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For a positive integer t, a t-spanner of a graph G is a spanning subgraph in which the 
distance between every pair of vertices is at most t times of their distance in G . In this 
paper, we consider the problem of finding a t-spanner with minimum number of edges in 
a given graph, which we call Minimum t-Spanner Problem. For t ≥ 2, Minimum t-Spanner 
Problem is known to be NP-hard in general graphs. When the input graph is planar, it is 
shown by Brandes and Handke in 1997 that this problem is NP-hard for t ≥ 5. Since then, 
the case of t ∈ {2, 3, 4} has been open for more than two decades. The main contribution 
of this paper is to settle this open problem by showing the NP-hardness of Minimum 
t-Spanner Problem in planar graphs for t ∈ {2, 3, 4}. As a byproduct, we show the NP-
hardness of the problem on degree-bounded graphs, which improves previously known 
degree-bounds. We also present a fixed-parameter algorithm for this problem in which the 
number of removed edges is regarded as a parameter.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For a positive integer t , a t-spanner of a graph G is a spanning subgraph H such that the distance between every pair 
of vertices in H is at most t times of that in G . Spanners were introduced in [17,18] in the context of synchronization in 
networks. Since then, spanners and related concepts have been studied with applications to several areas such as space 
efficient routing tables [11,19], computation of approximate shortest paths [9,10,14], distance oracles [2,21], and so on. Even 
today, finding a good spanner or its variants in dense graphs is regarded as an important topic in algorithm theory, see 
recent papers such as [1,7,8].

The topic of this paper is a classical but natural and important problem that finds a spanner of minimum size. For a 
fixed positive integer t , we consider the following problem.

Minimum t-Spanner Problem

Instance. A graph G = (V , E).
Question. Find a t-spanner H = (V , E H ) of G that minimizes |E H |.

This problem is sometimes called Sparsest t-Spanner Problem. If t = 1, then this problem is trivial since the optimal 
solution is obtained from G by just removing parallel edges. Thus, we consider the case of t ≥ 2. Since Minimum t-Spanner 
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Table 1
Polynomial solvability of Minimum t-Spanner Problem for graphs of maximum degree at most k, where (*) indicates 
our results.

t = 2 t = 3 t = 4

k = 3 P [6] P [6] open
k = 4 P [6] open open
k = 5 open open open
k = 6 open NP-hard (*) NP-hard (*)
k = 7 open NP-hard (*) NP-hard (*)
k = 8 NP-hard (*) NP-hard [6] NP-hard [6]
k ≥ 9 NP-hard [6] NP-hard [6] NP-hard [6]

Problem is known to be NP-hard for any t ≥ 2 in general graphs [4,17], the main focus of the study is the polynomial 
solvability for the case when the input graph is in a certain graph class. In [23], Venkatesan et al. studied Minimum 
t-Spanner Problem for several graph classes such as chordal graphs, convex bipartite graphs, and split graphs. For each 
graph class, they showed a condition of t for which the problem can be solved in polynomial time. When the input graph is 
a 4-connected planar triangulation, a PTAS is proposed for Minimum 2-Spanner Problem in [13]. For the weighted version 
of the problem in which each edge has a positive integer length, Cai and Corneil [5] showed the NP-hardness of Minimum 
t-Spanner Problem for t > 1.

In this paper, we first consider the case when the input graph is planar. For t ≥ 5, the NP-hardness of Minimum t-Spanner 
Problem in planar graphs was shown by Brandes and Handke [3] in 1997. Since then, the time complexity of the case of 
t ∈ {2, 3, 4} has been open for more than two decades. The main contribution of this paper is to settle this open problem by 
showing the NP-hardness of Minimum t-Spanner Problem in planar graphs for t ∈ {2, 3, 4}. Since the case of t ≥ 5 is settled 
in [3], our main result is stated as follows.

Theorem 1.1. For any t ≥ 2, Minimum t-Spanner Problem is NP-hard even if G is restricted to be planar.

Another interesting special case is the problem on degree-bounded graphs. Cai and Keil [6] showed that Minimum 
2-Spanner Problem can be solved in linear time if the maximum degree of the input graph is at most 4, whereas this 
problem is NP-hard even if the maximum degree is at most 9. They also gave a remark in [6] that Minimum 3-Spanner 
Problem can be solved in polynomial time if the maximum degree of the input graph is at most 3, whereas this problem is 
NP-hard even if the maximum degree is at most 8. Since we use degree-bounded graphs in our proof of Theorem 1.1, our 
argument can improve the degree conditions as follows.

Theorem 1.2. Minimum 2-Spanner Problem is NP-hard even in planar graphs whose maximum degree is at most 8.

Theorem 1.3. For t ∈ {3, 4}, Minimum t-Spanner Problem is NP-hard even in planar bipartite graphs whose maximum degree is at 
most 6.

Determining the exact complexity of the Minimum 2-Spanner Problem on graphs of bounded degree k with 5 ≤ k ≤ 8 is 
posed as an open question in [23]. Theorem 1.2 solves a part of this question, and the case of 5 ≤ k ≤ 7 is still open. We 
summarize the current status of the degree-bounded case in Table 1.

