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We give a (1 +ε)-approximate distance oracle with O (1) query time for an undirected pla-
nar graph G with n vertices and non-negative edge lengths. For ε > 0 and any two vertices 
u and v in G , our oracle gives a distance d̃(u, v) with stretch (1 + ε) in O (1) time. The 
oracle has size O (n logn((log n)/ε + f (ε))) and pre-processing time O (n logn((log3 n)/ε2 +
f (ε))), where f (ε) = 2O (1/ε). This is the first (1 + ε)-approximate distance oracle with 
O (1) query time independent of ε and the size and pre-processing time nearly linear in n, 
and improves the query time O (1/ε) of previous (1 + ε)-approximate distance oracle with 
size nearly linear in n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Finding a distance between two vertices in a graph is a fundamental computational problem and has a wide range 
of applications. For this problem, there is a rich literature of algorithms. This problem can be solved by a single source 
shortest path algorithm such as the Dijkstra and Bellman–Ford algorithms. In many applications, it is required to compute 
the shortest path distance in an extremely short time. One approach to meet such a requirement is to use distance oracles.

A distance oracle is a data structure which keeps the pre-computed distance information and provides a distance between 
any given pair of vertices very efficiently. There are two phases in the distance oracle approach. The first phase is to compute 
the data structure for a given graph G and the second is to provide an answer for a query on the distance between a pair of 
vertices in G . The efficiency of distance oracles is mainly measured by the time to answer a query (query time), the memory 
space required for the data structure (oracle size) and the time to create the data structure (pre-processing time). Typically, 
there is a trade-off between the query time and the oracle size. A simple approach to compute a distance oracle for graph 
G of n vertices is to solve the all pairs shortest paths problem in G and keep the shortest distances in an n × n distance 
array. This gives an oracle with O (1) query time and O (n2) size. A large number of papers have been published for distance 
oracles with better measures on the product of query time and oracle size, see Sommer’s paper for a survey [20].

Planar graphs are an important model for many networks such as the road networks. Distance oracles for planar graphs 
have been extensively studied. Djidjev proves that for any oracle size S ∈ [n, n2], there is an exact distance oracle with query 
time O (n2/S) for weighted planar graphs [9]. There are exact distance oracles with size O (S) and more efficient query time 
for different ranges of S , for example, an oracle by Wulff-Nilsen [23] with O (1) query time and O (n2(log log n)4/ log n) size 

✩ A preliminary version of the paper appeared in the Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC 2015) 
[13].
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and an oracle by Cohen-Added et al. [7] with O (log n) query time and O (n5/3) size for weighted directed planar graphs. 
Recently, Gawrychowski et al. [12] improve the result in [9] and show that for any oracle size S ∈ [n, n2], there is an exact 
distance oracle with query time Õ max{1, (n1.5/S)} for weighted directed planar graphs. The oracle in [12] has query time 
O (log n) for S ∈ [n1.5, n2], which improves the result in [7]. Readers may refer to Sommer’s survey paper [20] for more 
information.

Approximate distance oracles have been developed to achieve very fast query time and near linear size for planar graphs. 
For vertices u and v in graph G , let dG (u, v) denote the distance between u and v . An oracle is called an α-approximate ora-
cle or with stretch α for α ≥ 1 if it provides a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ αdG(u, v) for u and v in G . An oracle 
is said to have an additive stretch β ≥ 0 if it provides a distance d̃(u, v) with dG (u, v) ≤ d̃(u, v) ≤ dG(u, v) +β . For ε > 0, Tho-
rup gives a (1 +ε)-approximate distance oracle with O (1/ε) (resp. O (1/ε + log log�), where � is the longest finite distance 
between any pair of vertices in G) query time and O (n log n/ε) (resp. O (n(log�) log n/ε)) size for an undirected (resp. di-
rected) planar G with non-negative edge lengths [21]. A similar result for undirected planar graphs is found independently 
by Klein [16]. Kawarabayashi et al. give a (1 + ε)-approximate distance oracle with O ((1/ε) log2(1/ε) log log(1/ε) log∗ n)

query time and O (n log n log log(1/ε) log∗ n) size for undirected planar graphs with non-negative edge lengths [15]. The 
query times of the oracles above are fast but still at least O (1/ε). Recently, Wulff-Nilsen gives a (1 + ε)-approximate dis-
tance oracle with O (n(log log n)2/ε + log log n/ε2)) size and O ((log log n)3/ε2 + log log n

√
log log((log log n)/ε2)/ε2) query 

time for undirected planar graph with non-negative edge lengths [24]. This result has a better trade-off between the query 
time and the oracle size in the size of graph than those in [15,16,21].

Distance oracles with constant query time are of both theoretical and practical importance [6,8]. Our main result is an 
O (1) query time (1 + ε)-approximate distance oracle for undirected planar graphs with non-negative edge lengths.

Theorem 1. Let G be an undirected planar graph with n vertices and non-negative edge lengths and let ε > 0. There is a 
(1 + ε)-approximate distance oracle for G with O (1) query time, O (n logn(log n/ε + f (ε))) size and O (n log n(log3 n/ε2 + f (ε)))

pre-processing time, where f (ε) = 2O (1/ε) .

The oracle in Theorem 1 has a constant query time independent of ε and size nearly linear in the graph size. This 
improves the query time of the previous works [15,21] that are (nearly) linear in 1/ε for non-constant ε . Wulff-Nilsen gives 
an O (1) time exact distance oracle for G with size O (n2(log log n)4/ log n) [23]. There exists some constant c0 > 0 such that 
for 1

ε < c0 logn, our oracle has a smaller size.
The result in Theorem 1 can be generalized to an oracle described in the next theorem.

Theorem 2. Let G be an undirected planar graph with n vertices and non-negative edge lengths, ε > 0 and 1 ≤ η ≤ 1/ε . There is a 
(1 +ε)-approximate distance oracle for G with O (η) query time, O (n logn(log n/ε + f (ηε))) size and O (n logn(log3 n/ε2 + f (ηε)))

pre-processing time, where f (ηε) = 2O (1/(ηε)) .

