfilling the 2K2 rule;
(v) G has a vertex ordering that contains no subordering in Figs. 2(b), 2(d) and 2(e).

Proof. It is obvious that (ii) ⇐⇒ (iv) and (iii) ⇐⇒ (v).
(i)H⇒ (ii): It suffices to show that the apex ordering σ of a simple-triangle graphG = (V , E) is a cocomparability ordering

since an apex ordering is known to fulfill the C4 rule [5] (see also Lemma 2). Suppose that G has three vertices u<σ v<σ w

with uw ∈ E. Let T (v) denote the triangle of a vertex v ∈ V in the representation of G. Since u<σ v<σ w and T (u)∩ T (w) ̸= ∅,
the triangle T (v) must intersect T (u) or T (w). Hence, we have uv ∈ E or vw ∈ E.

(iv)H⇒ (i): Let σ be a comparability ordering of G = (V , E) fulfilling the 2K2 rule. From G, we can obtain the partial order
P if we orient the edges of G transitively so that u→ v ⇐⇒ u<σ v since σ is a comparability ordering. Since σ fulfills the
2K2 rule, σ is also a linear extension of P fulfilling the 2 + 2 rule. By Theorem 1, P is a linear-interval order, and hence, G is
a simple-triangle graph.

(ii) H⇒ (iii): Let σ be a cocomparability ordering of G = (V , E) fulfilling the C4 rule. The ordering σ contains no
subordering in Fig. 2(c) since σ is a cocomparability ordering. Suppose for a contradiction that there are four vertices
u<σ v<σ w<σ x on σ that induce a subordering in Fig. 2(d). We have uv ∈ E for otherwise the vertices u<σ v<σ w would
induce a subordering in Fig. 2(c). We also have wx ∈ E for otherwise the vertices v<σ w<σ x would induce a subordering
in Fig. 2(c). Hence, the vertices u<σ v<σ w<σ x induce C4 that violates the C4 rule, a contradiction. Similarly, suppose for a
contradiction that there are four vertices u<σ v<σ w<σ x on σ that induce a subordering in Fig. 2(e). We have uv ∈ E for
otherwise the vertices u<σ v<σ x would induce a subordering in Fig. 2(c). We also have wx ∈ E for otherwise the vertices
u<σ w<σ x would induce a subordering in Fig. 2(c). Hence, the vertices u<σ v<σ w<σ x induce C4 that violates the C4 rule, a
contradiction.

(ii)⇐H (iii): Let σ be a vertex ordering that contains no subordering in Figs. 2(c)–2(e). The ordering σ is a cocomparability
ordering since σ contains no subordering in Fig. 2(c). We can verify that any four vertices of C4 that violate the C4 rule induce
the subordering in either Figs. 2(d) or 2(e). Hence, σ fulfills the C4 rule.

We can also prove (iv) ⇐⇒ (v) by a similar argument in the proof of (ii) ⇐⇒ (iii). □

We can also describe the characterization in terms of orientations of graphs. An orientation of a graph is called acyclic
if it has no directed cycle. An orientation of a graph is called alternating if it is transitive on every chordless cycle of length
greater than or equal to 4, that is, the directions of the oriented edges alternate. A graph is called alternately orientable [14]
if it has an alternating orientation. Since cocomparability graphs have no chordless cycle of length greater than 4 (see [2,9]
for example), we have the following from Theorem 6.

Corollary 7. A graph G is a simple-triangle graph if and only if there is an alternating orientation of G and a transitive orientation
of the complement G of G such that the union of the oriented edges of G and G forms an acyclic orientation of the complete graph.

Moreover, we have the following from Theorem 1 since being a linear-interval order is a comparability invariant [3] (that
is, any transitive orientation of the complement of a simple-triangle graph gives a linear-interval order).

Corollary 8. Let G be a simple-triangle graph. For any transitive orientation of the complement G of G, there is an alternating
orientation of G such that the union of the oriented edges of G and G forms an acyclic orientation of the complete graph.

4. Concluding remarks

We have shown a vertex ordering characterization of simple-triangle graphs based on the ordering of the apices of the
triangles in the representation. We conclude this paper with some miscellaneous topics related to this characterization.

Corollary 7 indicates that a simple-triangle graph is a cocomparability graph that has an alternating orientation [8], but
we can see the converse is not true. The separating example is the graphW in Fig. 4(b). This graphW has a unique alternating
orientation (up to reversal), and the complement of W has the unique transitive orientation (up to reversal) whose Hasse
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Fig. 4. The partial orders and the graphs.

diagram is shown in Fig. 4(a). Suppose that a1 → a2. Then the cycle (a1, a2, c2, c3) requires that a1 → a2 ⇐⇒ c2 → a2,
while the cycles (a1, a2, c1, c3), (c1, c3, b1, b2), and (c1, c2, b1, b2) require that a1 → a2 ⇐⇒ c1 → c3 ⇐⇒ b1 →
b2 ⇐⇒ b1 → c2. Hence, we have a directed cycle (b1, c2, a2) in the union of the oriented edges of G and G. Suppose on the
contrary that a1 ← a2. Then the cycle (a1, a2, c2, c3) requires that a1 ← a2 ⇐⇒ a1 ← c3, while the cycles (a1, a2, c2, c4),
(c2, c4, b2, b3), and (c3, c4, b2, b3) require that a1 ← a2 ⇐⇒ c2 ← c4 ⇐⇒ b2 ← b3 ⇐⇒ c3 ← b3. Hence, we
have a directed cycle (b3, c3, a1) in the union of the oriented edges of G and G, and Corollary 7 indicates that W is not a
simple-triangle graph.

A graph is a permutation graph if and only if it is simultaneously a comparability graph and a cocomparability graph
(see [10] for example). A permutation graph G is known to have a unique transitive orientation (up to reversal) when the
complement G of G has a unique transitive orientation. This derives the polynomial-time algorithm for testing isomorphism
of permutation graphs [4]. Hence, it is interesting to ask whether a simple-triangle graph G has a unique alternating
orientation when the complement G of G has a unique transitive orientation (up to reversal). We give the negative answer
to this question. The graph IV in Fig. 4(d) is alternately orientable but does not have a unique alternating orientation since
we can reverse the orientation of edges on the cycle (b2, b3, c2, c3), while the complement of IV has the unique transitive
orientation (up to reversal) whose Hasse diagram is shown in Fig. 4(c).

We finally pose two open questions for simple-triangle graphs. The first question is related to the recognition problem.
The polynomial-time recognition algorithm is already known [18,25], but the running time of it is O(n2m̄), where n and m̄
is the number of vertices and non-edges of the graph, respectively. The algorithm reduces the recognition to a problem of
covering an associated bipartite graph by two chain graphs with additional conditions. Our first question is whether we can
recognize simple-triangle graphs in polynomial time by using the vertex ordering characterization in Theorem 6?

Problem 1. By using the vertex ordering characterization of simple-triangle graphs, find a recognition algorithm faster than
the existing ones [18,25].

The second question is related to the isomorphism problem. A canonical ordering of a graph G is a vertex ordering of G
such that every graph that is isomorphic to G has the same canonical ordering as G. Hence, the graph isomorphism problem
can be solved by computing the canonical orderings of the two given graphs and testing whether these two ordered graphs
are identical. Our second question is whether there is any canonical ordering of simple-triangle graphs based on the vertex
ordering characterization in Theorem 6?

Problem 2. By using the vertex ordering characterization of simple-triangle graphs, find a canonical ordering computable
in polynomial time.
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