In this paper, we also consider a parameterized version of Minimum t-Spanner Problem and give a fixed-parameter algo-
rithm for it. Since a t-spanner of a connected graph contains �(|V |) edges, the number of edges of a minimum t-spanner is 
not an appropriate parameter. A natural parameter is the number of edges that are removed to obtain a minimum t-spanner. 
That is, we consider the following parameterized problem for fixed t .

Parameterized Minimum t-Spanner Problem

Instance. A graph G = (V , E).
Parameter. A positive integer k.
Question. Find an edge set E ′ ⊆ E with |E ′| ≥ k such that H = (V , E \ E ′) is a t-spanner of G or conclude that such E ′ does 

not exist.

Our objective is to show that there exists a fixed-parameter algorithm for this problem, where an algorithm is called a 
fixed-parameter algorithm (or an FPT algorithm) if its running time is bounded by f (k)(|V | + |E|)O (1) for some function f . 
Formally, our result is stated as follows.

Theorem 1.4. For a positive integer t, there exists a fixed-parameter algorithm for Parameterized Minimum t-Spanner Problem 
that runs in O (k(k2t(t + 1))k+1 + |V ||E|) time.
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To the best of our knowledge, this is the first result on spanners using the number of removed edges as a parameter. 
We believe that this parameterization is natural and useful also in other problems in which we want to find a maximum 
edge/vertex set that can be removed under some conditions.

The remainder of this paper is organized as follows. In Section 2, we give some preliminaries. In order to prove Theo-
rem 1.1, we first show the NP-hardness of the problem of finding a minimum dominating set with additional constraints, 
which is described in Section 3. Then, by showing a reduction from Minimum t-Spanner Problem to this problem, we give a 
proof of Theorem 1.1 in Section 4.1. A crucial part of this reduction is Proposition 4.1, which shows a relationship between a 
dominating set in a graph G and a minimum t-spanner in the dual graph G∗ . Note that a dominating set in G corresponds 
to a set of faces in G∗ , whereas a minimum t-spanner is a set of edges in G∗ . Therefore, they look like completely unre-
lated objects. Although the proof of Proposition 4.1 is not so difficult, it is not an easy task to find out this non-intuitive 
relationship between these two objects. In Section 4.2, we observe properties of graphs used in Section 4.1 and give proofs 
of Theorems 1.2 and 1.3. Finally, in Section 5, we give a fixed-parameter algorithm for Parameterized Minimum t-Spanner 
Problem and prove Theorem 1.4.

2. Preliminaries

In this paper, we deal with only undirected graphs with unit length edges. For a graph G = (V , E) and for u, v ∈ V , let 
dG(u, v) denote the distance of the shortest path between u and v in G . For a positive integer t , a subgraph H = (V , E H ) of 
G = (V , E) is said to be a t-spanner if dH (u, v) ≤ t ·dG (u, v) for any u, v ∈ V . Since we can remove all the parallel edges and 
self-loops when we consider t-spanners, we may assume that the input graph is simple. However, since we use graphs with 
parallel edges in our NP-hardness proof, for convenience in this paper, the term graph is used to represent an undirected 
graph that may contain parallel edges but no self-loops. For a subgraph H of G , the set of edges in H is denoted by E(H). 
For a vertex set X ⊆ V , let δG(X) denote the set of all edges in G connecting X and V \ X . For a vertex v ∈ V , δG({v}) is 
simply denoted by δG (v), and |δG(v)| is called the degree of v . For a positive integer k, a graph is said to be k-regular if its 
every vertex has degree k.

In order to deal with t-spanner, we use an easy but important observation which is stated as follows. Although this idea 
was used in [6], and almost the same statement was shown in [16], we give a proof for completeness.

Lemma 2.1. Let t be a positive integer. For a graph G = (V , E), its subgraph H = (V , E H ) is a t-spanner if and only if dH(u, v) ≤ t for 
any uv ∈ E \ E H .

Proof. Necessity is obvious, because dG (u, v) = 1 for any uv ∈ E \ E H . To show sufficiency, suppose that dH (u, v) ≤ t for 
any uv ∈ E \ E H , that is, H contains a path Puv of length at most t connecting u and v . For any pair of vertices u, v ∈ V , 
we take a shortest u-v path in G that traverses u = v0, v1, . . . , v�−1, v� = v in this order, where � = dG(u, v). Then, by 
concatenating P v0 v1 , P v1 v2 , . . . , P v�−1 v�

in this order, we obtain a u-v walk in H whose length is at most t�. This shows 
that dH (u, v) ≤ t� = t · dG (u, v). �
3. Dominating set with degree constraint

In this section, we show the NP-hardness of the problem of finding a minimum dominating set with additional con-
straints, which will be used in our proof of Theorem 1.1. For a graph G = (V , E), a vertex set S ⊆ V is called a dominating 
set if every vertex in V \ S is adjacent to at least one vertex in S . For a fixed positive integer k, we consider the following 
problem.

Dominating Set with Degree-k-Constraint

Instance. A graph G = (V , E).
Question. Find a dominating set S that minimizes |S| subject to S contains every vertex of degree at least k.