Our results build on some techniques used in the previous approximate distance oracles for planar graphs. Thorup [21]
gives a (1 +ε)-approximate distance oracle for planar graph G with O (1/ε) query time. Informally, some techniques used in 
the oracle are as follows: Decompose G into a balanced recursive subdivision; G is decomposed into subgraphs of balanced 
sizes by shortest paths and each subgraph is decomposed recursively until every subgraph is reduced to a pre-defined size. 
A path Q intersects a path Q ′ if V (Q ) ∩ V (Q ′) �= ∅. A set Q of paths is a path-separator for vertices u and v if every path 
between u and v intersects a path Q ∈ Q. Vertices u and v are shortest-separated by a path Q if there exist a shortest 
path between u and v that intersects Q . If vertices u and v have a path-separator Q then u and v is shortest-separated 
by some path Q ∈ Q. For each subgraph X of G , let P(X) be the set of shortest paths used to decompose X . For each 
path Q ∈P(X) and each vertex u in X , a set P Q (u) of O (1/ε) vertices called portals on Q is selected. For vertices u and v
shortest-separated by some path Q in P(X), minp∈P Q (u),q∈P Q (v),Q ∈P(X) dG(u, p) +dG(p, q) +dG(q, v) is used to approximate 
dG(u, v). The oracle keeps the distances dG (u, p) and dG (p, v).

The portal set P Q (u) above is vertex dependent. For a path Q in G of length d(Q ), there is a set P Q of O (1/ε) portals 
such that for any vertices u and v shortest-separated by Q , minp∈P Q dG(u, p) + dG (p, v) ≤ dG (u, v) + εd(Q ) [17]. Based on 
this and a scaling technique, Kawarabayashi et al. [15] give another (1 +ε)-approximate distance oracle: Create subgraphs of 
G such that the vertices in each subgraph satisfy certain distance property (scaling). Each subgraph H of G is decomposed by 
shortest paths into a ρ-division of H which consists of O (|V (H)|/ρ) subgraphs of H , each has size O (ρ). For each subgraph 
X of H , let B(X) be the set of shortest paths used to separate X from the rest of H . For each path Q ∈ B(X), a portal set 
P Q is selected. For vertices u and v shortest-separated by some path Q ∈ B(X), minp∈P Q ,Q ∈B(X) dH (u, p) +dH (p, v) is used 
to approximate dG(u, v). This oracle does not keep the distances dH (u, p) and dH (p, v) but uses the distance oracle in [19]
to get the distances. By choosing an appropriate value ρ , the oracle has a better product of query time and oracle size than 
that of Thorup’s oracle.

We also use the scaling technique to create subgraphs of G . We decompose each subgraph H of G into a balanced 
recursive subdivision as in Thorup’s oracle. For each subgraph X of H and each shortest path Q used to decompose X , 
we choose one set P Q of O (1/ε) portals on Q for all vertices in X . A new ingredient in our oracle is to use a more 
time efficient data structure to approximate dG(u, v) instead of minp∈P Q ,Q ∈P(X) dH (u, p) + dH (p, v). Using an approach 
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in [22], we show that the vertices in V (X) can be partitioned into s = f (ε) classes A1, ..., As such that for every two 
classes Ai and A j , there is a key portal pij ∈ P Q and for any u ∈ Ai and v ∈ A j , if u and v are shortest-separated by 
Q then dH (u, pij) + dH (pij, v) ≤ (1 + ε)dG (u, v) and dH (u, pij) + dH (pij, v) can be computed in O (1) time. This gives a 
(1 + ε)-approximate distance oracle with O (1) query time. Our oracle includes a data structure for some details of applying 
the scaling technique that are not mentioned in previous studies as well.

Our computational model is word RAM, which models what we can program using standard programming languages 
such as C/C++. In this model, a word is assumed big enough to store any vertex identifier or distance. We also assume basic 
operations, which include addition, subtraction, multiplication, bitwise operations (AND, OR, NEGATION) and left/right cyclic 
shift on a word have unit time cost.

The rest of the paper is organized as follows. In the next section, we give preliminaries of the paper and review the 
techniques on which our oracles build. In Section 3, we present distance oracles with additive stretch. In Section 4, we give 
the (1 + ε)-approximate distance oracles which use the additive stretch oracles as subroutines. The final section concludes 
the paper.

2. Preliminaries

An undirected graph G consists of a set V (G) of vertices and a set E(G) of edges. For a subset A ⊆ E(G), we denote by 
V (A) the set of vertices incident to at least one edge of A. For A ⊆ E(G) and W ⊆ V (G), we denote by G[A] and G[W ] the 
subgraphs of G induced by A and W , respectively. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A path between vertices u and v in G is a sequence of edges e1, .., ek , where ei = {vi−1, vi} for 1 ≤ i ≤ k, u = v0, 
v = vk , and the vertices v0, ..., vk are distinct. For any edge e, let l(e) be the length of e. The length of path Q = e1, ..., ek is 
d(Q ) = ∑

1≤i≤k l(ei). A path Q is a shortest path between vertices u and v if d(Q ) is the minimum among those of all paths 
between u and v . The distance between vertices u and v in G , denoted by dG (u, v), is the length of a shortest path between 
u and v . For each vertex u in G , the eccentricity of u is λ(u) = maxv∈V (G) dG(u, v). The radius of G is r(G) = minu∈V (G) λ(u). 
The diameter of G is d(G) = maxu∈V (G) λ(u).

A graph is planar if it has a planar embedding (a drawing on a sphere without edge crossing). In the rest of this paper, 
graphs are undirected planar graphs with non-negative edge lengths unless otherwise stated.

A basic approach in this paper is to decompose graph G into subgraphs by shortest paths. A set P of shortest paths in 
graph G is a shortest path separator of G if G[V (G)\W ], W = ∪Q ∈P V (Q ), has at least t ≥ 2 connected nonempty subgraphs 
G1, .., Gt of G . A set Q of paths separates subgraphs Gi and G j , i �= j, if for any vertex u in Gi and any vertex v in G j , 
any path in G between u and v intersects a path in Q. For a subgraph Gi of G , a set B(Gi) of paths is a boundary of Gi
if B(Gi) separates Gi and the rest of G and for every path Q ∈ B(Gi), there is an edge connecting Q and Gi . For α > 0, 
a shortest path separator P of G is called α-balanced if |V (Gi)| ≤ α|V (G)| holds for every subgraph Gi . An α-balanced 
recursive subdivision of G is a structure that G is decomposed into subgraphs G1, .., Gt by an α-balanced separator and 
for each 1 ≤ i ≤ t , Gi is decomposed recursively until each subgraph is reduced to a pre-defined size. In the recursive 
decomposition of Gi , the subset of the shortest path separator P of G that forms a boundary B(Gi) of Gi is included in 
computing a shortest path separator of Gi . Let Tr be a shortest path spanning tree of graph G rooted at a vertex r. Every 
path in Tr from the root r to any vertex is a shortest path and called a root path in G . We use Thorup’s method [21] to 
compute a 1

2 -balanced recursive subdivision using shortest path separators composed of root paths in G (based on the result 
in [18], this can be done in linear time).