In this section, we consider the case of k ∈ {4, 5, 6}. We note that when k ≥ 4 and the maximum degree of the input 
graph is at most three, this problem is equivalent to the problem of finding a minimum dominating set, which is known 
to be NP-hard [15]. Thus, Dominating Set with Degree-k-Constraint is an NP-hard problem for k ≥ 4. The objective of this 
section is to show that this problem is NP-hard even if the input graph is nearly k-edge-connected and planar. Here, we say 
that a graph G = (V , E) is nearly k-edge-connected if

• the minimum degree of G is at least k − 1, and
• |δG(X)| ≤ k − 1 implies |X | ≤ 1 or |V \ X | ≤ 1 for any X ⊆ V .

That is, we show the following proposition in this section.

Proposition 3.1. For k ∈ {4, 5, 6}, Dominating Set with Degree-k-Constraint in nearly k-edge-connected planar graphs is NP-hard.
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Fig. 1. A gadget corresponding to an edge, where we
i and xe

i are simply denoted by wi and xi , respectively.

We first give a proof for the case of k = 4 in Section 3.1. Then, by applying a similar argument, we prove the case 
of k ∈ {5, 6} in Section 3.2. As we will see in Section 4.2, the case of k = 6 is not necessary to show the NP-hardness of
Minimum 4-Spanner Problem, but we consider this case to simplify the description of Section 4.1.

3.1. Case of k = 4

To show the NP-hardness for the case of k = 4, we use the fact that the problem of finding a minimum vertex cover is 
NP-hard even if the input graph is restricted to be planar, 3-regular, and 3-connected [22]. Here, for a graph G = (V , E), 
a vertex set S ⊆ V is called a vertex cover if each edge in E has at least one endpoint in S . We reduce this problem to
Dominating Set with Degree-4-Constraint in nearly 4-edge-connected planar graphs.

Suppose we are given a graph G = (V , E) that is planar, 3-regular, and 3-connected. In particular, since G is 3-regular 
and 3-connected, it is a simple graph. We fix a planar embedding of G . Let F denote the set of all the faces of G , where 
each open region of R2 \ G is called a face (see e.g. [12]). For notational convenience, in this paper, a closed region consisting 
of a face and its boundary is also called a face if no confusion may arise. We construct an instance of Dominating Set with 
Degree-4-Constraint from G as follows.

• For each face F ∈F , we create a new vertex v F . Let VF = {v F | F ∈F}.
• For each edge e = uv ∈ E , we execute the following (see Fig. 1).

– We replace e with a path of length 11 connecting u and v . Its internal vertices are denoted by we
1, . . . , we

10 in this 
order from u to v . We add an edge connecting we

3 and we
8.

– For i = 1, 2, 4, 5, 6, 7, 9, 10, we create a new vertex xe
i and add an edge connecting we

i and xe
i .

– Among the two faces in F that are adjacent to e, we arbitrarily choose one face, say F , and denote the other face by 
F ′ . For i = 2, 9, we add two parallel edges connecting xe

i and v F . For i = 1, 4, 5, 6, 7, 10, we add two parallel edges 
connecting xe

i and v F ′ .

The obtained graph is denoted by G ′ = (V ′, E ′). For e ∈ E , let G ′
e be the subgraph of G ′ induced by

{we
i | i ∈ {1, . . . ,10}} ∪ {xe

i | i ∈ {1,2,4,5,6,7,9,10}} ∪ {v F , v F ′ },
where F and F ′ are the faces in F that are adjacent to e.

We now prove the following two claims.

Claim 3.2. The graph G ′ defined as above is nearly 4-edge-connected and planar.

Proof. We can easily see that G ′ is planar and the minimum degree is three. In what follows, we show that |δG ′ (X)| ≤ 3
implies |X | ≤ 1 or |V ′ \ X | ≤ 1 for any X ⊆ V ′ . Let X ⊆ V ′ be a vertex set with |δG ′ (X)| ≤ 3.

In G , suppose that two faces F1 and F2 share an edge e = uv ∈ E . Since the degree of v is three in G , there exists another 
face F3 ∈ F such that F3 and F1 share an edge e1 ∈ δG(v), and F3 and F2 share an edge e2 ∈ δG(v). By the construction of 
G ′ , G ′

e contains two edge-disjoint paths P1 and P2 each connecting v F1 and v F2 . Similarly, G ′
e1

contains two edge-disjoint 
paths Q 1 and Q 2 between v F1 and v F3 , and G ′

e2
contains two edge-disjoint paths R1 and R2 between v F2 and v F3 (see 

Fig. 2). By concatenating {Q 1, Q 2} and {R1, R2}, we can see that the union of G ′
e1

and G ′
e2

contains two edge-disjoint paths 
P3 and P4 between v F1 and v F2 . Thus, G ′ has four edge-disjoint paths P1, P2, P3, and P4 each connecting v F1 and v F2 . 
Since |δG ′(X)| ≤ 3, v F1 and v F2 are both contained in X or both contained in V ′ \ X .

By applying this argument for each pair of adjacent faces repeatedly, we have either VF ⊆ X or VF ⊆ V ′ \ X . By changing 
the roles of X and V ′ \ X if necessary, we may assume that VF ⊆ V ′ \ X , and our objective is to show that |X | ≤ 1.
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Fig. 2. Four edge-disjoint paths between v F1 and v F2 .