We now briefly describe Thorup’s method. Readers may refer to Section 2.5 in [21] for more details. A recursive sub-
division of G can be viewed as a rooted tree T G with each vertex of T G (called a node, to be distinguished from a vertex 
of G) representing a subgraph of G and the root node representing G . Each node in T G with node degree one is called a 
leaf node, otherwise an internal node. We identify subgraphs with their corresponding nodes in T G when convenient. For any 
node X of T G , the depth of X is the number of edges of T G from X to the root node. The depth of T G is the largest depth 
of any node in T G . For each node X of T G , let B(X) be the minimum set of root paths in G that forms a boundary of X
(B(G) = ∅). Let X ∪B(X) denote the subgraph of G induced by V (X) ∪ V (B(X)). Let X +B(X) denote the graph obtained by 
removing some vertices from X ∪B(X) as follows: for every vertex v of B(X) that has degree two in X ∪B(X), its incident 
edges (u, v) and (v, w) are replaced by edge (u, w) whose length is the sum of the length of (u, v) and that of (v, w). 
For each internal node X , a 1

2 -balanced shortest path separator P(X) of root paths is used to decompose X into subgraphs 
X1, .., Xt , t ≥ 2, as follows: Let W = V (P(X)) and X∗

1, .., X∗
t be the connected components of G[V (X + B(X)) \ W ]. Then 

E(Xi) = E(X) ∩ E(X∗
i ), 1 ≤ i ≤ t . Note that P(X) separates Xi from X j in X and B(X) ∪P(X) separates Xi from X j in G for 

1 ≤ i, j ≤ t and i �= j. We now state some important properties of the 1
2 -balanced recursive subdivision in the next Lemma.

Lemma 1. [21] Given a graph G and a shortest path spanning tree Tr of G, a 1
2 -balanced recursive subdivision T G of G can be computed 

in O (n log n) time such that for each internal node X of T G , |V (Xi)| ≤ |V (X)|/2 (1 ≤ i ≤ t) and |P(X)| = O (1), and for each node X, 
|B(X)| = O (1). Moreover, for each node X of T G and each root path Q of Tr , if Q ∈ B(X), then Q ∈P(X ′) for some ancestor X ′ of X
in TG .

The recursive subdivision of G in Lemma 1 will be used in our oracles. Note that since the size of a subgraph is reduced 
by at least a factor of 1/2, the depth of T G is bounded above by log n. For every vertex v ∈ V (G), we define the home of v , 
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denoted by Xv , to be the node of T G of largest depth that contains v . For any u, v ∈ V (G), we define Xu,v to be the nearest 
common ancestor of Xu and Xv in TG . Harel and Tarjan show in [14] that after a linear time pre-processing, the nearest 
common ancestor of any two nodes in a tree can be found in O (1) time.

Let Q be a shortest path in G and ε > 0. Thorup shows that for every vertex u in G , there is subset P Q (u) ⊆ V (Q ) of 
O (1/ε) vertices such that for any vertices u and v shortest-separated by Q

dG(u, v) ≤ min
p∈P Q (u),q∈P Q (v)

dG(v, p) + dG(p,q) + dG(q, v) ≤ (1 + ε)dG(u, v).

The vertices of P Q (u) are called portals on Q for u. For every subgraph X in a 1
2 -balanced recursive subdivision of G and 

every shortest path Q ∈ B(X) ∪P(X), by keeping the distance from each vertex u in X to every portal in P Q (u) explicitly, 
Thorup shows the following result.

Lemma 2. [21] For graph G and ε > 0, there is a (1 + ε)-approximate distance oracle with (1/ε) query time, O (n logn/ε) size 
and O (n log3 n/ε2) pre-processing time. Especially for ε = 1, there is a 2-approximate distance oracle for G with O (1) query time, 
O (n log n) size and O (n log3 n) pre-processing time.

Our oracles will use this oracle for ε = 1 (any constant works) to get a rough estimation of dG (u, v).
To reduce the query time to a constant independent of ε , we will use a portal set P Q independent of vertex u. 

For vertices u and v shortest-separated by a path Q , dG (u, v) = minp∈V (Q ) dG(u, p) + dG(p, v). For a P Q ⊆ V (Q ), 
minp∈P Q dG (u, p) + dG (p, v) approximates dG(u, v). The following result will be used.

Lemma 3. [17] For a path Q in G, ε > 0 and D ≥ d(Q ), a set P Q of O (1/ε) vertices in V (Q ) can be selected in O (|V (Q )|) time such 
that for any pair of vertices u and v shortest-separated by Q , dG(u, v) ≤ minp∈P Q dG(u, p) + dG(p, v) ≤ dG(u, v) + εD.

The set P Q in Lemma 3 is called the ε-portal set (with respect to D) and every vertex in P Q is called a portal. Given a path 
Q starting from a vertex r, ε > 0 and D ≥ d(Q ), P Q can be computed as follows: add r to P Q , traverse along Q from r and 
add a vertex v ∈ V (Q ) to P Q if dG (u, v) ≥ εD/2, where u is the last added portal in P Q . To apply the ε-portal set to our 
oracle, we further need to guarantee dG (u, v) = 	(D) for vertices u and v in question. We will use the sparse neighborhood 
covers introduced in [1,2,5] of G to achieve this goal.

Lemma 4. [5] For G and γ ≥ 1, connected subgraphs G(γ , 1), . . . , G(γ , nγ ) of G with the following properties can be computed in 
O (n log n) time:

1. For each vertex u in G, there is at least one G(γ , i) that contains u and every v with dG(u, v) ≤ γ .
2. Each vertex u in G is contained in at most 18 subgraphs.
3. Each subgraph G(γ , i) has radius r(G(γ , i)) ≤ 24γ − 8.

3. Oracle with additive stretch

We first give a distance oracle which for any vertices u and v in G , and any ε0 > 0, returns d̃(u, v) with dG (u, v) ≤
d̃(u, v) ≤ dG(u, v) + 7ε0d(G). Based on the scaling technique in [15] and Lemma 4, this oracle will be extended to an oracle 
stated in Theorem 1 for G in the next section.

We start with a basic data structure which keeps the following information:

• A 1
2 -balanced recursive subdivision T G of G as in Lemma 1, each leaf node in T G has size O (2(1/ε0)).

• A table storing Xv for every v ∈ V (G).
• A data structure with O (1) query time to find the nearest common ancestor Xu,v of Xu and Xv in TG for any u and v

in G .
• For each internal node X of T G , an ε0-portal set P Q for every shortest path Q ∈ P(X) ∪ B(X). For every P Q , every 

u ∈ V (X) and every portal p ∈ P Q , distance d̂(u, p) with

dG(u, p) ≤ d̂(u, p) ≤ dG(u, p) + ε0d(G).

• For every leaf node X and every pair of u and v in X , we keep

d̃(u, v) = min{dX (u, v), min
p∈P Q ,Q ∈B(X)

d̂(u, p) + d̂(p, v)}.

The data structure above gives a distance oracle with 3ε0d(G) additive stretch and O (1/ε0) query time: Given vertices u
and v , if Xu,v is a leaf node then d̃(u, v) can be found in O (1) time. Otherwise, u and v must be shortest-separated by 
some path in B(Xu,v ) ∪P(Xu,v). We define
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d̃(u, v) = min
p∈P Q ,Q ∈B(Xu,v )∪P(Xu,v )

d̂(u, p) + d̂(p, v).

Let P = ∪Q ∈B(Xu,v )∪P(Xu,v ) P Q and we define

q = argp∈P min{dG(u, p) + dG(p, v)}.
From d̂(u, q) ≤ dG(u, q) + ε0d(G), d̂(q, v) ≤ dG(q, v) + ε0d(G) and Lemma 3,

dG(u, v) ≤ d̃(u, v) ≤ d̂(u,q) + d̂(q, v)

≤ dG(u,q) + dG(q, v) + 2ε0d(G) ≤ dG(u, v) + 3ε0d(G).

d̃(u, v) can be computed in O (1/ε0) time because |P Q | = O (1/ε0) and |B(Xu,v) ∪P(Xu,v)| = O (1).
We first reduce the query time for internal nodes in the above oracle to a constant independent of ε0 and then analyze 

the pre-processing time of the distance oracle. For z > 0, let f (z) = 2O (1/z) . Based on an approach in [22], we show that for 
each internal node X and each path Q ∈ B(X) ∪P(X), the vertices in V (X) can be partitioned into f (ε0) classes such that 
for any two classes Ai and A j , there is a key portal pij ∈ P Q and for every u ∈ Ai and every v ∈ A j shortest-separated by 
Q , d̂(u, pij) + d̂(pij, v) ≤ dG(u, v) + 7ε0d(G). By keeping the classes and key portals, the query time is reduced to O (1). We 
first define the classes.

Definition 1. Let Q be a shortest path in G , r(G) ≤ D ≤ d(G) and P Q = {p1..., pl} be an ε0-portal set (with respect to D) 
on Q . The vertices of G are partitioned into classes based on d̂(u, pi), pi ∈ P Q as follows. For each vertex u, a vector 
��u = (a1, ..., al) is defined such that for 1 ≤ i ≤ l, ai =

⌈
d̂(u, pi)/(ε0 D)

⌉
. Vertices u and v are in the same class if and only 

if ��u = ��v .

The following property of the classes defined above is straightforward.

Property 1. Let Q be a shortest path in G, r(G) ≤ D ≤ d(G) and P Q be an ε0-portal set with respect to D on Q . Let A be any class of 
vertices in G defined in Definition 1. For any two vertices u, v ∈ A and any portal p ∈ P Q , d̂(u, p) − ε0 D ≤ d̂(v, p) ≤ d̂(u, p) + ε0 D.

We show more properties of the classes defined above in the next two lemmas.

Lemma 5. Let Q be a shortest path in G, r(G) ≤ D ≤ d(G) and P Q be an ε0-portal set with respect to D on Q . Let Ai and A j be 
any two classes of vertices in G defined in Definition 1. There is a key portal pij ∈ P Q such that for any vertices u ∈ Ai and v ∈ A j

shortest-separated by Q , dG(u, v) ≤ d̂(u, pij) + d̂(pij, v) ≤ dG (u, v) + 7ε0d(G).

Proof. We choose arbitrarily a vertex x ∈ Ai and a vertex y ∈ A j . Let pij = argpi∈P Q
min{d̂(x, pi) + d̂(pi, y)} be the 

key portal. For any u ∈ Ai and v ∈ A j shortest-separated by Q , let q = argpi∈P Q
min{dG(u, pi) + dG(pi, v)} and let 

p = argpi∈P Q
min{d̂(u, pi) + d̂(pi, v)}. Then

d̂(u, p) + d̂(p, v) ≤ d̂(u,q) + d̂(q, v)

≤ dG(u,q) + dG(q, v) + 2ε0d(G) ≤ dG(u, v) + 3ε0d(G),

because d̂(u, q) ≤ dG(u, q) + ε0d(G), d̂(q, v) ≤ dG(q, v) + ε0d(G), P Q is an ε0-portal set and Lemma 3. From u, x ∈ Ai , Prop-
erty 1 and D ≤ d(G),

d̂(u, pi) ≤ d̂(x, pi) + ε0 D ≤ d̂(x, pi) + ε0d(G) ≤ d̂(u, pi) + 2ε0d(G)

for every pi ∈ P Q . The same relations hold for v, y because they are in A j . So

d̂(u, pij) + d̂(pij, v) ≤ d̂(x, pij) + d̂(pij, y) + 2ε0d(G)

≤ d̂(x, p) + d̂(p, y) + 2ε0d(G) ≤ d̂(u, p) + d̂(p, v) + 4ε0d(G).

Therefore,

dG(u, v) ≤ d̂(u, pij) + d̂(pij, v) ≤ d̂(u, p) + d̂(p, v) + 4ε0d(G)

≤ dG(u, v) + 7ε0d(G).

This completes the proof of the lemma. �
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Lemma 6. The total number of classes by Definition 1 is f (ε0).