For any edge zz′ ∈ E ′ with z, z′ ∈ V ′ \ VF , we can easily see by a case analysis that G ′ contains four edge-disjoint paths 
from {z, z′} to VF ,2 which shows that X contains at most one of z and z′ , because |δG ′ (X)| ≤ 3. Thus, X is an independent 
set, and hence |δG ′ (X)| = ∑

z∈X |δG ′(z)|. Since |δG ′ (z)| = 3 for any z ∈ V ′ \ VF , we have |X | ≤ 1. This completes the proof. �
Claim 3.3. Let OPT be the size of a minimum vertex cover in G, and let OPT′ be the optimal value of Dominating Set with 
Degree-4-Constraint in G ′. Then,

OPT′ = OPT + |VF | + 3|E|.

Proof. In order to show OPT′ ≤ OPT + |VF | + 3|E|, let S ⊆ V be a minimum vertex cover in G , that is, |S| = OPT. By using 
S , we will construct a feasible solution of Dominating Set with Degree-4-Constraint in G ′ . We first add VF to S . Then, for 
each edge e = uv ∈ E , we add we

3, we
6, and we

10 to S if u ∈ S , and we add we
1, we

5, and we
8 to S otherwise. Here, we recall 

that e is replaced with a path of length 11 whose internal vertices are denoted by we
1, . . . , w

e
10 in this order from u to v . 

The obtained vertex set S ′ ⊆ V ′ is a dominating set such that VF ⊆ S ′ and |S ′| = OPT + |VF | + 3|E|. Therefore, we have 
OPT′ ≤ OPT + |VF | + 3|E|.

In order to show OPT′ ≥ OPT + |VF | + 3|E|, let S ′ ⊆ V ′ be an optimal solution of Dominating Set with Degree-4-Con-

straint in G ′ , that is, |S ′| = OPT′ . By using S ′ , we will construct a vertex cover in G . By the definition of the problem, 
S ′ contains every vertex of degree at least 4, and hence we have VF ⊆ S ′ . If xe

i ∈ S ′ for some e ∈ E and for some 
i ∈ {1, 2, 4, 5, 6, 7, 9, 10}, then we can replace xe

i with we
i keeping the optimality. With this observation, we may assume 

that

xe
i /∈ S ′ for any e ∈ E and for any i ∈ {1,2,4,5,6,7,9,10}. (1)

Furthermore, if |S ′ ∩ {we
i | i ∈ {1, . . . , 10}}| ≥ 4 for some e ∈ E , then we can replace S ′ ∩ {we

i | i ∈ {1, . . . , 10}} with 
{u, we

3, w
e
6, w

e
10} or {we

1, w
e
5, w

e
8, v} keeping the optimality. Since a dominating set has to contain at least three vertices 

in {we
i | i ∈ {1, . . . , 10}} for each e ∈ E under the assumption (1), we may assume that

|S ′ ∩ {we
i | i ∈ {1, . . . ,10}}| = 3 for any e ∈ E. (2)

If there exists an edge e = uv ∈ E such that S ′ ∩ {u, v} = ∅, then S ′ cannot dominate the vertices in {we
i | i ∈ {1, . . . , 10}} by 

the assumptions (1) and (2). Therefore, since S ′ is a dominating set in G ′ , S ′ ∩ V forms a vertex cover in G . This shows that 
G has a vertex cover of size |S ′ ∩ V | = OPT′ − |VF | − 3|E|, which shows that OPT′ ≥ OPT + |VF | + 3|E|. �

Claims 3.2 and 3.3 show that the minimum vertex cover problem in planar 3-regular 3-connected graphs can be reduced 
to Dominating Set with Degree-4-Constraint in nearly 4-edge-connected planar graphs. This completes the proof for the 
case of k = 4 in Proposition 3.1.

We remark here that if a vertex u is on the boundary of some face F in G , then the face of G ′ containing both u and v F

is surrounded by a cycle of length at most 8. This shows that each face of G ′ is surrounded by a cycle of length at most 8. 
Therefore, we have the following corollary.

Corollary 3.4. Dominating Set with Degree-4-Constraint is NP-hard even if the input graph is a nearly 4-edge-connected planar 
graph in which each face is surrounded by a cycle of length at most 8.

2 For example, if {z, z′} = {w2, w3} in Fig. 1, then we have four edge disjoint paths (w2, w1, x1, V F ′ ), (w2, x2, V F ), (w3, w4, x4, V F ′ ), and 
(w3, w8, w9, x9, V F ) from {z, z′} to VF .
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Fig. 3. A gadget corresponding to an edge for the case of k = 5, where we
i , xe

i , and ye
i are simply denoted by wi , xi , and yi , respectively.