Proof. Essentially, this result is proved by Weimann and Yuster in [22] but somehow hidden in other details. Below we give 
a self-contained proof of the lemma. For each vector ��u = (a1, .., al), let ��∗

u = (a1, (a2 − a1), (a3 − a2), .., (al − al−1)). Then 
��u = ��v if and only if ��∗

u = ��∗
v . So we just need to prove that the total number of different ��∗

u is f (ε0). From Definition 1,

|ai − ai−1| =
∣∣∣∣∣
⌈

d̂(u, pi)

ε0 D

⌉
−

⌈
d̂(u, pi−1)

ε0 D

⌉∣∣∣∣∣
≤

∣∣∣∣∣ d̂(u, pi) − d̂(u, pi−1)

ε0 D

∣∣∣∣∣ + 1

≤
∣∣∣∣dG(u, pi) − dG(u, pi−1)

ε0 D

∣∣∣∣ + 2 ≤ dG(pi−1, pi)

ε0 D
+ 2.

Since P Q is an ε0-portal set, l = O (1/ε0). So∑
2≤i≤l

|ai − ai−1| ≤ dG(p1, pl)

ε0 D
+ 2l = O (1/ε0).

Therefore there are 2O (1/ε0) different vectors of (a1, |a2 − a1| , |a3 − a2| , .., 
∣∣al − al−1

∣∣). The i’th element of (a1, (a2 −a1), (a3 −
a2), .., (al − al−1)) is either |ai − ai−1| or − |ai − ai−1|. Therefore, there are 2O (1/ε0) different ��∗

u . �
Notice that we can assume that for each internal node X , the number of classes Definition 1 is at most |V (X)|2 because 

otherwise, instead of partitioning the vertices into classes, we can simply use a |V (X)| × |V (X)| distance array to keep the 
shortest distance between every pair of vertices in X .

Now we are ready to show a data structure DS0 for our oracle with 7ε0d(G) additive stretch. DS0 contains the basic data 
structure given above and the following additional information:

• For each internal node X of T G and each shortest path Q ∈ B(X) ∪ P(X), let A Q
1 , ..., A Q

s be the classes of vertices in 
V (X) defined in Definition 1. For each vertex u ∈ V (X), we give an index I Q

X (u) with I Q
X (u) = i if u ∈ A Q

i ; and an s × s

array C Q with C Q [i, j] containing the key portal p Q
ij for classes A Q

i and A Q
j .

We now describe how to compute the distances d̂(d, p) for internal nodes as defined in the basic data structure. The 
method is essentially the same as in the fast construction in [21], but simpler as the portal sets we use are not vertex 
dependent. We use Lemma 1 to get the recursive subdivision T G of G . Let Tr be the shortest path spanning tree of G
as defined in Section 2 and let D be the largest length of any root path of Tr . By a depth first search of Tr from r, we 
compute an ε0-portal set P Q (with respect to D) and an auxiliary (ε0/ log n)-portal set �Q (with respect to D) for every 
Q ∈ P(X) ∪ B(X), X ∈ V (TG ). We compute the distances d̂(u, p) for every internal node X in a top–down traversal on T G

from root G . We use Dijkstra’s algorithm to compute d̂(u, p) for every u in X and every p ∈ P Q ∪�Q , Q ∈P(X). Recall that 
X ∪ B(X) denotes the subgraph of G induced by V (X) ∪ V (B(X)). Let X � B(X) denote the graph obtained from X ∪ B(X)

as follows: for every u in X and every p′ in ∪Q ′∈B(X) P Q ′ ∪ �Q ′ , add edge {u, p′} with length d̂(u, p′); then remove every 
degree two vertex of B(X) as what we do for X + B(X). For the root node, the computation is on G . For an internal node 
X �= G , the computation is on X � B(X). Note that X � B(X) may not be planar and since |B(X)| = O (1), |V (X � B(X))| is 
linear in the number of edges of G incident to vertices of X plus the number of portals in each path. Notice that Q ′ is 
in P(X ′) for some internal node X ′ which is an ancestor of X in T G . So the distances d̂(u, p′) have been computed when 
we construct X � B(X). Note that for some vertex u and portal p, d̂(u, p) may be computed multiple times. But the value 
of d̂(u, p) does not change: let Hi, 1 ≤ i, be the graph on which d̂(u, p) is computed for the ith time; d̂(u, p) does not 
increase because the edge {u, p} is contained in Hi for i ≥ 2; and d̂(u, p) does not decrease because Hi+1 is a subgraph of 
Hi for i ≥ 2. For X with |V (X)| ≥ log n/ε0, we run Dijkstra’s algorithm using every p ∈ P Q ∪ �Q as the source. For X with 
|V (X)| < log n/ε0, we run Dijkstra’s algorithm using every u in X as the source. After the distances d̂(u, p), p ∈ P Q ∪�Q , for 
all internal nodes have been computed, we only keep the distances d̂(u, p) to the portals p ∈ P Q for every internal node.

In the next lemma, we show that the distances d̂(u, p) computed above meet the requirement of DS0.

Lemma 7. For every internal node X of T G , every vertex u in X and every portal p ∈ P Q ∪ �Q , Q ∈ P(X), d̂(u, p) ≤ dG (u, p) +
ε0d(G).

Proof. For every internal node X of depth k in T G , every vertex u in X and every portal p ∈ P Q ∪ �Q , Q ∈P(X), we prove 
by induction that d̂(u, p) ≤ dG (u, p) + kε0 d(G). For the root node (of depth 0), d̂(u, p) = dG(u, p) because the distances are 
log n
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computed on G . Assume that for every internal node of depth at most k − 1 ≥ 0, d̂(u, p) ≤ dG(u, p) + (k−1)ε0
log n d(G). Let X

be a node of depth k. For u in X and p ∈ P Q ∪ �Q , Q ∈ P(X), let P (u, p) be a shortest path between u and p. If P (u, p)

contains only edges in X then d̂(u, p) = dG(u, p) and the statement is proved. Otherwise, P (u, p) can be partitioned into 
two subpaths P (u, y) and P (y, p), where every vertex of P (u, y) except y is in X and y is a vertex of a path Q ′ ∈ B(X). 
Note that y is incident to some vertex of X so y appears in X � B(X). From the way �Q ′ is computed and the fact that 
D ≤ d(G), where D is used for computing �Q ′ , there is a portal p y ∈ �Q ′ such that dQ ′ (y, p y) = dG(y, p y) ≤ ε0

2 log n d(G). 
Let X ′ be an ancestor of X such that Q ′ ∈ P(X ′). Note that d̂(u, p y) is computed in X ′ � B(X ′) and that y, p y and X (and 
therefore P (u, y)) are all contained in X ′ �B(X ′). Therefore,

d̂(u, p y) ≤ d(P (u, y)) + dQ ′(y, p y) ≤ d(P (u, y)) + ε0

2 log n
d(G)

and

dG(p y, p) ≤ d(P (y, p)) + dG(y, p y) ≤ d(P (y, p)) + ε0

2 log n
d(G).

The distance d̂(p y, p) has been computed in a node X ′ which is an ancestor of X and has depth at most k −1. So d̂(p y, p) ≤
dG(p y, p) + (k−1)ε0

log n d(G). Because edges {u, p y} and {p y, p} with lengths d̂(u, p y) and d̂(p y, p) are contained in the graph 
X �B(X),

d̂(u, p) ≤ d̂(u, p y) + d̂(p y, p)

≤ d(P (u, y)) + ε0

2 log n
+ d(P (y, p)) + ε0

2 log n
+ (k − 1)ε0

log n
d(G)

= dG(u, p) + kε0

log n
d(G).

Since each node in T G has depth at most log n, d̂(u, p) ≤ ε0d(G). �
The next three lemmas give the pre-processing time, space requirement and query time for data structure DS0.

Lemma 8. For graph G and ε0 > 0, data structure DS0 can be computed in O (n(log3 n/ε2
0 + f (ε0))) time.

Proof. Let T G be the recursive subdivision of G and b = 2(1/ε0) . It takes O (n log n) time to compute T G (Lemma 1). It 
takes O (n) time to compute the data structure that can answer the least common ancestor of any two nodes in T G in 
O (1) time [14], O (n log n) time to compute Xv for every v ∈ V (G), and O (n) time to compute P Q ∪ �Q for every path 
Q ∈ B(X) ∪P(X), X ∈ V (TG).

For every node X , let M(X) be the number of edges in G incident to vertices in X . Then 
∑

X∈T G
M(X) = O (n log n). 

For every path Q , |P Q ∪ �Q | = O (log n/ε0) and for every node X in T G , |B(X) ∪ P(X)| = O (1). From this, for each in-
ternal node X , X � B(X) has O (M(X) + log n/ε0) vertices and O (M(X) + log n/ε0) edges. Dijkstra’s algorithm is executed 
min{M(X), log n/ε0} times for each node X . It takes O (M(X)(log n/ε0)

2) time to compute all d̂(u, p) for node X . Since the 
sum of M(X) for all nodes X of the same depth is O (n), it takes O (n(log n/ε0)

2) time for all internal nodes of the same 
depth. Since T G has depth O (log n), it takes O (n log3 n/ε2

0 ) time to compute all distances d̂(u, p) for all internal nodes.

To find d̃(u, v) for a leaf node X , we first use Dijkstra’s algorithm to compute dX (u, v), taking every vertex of X as the 
source. This takes O (b2 log b) = O (b2/ε0) time for one leaf node since |V (X)| = O (b) and O (nb/ε0) time for all leaf nodes 
since the sum of |V (X)| for all leaf nodes X is O (n). Then we compute

d̃(u, v) = min{dX (u, v), min
p∈P Q ,Q ∈B(X)

d̂(u, p) + d̂(p, v)}.

From |P Q | = O (1/ε0) for Q ∈ B(X) and |B(X)| = O (1), this takes O (b2/ε0) time for one leaf node and O (nb/ε0) time for 
all leaf nodes. The total time to compute d̃(u, v) for all leaf nodes is O (nb/ε0)) = O (nf (ε0)).

The value D for computing the classes can be found in O (n) time. Since there are O (n) internal nodes, by Lemma 6, 
it takes O (nf (ε0)(1/ε0)) = O (nf (ε0)) time to compute all classes and key portals. Therefore, DS0 can be computed in 
O (n(log3 n/ε2

0 + f (ε0))) time. �
Lemma 9. For graph G and ε0 > 0, the space requirement for data structure DS0 is O (n(logn/ε0 + f (ε0))).

Proof. Let T G be the recursive subdivision of G in DS0 and b = 2(1/ε0) . Each leaf node X has O (b) vertices and requires 
O (b2) space to keep the distances d̃(u, v) for u, v in the node. From this and the sum of |V (X)| for all leaf nodes is O (n), 
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the space for all leaf nodes is O (nb) = O (nf (ε0)). By Lemma 1, the sum of |V (X)| for all nodes X in T G is O (n log n). From 
|B(X) ∪P(X)| = O (1) for every X and |P Q | = O (1/ε0) for each Q ∈ B(X) ∪P(X), the total space for keeping the distances 
d̂(u, v) between vertices and portals is O (n log n/ε0). By Lemma 6, the space for the classes A Q

1 , .., A Q
s in each internal node 

X is f (ε0) for every Q ∈ B(X) ∪ P(X). Since there are O (n) internal nodes, the total space for the classes in all nodes is 
O (nf (ε0)) = O (nf (ε0)).

Therefore the space requirement for the oracle is O (n(log n/ε0 + f (ε0))). �
Lemma 10. For graph G and ε0 > 0, d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) can be computed in O (1) time for any u
and v in G using data structure DS0 .

Proof. Let T G be the recursive subdivision of G in DS0. Xu , Xv and Xu,v can be found in O (1) time. If Xu,v is a leaf node 
then d̃(u, v) can be found in O (1) time. Otherwise, for each path Q ∈ B(Xu,v) ∪P(Xu,v), assume that u ∈ A Q

i and v ∈ A Q
j , 

and let p Q
ij be the key portal for A Q

i and A Q
j . By Lemma 5,

d̃(u, v) = min
p Q

ij ,Q ∈B(Xu,v )∪P(Xu,v )

d̂(u, p Q
ij ) + d̂(p Q

ij , v) ≤ dG(u, v) + 7ε0d(G).

Since |B(X) ∪P(X)| = O (1) and the key portal p Q
ij can be found in O (1) time for each path Q ∈ B(X) ∪P(X), d̃(u, v) can 

be computed in O (1) time. �
From Lemmas 8, 9 and 10, we have the following result.

Theorem 3. For graph G and ε0 > 0, there is an oracle which gives a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG (u, v) + 7ε0d(G)

for any vertices u and v in G with O (1) query time, O (n(logn/ε0 + f (ε0))) size and O (n(log3 n/ε2
0 + f (ε0))) pre-processing time.