3.2. Case of k ∈ {5, 6}
Suppose that we are given a graph G = (V , E), which is planar, 3-regular, and 3-connected. Since a well-known theorem 

of Petersen [20] states that every 3-regular 2-connected graph has a perfect matching, G has a perfect matching M ⊆ E . 
By duplicating (resp. triplicating) the edges in M , we obtain a graph Ĝ that is planar, 4-regular (resp. 5-regular), and 
3-connected. We fix a planar embedding of Ĝ , where we note that Ĝ contains a face surrounded by two parallel edges. 
Note that S ⊆ V is a vertex cover in G if and only if it is a vertex cover in Ĝ . Thus, the problem of finding a minimum 
vertex cover in planar (k − 1)-regular 3-connected graphs is NP-hard for k ∈ {5, 6}. In what follows, we reduce this problem 
to Dominating Set with Degree-k-Constraint in nearly k-edge-connected planar graphs for k ∈ {5, 6}.

Let k ∈ {5, 6}. Suppose we are given a graph Gk = (Vk, Ek) that is planar, (k − 1)-regular, and 3-connected. Let Fk denote 
the set of all the faces of Gk . We construct an instance of Dominating Set with Degree-k-Constraint from Gk as follows.

• For each face F ∈Fk , we create a new vertex v F . Let VFk = {v F | F ∈Fk}.
• For each edge e = uv ∈ Ek , we execute the following (see Fig. 3).

– We replace e with a path of length 11 connecting u and v . Its internal vertices are denoted by we
1, . . . , we

10 in this 
order from u to v . We add an edge connecting we

3 and we
8.

– For i = 1, 2, . . . , 10, we create a new vertex xe
i and add an edge connecting we

i and xe
i .

– For i = 1, 2, 4, 5, 6, 7, 9, 10, we create a new vertex ye
i and add an edge connecting we

i and ye
i .

– If k = 6, then for i = 1, 2, . . . , 10, we create a new vertex ze
i and add an edge connecting we

i and ze
i .

– Among the two faces in Fk that are adjacent to e, we arbitrarily choose one face, say F , and denote the other face 
by F ′ .

– For i = 1, 2, 3, 8, 9, 10, we add k − 2 parallel edges connecting xe
i and v F . For i = 4, 5, 6, 7, we add k − 2 parallel edges 

connecting xe
i and v F ′ .

– For i = 1, 2, . . . , 10, we add k − 2 parallel edges connecting ye
i and v F ′ .

– If k = 6, then for i = 1, 2, . . . , 10, we add k − 2 parallel edges connecting ze
i and v F ′ .

The obtained graph is denoted by G ′
k = (V ′

k, E
′
k).

In a similar way to Claim 3.2, we can show the following claim.

Claim 3.5. For k ∈ {5, 6}, the graph G ′
k defined as above is nearly k-edge-connected and planar.

Proof. We can easily see that G ′
k is planar and the minimum degree is k − 1. In what follows, we show that |δG ′

k
(X)| ≤ k − 1

implies |X | ≤ 1 or |V ′
k \ X | ≤ 1 for any X ⊆ V ′

k . Let X ⊆ V ′
k be a vertex set with |δG ′

k
(X)| ≤ k − 1.

In Gk , suppose that two faces F and F ′ share an edge e ∈ Ek . Since the gadget corresponding to e contains six edge-
disjoint paths connecting v F and v F ′ , v F and v F ′ are both contained in X or both contained in V ′

k \ X . By applying this 
argument for each pair of adjacent faces repeatedly, we have either VF ⊆ X or VF ⊆ V ′

k \ X . By changing the roles of X
and V ′

k \ X if necessary, we may assume that VF ⊆ V ′
k \ X , and our objective is to show that |X | ≤ 1.

For any edge zz′ ∈ E ′
k with z, z′ ∈ V ′

k \ VFk , we can easily see by a case analysis that G ′
k contains k edge-disjoint paths 

from {z, z′} to VFk , which shows that X contains at most one of z and z′ , because |δG ′
k
(X)| ≤ k −1. Thus, X is an independent 

set, and hence |δG ′
k
(X)| = ∑

z∈X |δG ′
k
(z)|. Since |δG ′

k
(z)| = k − 1 for any z ∈ V ′

k \ VFk , we have |X | ≤ 1. This completes the 
proof. �

We can also obtain the following claim in the same as Claim 3.3.

Claim 3.6. For k ∈ {5, 6}, let OPTk be the size of a minimum vertex cover in Gk, and let OPT′
k be the optimal value of Dominating Set 

with Degree-k-Constraint in G ′
k. Then,

OPT′
k = OPTk + |VF | + 3|Ek|.
k
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Proof. In order to show OPT′
k ≤ OPTk + |VFk | + 3|Ek|, let S ⊆ Vk be a minimum vertex cover in Gk , that is, |S| = OPTk . 

By using S , we will construct a feasible solution of Dominating Set with Degree-k-Constraint in G ′
k . We first add VFk to 

S . Then, for each edge e = uv ∈ Ek , we add we
3, we

6, and we
10 to S if u ∈ S , and we add we

1, we
5, and we

8 to S otherwise. 
The obtained vertex set S ′ ⊆ V ′

k is a dominating set such that VFk ⊆ S ′ and |S ′| = OPTk + |VFk | + 3|Ek|. Therefore, we have 
OPT′

k ≤ OPTk + |VFk | + 3|Ek|.
In order to show OPT′

k ≥ OPTk + |VFk | + 3|Ek|, let S ′ ⊆ V ′
k be an optimal solution of Dominating Set with 

Degree-k-Constraint in G ′
k , that is, |S ′| = OPT′

k . By using S ′ , we will construct a vertex cover in Gk . By the definition 
of the problem, S ′ contains every vertex of degree at least k, and hence we have VFk ⊆ S ′ . By the same argument as (1), 
if xe

i , ye
i or ze

i is contained in S ′ for some e ∈ Ek and for some i ∈ {1, . . . , 10}, then it can be replaced with we
i keeping the 

optimality. Therefore, we may assume that

xe
i , ye

i , ze
i /∈ S ′ for any e ∈ Ek and for any i ∈ {1, . . . ,10}. (3)

Furthermore, by the same argument as (2), we may assume that

|S ′ ∩ {we
i | i ∈ {1, . . . ,10}}| = 3 for any e ∈ Ek. (4)

If there exists an edge e = uv ∈ Ek such that S ′ ∩ {u, v} = ∅, then S ′ cannot dominate the vertices in {we
i | i ∈ {1, . . . , 10}} by 

the assumptions (3) and (4). Therefore, since S ′ is a dominating set in G ′
k , S ′ ∩ Vk forms a vertex cover in Gk . This shows 

that Gk has a vertex cover of size |S ′ ∩ Vk| = OPT′
k − |VFk | − 3|Ek|, which shows that OPT′

k ≥ OPTk + |VFk | + 3|Ek|. �
Claims 3.5 and 3.6 show that the minimum vertex cover problem in planar (k − 1)-regular 3-connected graphs can 

be reduced to Dominating Set with Degree-k-Constraint in nearly k-edge-connected planar graphs for k = 5, 6. Thus,
Dominating Set with Degree-k-Constraint in nearly k-edge-connected planar graphs is NP-hard for k = 5, 6. By combining 
this with Section 3.1, we obtain Proposition 3.1. �

We remark here that the graph G ′
5 has additional properties as follows:

• The degree of each vertex of G ′
5 is even.

• Each face of G ′
5 is surrounded by a cycle of length at most 6.

Therefore, Dominating Set with Degree-5-Constraint is NP-hard even if the input graph is a nearly 5-edge-connected 
planar graph satisfying the above conditions.

Corollary 3.7. Dominating Set with Degree-5-Constraint is NP-hard even if the input graph is a nearly 5-edge-connected planar 
graph in which each vertex has even degree and each face is surrounded by a cycle of length at most 6.

4. Hardness of minimum t-spanner problem

4.1. Proof of Theorem 1.1

The objective of this section is to show that Minimum t-Spanner Problem is NP-hard even if G is restricted to be planar 
for t ∈ {2, 3, 4}. To prove this, we reduce Dominating Set with Degree-(t + 2)-Constraint in nearly (t + 2)-edge-connected 
planar graphs to Minimum t-Spanner Problem in planar graphs. Suppose we are given a nearly (t + 2)-edge-connected 
planar graph G = (V , E) as an instance of Dominating Set with Degree-(t + 2)-Constraint. We fix an embedding of G . Let 
F be the set of all the faces of G , and let G∗ = (V ∗, E∗) be the dual graph of G , where V ∗ and E∗ are the vertex set and the 
edge set of G∗ , respectively (see e.g. [12] for duality of planar graphs). We note that V ∗ and E∗ can be identified with F
and E , respectively. For an edge e ∈ E that is adjacent to two faces F , F ′ ∈ F in G , we say that an edge e∗ ∈ E∗ corresponds 
to e if e∗ connects F and F ′ in G∗ .

We now show a relationship between Dominating Set with Degree-(t +2)-Constraint in G and a minimum t-spanner in 
G∗ . We remark here that a dominating set in G corresponds to a set of faces in G∗ , whereas a minimum t-spanner is a set 
of edges in G∗ . The following proposition shows a relationship between these two objects that look completely unrelated.

Proposition 4.1. Let G = (V , E) be a nearly (t + 2)-edge-connected planar graph. Let OPT be the optimal value of Dominating 
Set with Degree-(t + 2)-Constraint in G, and let OPT∗ be the number of edges of a minimum t-spanner in G∗. Then, OPT∗ =
OPT − |V | + |E|.

Proof. In order to show OPT∗ ≤ OPT − |V | + |E|, let S ⊆ V be an optimal solution of Dominating Set with Degree-(t + 2)-

Constraint, that is, |S| = OPT. By using S , we will construct a t-spanner in G∗ . Since S is a dominating set, for any vertex 
v ∈ V \ S , there exists an edge ev ∈ δG(v) that connects v and a vertex in S . Define E ′ = {ev | v ∈ V \ S} (see Fig. 4), and 
define an edge set E∗ ⊆ E∗ as the edge subset of G∗ corresponding to E \ E ′ . For any v ∈ V \ S , since |δG(v)| = t + 1, the 
H
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Fig. 4. In the left figure, an edge ev is represented by an arrow from v to a vertex in S . In the right figure, the edges in E∗ corresponding to δG (v) are 
represented by solid lines.

edge subset of E∗ corresponding to δG(v) \ {ev} forms a path of length t connecting the endpoints of e∗
v , where e∗

v is the 
edge in E∗ that corresponds to ev . Furthermore, this path is contained in H∗ = (V ∗, E∗