We can make the oracle in Theorem 3 a more generalized one: For integer η satisfying 1 ≤ η ≤ 1/ε0, we partition each 
path Q ∈ B(X) ∪ P(X) into η segments Q 1, .., Q η , compute the classes A Q l

1 , .., A Q l
s of vertices in V (X) for each segment 

Q l , 1 ≤ l ≤ η, and key portal p Q l
i j , and use

d̃(u, v) = min
p Q l

i j ,1≤l≤η,Q ∈B(X)∪P(X)

d̂(u, p Q l
i j ) + d̂(p Q l

i j , v)

to approximate dG(u, v). By this generalization, we get the following result.

Theorem 4. For graph G, ε0 > 0 and 1 ≤ η ≤ 1/ε0 , there is an oracle which gives a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤
dG(u, v) +7ε0d(G) for any vertices u and v in G with O (η) query time, O (n(logn/ε0 + f (ηε0))) size and O (n(log3 n/ε2

0 + f (ηε0)))

pre-processing time.

4. Oracle with (1 + ε) stretch

For ε > 0, by choosing an ε0 = ε
7c where c > 0 is a constant, the oracle in Theorem 3 gives a (1 +ε)-approximate distance 

oracle for graph G with dG (u, v) ≥ d(G)/c for every u and v in G . For graph G with dG (u, v) much smaller than d(G) for 
some u and v , we use a scaling approach as described in [15] to get a (1 + ε)-approximate distance oracle. The idea is to 
compute a set of oracles as described in Theorem 3, each for a computed subgraph H of G . Given u and v , we can find in 
O (1) time a constant number of subgraphs (and the corresponding oracles) such that the minimum value returned by these 
oracles is a (1 + ε)-approximation of dG(u, v). Therefore a (1 + ε)-approximate distance for any u, v can be computed in 
constant time. We assume ε > 5/n, otherwise a naive exact distance oracle with O (1) query time and O (n2) space can be 
used to prove Theorem 1.

Let lm be the smallest edge length in G . We assume lm ≥ 1 and the case where lm < 1 can be easily solved in a similar 
way by normalizing the length of each edge e of G to l(e)/lm . Following the scaling technique in [15], for each scale 
γ ∈ {2i |0 ≤ i ≤ 
log d(G)�}, we contract every edge e of length l(e) < γ /n2 in G and remove edges e with l(e) > 24γ , self 
loops and degree 0 vertices to get a contracted graph Gγ , and then compute a sparse cover Cγ = {G(γ , j), j = 1, ..., nγ }
of Gγ as in Lemma 4. When an edge e = {u, v} is contracted in a graph, {u, v} is removed, vertices u and v are replaced 
by a new vertex w , and every edge other than {u, v} incident to u or v in the graph is made incident to w . We say 
the new vertex w covers vertices u and v . We say a vertex u covers u itself and if a vertex x covers a vertex w then x
covers every vertex covered by w . We say an edge {u, v} of G appears in a scale γ if Gγ has an edge {x, y} such that 
x and y cover u and v , respectively. We say a vertex x appears in scale γ if Gγ contains x. From the construction of 
Gγ , each edge of G only appears in scales γ satisfying l(e)/24 ≤ γ ≤ l(e)n2 and thus appears in O (log n) different scales. 
A scale γ is non-trivial if Gγ has at least one edge. Since each edge of G appears in O (log n) scales, there are O (n log n)
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non-trivial scales and the total number of vertices appearing in each non-trivial scale is O (n log n). We can have a bijection 
φ : {γ |γ is a non-trivial scale.} → {0, 1, .., N}, where N = O (n log n), such that for non-trivial scales γ ′ < γ , φ(γ ′) < φ(γ ). 
By the bijection φ, we can assume that non-trivial scales are 0, 1, .., N . In what follows, we use scale for a non-trivial scale.

Our (1 + ε)-approximate distance oracle first estimates roughly the distance d(u, v) to get a right scale γ and then uses 
oracles DS0(γ , j) and the vertices in subgraphs G(γ , j) that cover u and v to find an approximate distance d̃(u, v). It is not 
trivial to find the vertices in G(γ , j) that cover u and v in O (1) time and Õ (n) space. A simple approach for finding the 
vertices in G(γ , j) that cover u and v in O (1) time is to keep a pointer from each vertex u of G to every vertex covering u, 
but this requires O (n2 log n) space, too large. To reduce the space, instead of keeping a pointer from u to every vertex 
covering u, we create a rooted tree TC of size O (n log n) on the vertices in each scale such that if vertex x covers vertex 
u then x is an ancestor of u in TC . We further create a data structure of size O (|TC |) (called Find-Ancestor) which, given 
a scale γ and a vertex u of G that u is covered by the vertex x appearing in scale γ , answers x in O (1) time by finding 
the ancestor x of u in TC . A vertex w (either a vertex of G or one from the contraction of edges) may appear in multiple 
scales. We denote by w(γ ) vertex w appearing in scale γ . For γ �= γ ′ , w(γ ) and w(γ ′) are distinct vertices in TC . The 
construction of TC is as follows:

1. Initially, each vertex u of G is given a scale label sl(u) = 0.
2. For each scale γ = 1, 2, .., N and each vertex w(γ ), if w(γ ) is a new vertex by the contraction of edges e1, .., ek then 

for each vertex u ∈ ∪1≤i≤kei , include edge {w(γ ), u(γ ′)} in TC , where γ ′ = sl(u), otherwise include edge {w(γ ), w(γ ′)}, 
γ ′ = sl(w), in TC ; update sl(w) to γ .

3. After Step 2, TC is a forest. Create a vertex r and an edge between r and the root of each tree in the forest to get a tree 
TC with root r.

Since each vertex of TC except the root r is a vertex of Gγ and each edge of G appears in O (log n) scales, the size of TC

is O (n log n). There is a bijection between the set of leaf vertices of TC and V (G). For each vertex x of TC , each ancestor of 
x covers x in some Gγ . Bender and Farach-Colton [4] give a data structure which, given any vertex x in a rooted tree of n
vertices and an integer d no larger than the depth of x in the tree, find in O (1) time the ancestor of x with depth d. Given 
a vertex u of G and a scale γ , the data structure in [4] provides a base to find the ancestor w(γ ) of u in TC .