H ), since δG(v) \ {ev} ⊆ E \ E ′ by the 
definition of E ′ . Thus, for any v ∈ V \ S , H∗ contains a path of length t connecting the endpoints of e∗

v . This shows that H∗
is a t-spanner in G∗ by Lemma 2.1. Since

|E∗
H | = |E| − |E ′| = |E| − (|V | − |S|) = |E| − |V | + OPT,

we obtain OPT∗ ≤ OPT − |V | + |E|.
In order to show OPT∗ ≥ OPT −|V | +|E|, let E∗

H ⊆ E∗ be an edge set of a minimum t-spanner in G∗ , that is, |E∗
H | = OPT∗ . 

By using E∗
H , we will construct a feasible solution of Dominating Set with Degree-(t + 2)-Constraint in G . By Lemma 2.1, 

for each e∗ ∈ E∗ \ E∗
H , the subgraph H∗ = (V ∗, E∗

H ) of G∗ contains a path Pe∗ of length t connecting the endpoints of 
e∗ . Since Pe∗ and e∗ form a cycle of length at most t + 1, they correspond to a cut of size at most t + 1 in G , which is 
denoted by δG(X) for some X ⊆ V . Since G is nearly (t + 2)-edge-connected and |δG (X)| ≤ t + 1, we have either |X | = 1
or |V \ X | = 1. By combining this with the fact that δG (X) contains the edge e ∈ E corresponding to e∗ , we can see that 
there exists an endpoint ve of e such that δG (X) = δG(ve). Since Pe∗ corresponds to δG(ve) \ {e}, we have δG(ve) \ {e} ⊆ E H , 
where E H is the subset of E corresponding to E∗

H . Define V ′ = {ve | e ∈ E \ E H }. Then, for any distinct edges e, e′ ∈ E \ E H , 
ve′ is not an endpoint of e, because δG (ve′) ∩ (E \ E H ) = {e′}. This shows that, for any e ∈ E \ E H , e connects ve ∈ V ′ and a 
vertex in V \ V ′ , which means that V \ V ′ is a dominating set in G . Since |δG (ve)| = t + 1 holds for any ve ∈ V ′ , V \ V ′ is a 
feasible solution of Dominating Set with Degree-(t + 2)-Constraint in G . Since

|V \ V ′| = |V | − |E \ E H | = |V | − (|E| − |E∗
H |) = |V | − |E| + OPT∗,

we obtain OPT∗ ≥ OPT − |V | + |E|. �
This proposition shows that Dominating Set with Degree-(t + 2)-Constraint in nearly (t + 2)-edge-connected planar 

graphs can be reduced to Minimum t-Spanner Problem in planar graphs. By combining this with Proposition 3.1, we have 
that Minimum t-Spanner Problem is NP-hard even if G is restricted to be planar for t ∈ {2, 3, 4}. Since the NP-hardness for 
the case of t ≥ 5 is shown in [3], this completes the proof of Theorem 1.1.

4.2. Degree bounded case

In this subsection, we consider the case with degree constraints and prove Theorems 1.2 and 1.3.
Recall that Corollary 3.4 shows that Dominating Set with Degree-4-Constraint is NP-hard even if the input graph is a 

nearly 4-edge-connected planar graph in which each face is surrounded by a cycle of length at most 8. This shows that the 
maximum degree of the dual graph G∗ is at most 8. Therefore, Proposition 4.1 shows that Minimum 2-Spanner Problem is 
NP-hard in graphs of maximum degree at most 8, which completes the proof of Theorem 1.2.

We can apply a similar argument to Minimum 3-Spanner Problem. Corollary 3.7 shows that Dominating Set with 
Degree-5-Constraint is NP-hard even if the input graph is a nearly 5-edge-connected planar graph in which each ver-
tex has even degree and each face is surrounded by a cycle of length at most 6. If each vertex has even degree in a graph 
G = (V , E), then |δG(X)| is even for any X ⊆ V , which shows that the dual graph G∗ of G contains no odd cycles. Thus, G∗
is a bipartite graph whose maximum degree is at most 6. Therefore, Proposition 4.1 shows that Minimum 3-Spanner Prob-

lem is NP-hard in planar bipartite graphs whose maximum degree is at most 6. Furthermore, since bipartite graphs have no 
cycle of length 3, Lemma 2.1 shows that Minimum 4-Spanner Problem and Minimum 3-Spanner Problem are equivalent in 
bipartite graphs. Thus, we have Theorem 1.3.

5. An FPT algorithm for the parameterized problem

In this section, we give a fixed-parameter algorithm for Parameterized Minimum t-Spanner Problem and prove Theo-
rem 1.4. In our proof, we present an algorithm that converts a given instance to an equivalent smaller instance, where such 
an operation is called kernelization in the context of parameterized algorithms.
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Since we can deal with each connected component separately, we may assume that |E| = �(|V |). For each e ∈ E , we 
compute a shortest path Pe in G − e connecting the end vertices of e. If the length of Pe is at least t + 1, then there is no 
cycle of length at most t + 1 that contains e. By Lemma 2.1, this shows that a subgraph H is a t-spanner of G if and only 
if H − e is a t-spanner of G − e. Therefore, we can remove e from G to obtain an equivalent smaller instance. By repeating 
this procedure, we obtain a graph in which the length of Pe is at most t for each e ∈ E .

This procedure can be implemented with running time O (|V ||E|) as follows. By applying the breadth first search 
from each vertex, we first compute Pe for every edge e ∈ E in O (|V ||E|) time. Then, remove the edge set F := {e ∈ E |
length of Pe is at least t + 1} from G . Since no edge in F is contained in cycles of length at most t + 1, by Lemma 2.1, we 
can remove F to obtain an equivalent smaller instance. We note that E(Pe) ⊆ E \ F for any e ∈ E \ F , since E(Pe) ∪{e} forms 
a cycle of length at most t + 1. That is, removing F does not affect Pe for e ∈ E \ F .

Therefore, we may assume that the length of Pe is at most t for each e ∈ E . Recall that our objective is to find an edge 
set E ′ ⊆ E with |E ′| ≥ k such that H = (V , E \ E ′) is a t-spanner of G (if exists). In what follows, we divide the problem into 
two cases, and consider each separately.

We first consider the case when the obtained graph has at least k2t(t + 1) edges. In this case, we can find a desired edge 
set E ′ in O (|V ||E|) time, which is formally stated as follows.

Lemma 5.1. Let G = (V , E) be a graph with at least k2t(t +1) edges. Suppose that for each e ∈ E, G − e contains a path Pe of length at 
most t connecting the end vertices of e. Then, in O (|V ||E|) time, we can find an edge set E ′ ⊆ E with |E ′| ≥ k such that H = (V , E \ E ′)
is a t-spanner of G.

Proof. We first compute Pe for every e ∈ E , which can be done in O (|V ||E|) time. Let E0 = ∅. For i = 1, . . . , k in this order, 
we execute the following procedure.

• Let Fi be a set of kt edges in E \ Ei−1.
• Define Ei = Ei−1 ∪ {E(Pe) ∪ {e} | e ∈ Fi}.

Then, we obtain a sequence of edge sets E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Ek ⊆ E . We note that we can choose Fi as above, since

|E \ Ei−1| = |E| −
∣∣∣∣

i−1⋃

j=1

{E(Pe) ∪ {e} | e ∈ F j}
∣∣∣∣

≥ |E| −
i−1∑

j=1

∑

e∈F j

(|E(Pe)| + 1)

≥ k2t(t + 1) − (k − 1)kt(t + 1) = kt(t + 1) > kt

holds for i = 1, . . . , k. This procedure can be executed in linear time.
Next, for i = k, k − 1, . . . , 1 in this order, we pick up an edge ei in Fi \ ⋃k

j=i+1 E(Pe j ), which can be done in linear time. 
Note that this procedure is possible because |Fi | = kt > (k − 1)t ≥ | ⋃k

j=i+1 E(Pe j )|. Let E ′ = {e1, . . . , ek}. By the choice of ei , 
we have ei /∈ E(Pe j ) if i < j. Furthermore, if i > j, then

ei ∈ Fi ⊆ E \ Ei−1 ⊆ E \ E j ⊆ E \ (E(Pe j ) ∪ {e j}),
which means that ei �= e j and E(Pe j ) does not contain ei . Therefore, we have ei �= e j and ei /∈ E(Pe j ) for any distinct 
i, j ∈ {1, . . . , k}. This shows that |E ′| = k and E(Pei ) ⊆ E \ E ′ for any i ∈ {1, . . . , k}. Since the length of Pei is at most t for 
each i, H = (V , E \ E ′) is a t-spanner of G by Lemma 2.1. �

We next consider the case when the obtained graph has less than k2t(t + 1) edges, i.e., |E| < k2t(t + 1). In this case, we 
check whether H = (V , E \ E ′) is a t-spanner of G or not for every subset E ′ of E with |E ′| = k. Since the number of possible 
choices of E ′ is at most 

(|E|
k

) = O (|E|k) and we can check whether H is a t-spanner or not in O (k|E|) time by Lemma 2.1, 
the total running time is O (k|E|k+1) = O (k(k2t(t + 1))k+1). This completes the proof of Theorem 1.4.

6. Conclusion

In this paper, we showed the NP-hardness of Minimum t-Spanner Problem in planar graphs for t ≥ 2, which was 
unknown for more than two decades. We also showed the NP-hardness of Minimum t-Spanner Problem for some degree-
bounded cases. As in Table 1, there are several cases for which polynomial solvability is still unknown. For example, it is 
an interesting open question to determine the exact complexity of Minimum 2-Spanner Problem on graphs of bounded 
degree k with 5 ≤ k ≤ 7. Since there are many variants of spanners such as additive spanners and (α, β)-spanners, it is also 
interesting to determine the complexity of variants of Minimum t-Spanner Problem.
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We introduced a parameterized version of Minimum t-Spanner Problem, in which the number of removed edges is 
regarded as a parameter. We believe that this parameterization is natural and useful also in other problems in which we 
want to find a maximum edge/vertex set that can be removed under some conditions.
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