Our problem of finding the ancestor w(γ ) of u is slightly different from the one in [4] as we do not know the depth 
of w(γ ) and we only need to find w(γ ) for a leaf of TC . As in [4], we decompose TC into disjoint paths: find a longest 
root-leaf path P in TC and remove P from TC ; the removal of P breaks the remaining of TC into subtrees T1, T2, ..; these 
subtrees are decomposed recursively by removing the longest root-leaf paths in the subtrees to get a set of disjoint paths. 
Each leaf u of TC is in exactly one path and each path has exactly one leaf. We denote by Pu the path having leaf u. 
For each vertex x in TC , let d(x) denote the depth of x (the number of edges in the path between x and r in TC ). For a 
leaf u of TC and 0 ≤ k ≤ d(u), an ancestor x of u is the kth ancestor of u if the length of the path between u and x is k. 
For a path Pu of length h, we create a ladder Q u such that Q u is the path in TC between u and its kth ancestor, where 
k = min{2h − 1, d(u) − 1}. Notice that each vertex of TC is in one root-leaf path but may be in multiple ladders. For each 
vertex v in Pu , we say that the ladder Q u created for Pu is v ′s ladder. For each leaf u of TC , we create edges (short cuts) 
ei, i = 0, 1, ... such that ei connects u and the 2i th ancestor xi of u. We will use the following result of [4].

Fact 1. [4] For every k with 2i ≤ k < 2i+1 , the kth ancestor x of u is in x′
i s ladder.

For each vertex u of TC , the depths of all ancestors of u are consecutive integers 0, 1, .., d(u). By this property, as shown 
in [4], it is easy to find u′s ancestor xi from the given depth d in O (1) time such that x′

i s ladder has u′s ancestor x of 
depth d; further, each ladder can be simply put into an array and x can be found in O (1) time from the array for x′

i s ladder 
using d as an index of the array.

Given a vertex u of G and a scale γ , we need to find the ancestor w(γ ) of u in TC using γ instead of the depth of 
w(γ ). As in [4], we also first find a correct xi and then w(γ ) from x′

i s ladder. But our tasks are more complex than those in 
[4] because the scales of all ancestors of u may not be consecutive integers and we can not find the depth of w(γ ) in O (1)

time from γ . To find xi , for each leaf u of TC , let Su be the set of scales of u′s ancestors xi connected to u by the short cuts 
of u. Then Su is a subset of {0, 1, .., N}. Since the length of a root-leaf path in TC is at most N , there are O (log N) short cuts 
for each leaf of TC and |Su | = O (log N). For |Su| = O (log N), Fredman and Willard [11] give a data structure of size O (|Su |)
that given a scale γ ∈ {0, 1, .., N} finds in O (1) time the largest scale γ ′ with γ ′ ≤ γ (the predecessor of γ ) in Su . We create 
the data structure of [11] for every Su . Vertex w(γ ) is the kth (k = d(u) − d(w(γ ))) ancestor of u. If γ = 0 then w(γ ) = u. 
Otherwise, for the largest γ ′ ∈ Su with γ ′ ≤ γ , the ancestor w(γ ′) of u is xi such that 2i ≤ d(u) − d(w(γ )) < 2i+1. By 
Fact 1, w(γ ) is in x′

i s ladder. Since we can find γ ′ in O (1) time, we can find xi in O (1) time. To find w(γ ) from x′
i s ladder, 

for each ladder Q u , let Ru be the set of scales of the vertices in Q u . We create a hash table of [10] with size O (|Ru |) for 
all scales in Ru that, given a scale γ in Ru , answers in O (1) time the vertex w(γ ) in Q u .

Our data structure Find-Ancestor consists of the data structure of ladders from TC and short-cuts for each leaf of TC , the 
data structure for finding the predecessor of a given scale γ from Su (thus a correct xi ) and the hash table for finding w(γ )

in x′s ladder. The following result is a summary of the above.
i
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Lemma 11. Given a vertex u of G and a scale γ , data structure Find-Ancestor finds the ancestor w(γ ) of u in O (1) time and O (n logn)

space. The data structure can be computed in O (n log4 n) time.

Proof. Obviously, the data structure finds w(γ ) in O (1) time. The rooted tree TC has size O (n log n). The size of all ladders 
is O (n log n) since each ladder Q u only doubles the size of the root-leaf path Pu . The size of short cuts for all u of G
is O (n log n) because each u has O (log N) = O (log n), N = O (n log n), short cuts. For each u of G , |Su | = O (logn) and ∑

u∈V (G) |Su| = O (n log n). From this, the size of the data structure for finding the predecessor in Su for all Su is O (n log n)

as the size for each |Su | is O (|Su |). The size of the hash tables for all ladders is O (n log n) since the size of the hash 
table for each Q u is O (|Q u |) and the size of all ladders is O (n log n). TC , the ladders and short cuts can be computed in 
O (n log n) time. The data structure for one Su can be computed in O (|Su|4) = O (log4 N) = O (log4 n) time [11] and thus 
the data structure for all S ′

u s can be computed in O (n log4 n) time. The hash table for one ladder Q u can be computed in 
O (|Q u | log2 n) time [3] and thus the hash tables for all ladders can be computed in O (n log2 n) time. �

The data structure DS1 for our (1 + ε)-approximate distance oracle keeps the following information:

• A 2-approximate distance oracle DST of G in Lemma 2.
• For every scale γ , subgraphs G(γ , j) and for each subgraph G(γ , j), an oracle DS0(γ , j) in Theorem 3 with ε0 = ε/c′ , 

c′ > 0 is a constant to be specified below.
• For every scale γ and every vertex x appearing in scale γ , the index j of every subgraph G(γ , j) that contains x.
• Data structure Find-Ancestor.

Lemma 12. For graph G and ε > 0, d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ (1 + ε)dG (u, v) can be computed in O (1) time for any u and 
v in G using data structure DS1 .

Proof. Given vertices u and v in G , oracle DST gives d̃T (u, v) with dG (u, v) ≤ d̃T (u, v) ≤ 2dG (u, v) in O (1) time (Lemma 2). 
If d̃T (u, v) = 0 then 0 is returned as dG (u, v). Otherwise, given d̃T (u, v), a scale γ with γ /2 < d̃T (u, v) ≤ γ can be found 
by computing the most significant bit of 

⌈
d̃T (u, v)

⌉
. In the word RAM model with unit costs for basic operations, this can 

be computed in O (1) time using the fusion tree data structure proposed in [11]. Notice that each of u and v is covered 
by a vertex in scale γ and let x and y be the vertices in scale γ covering u and v , respectively. By Lemma 11, x and 
y can be computed in O (1) time. By Lemma 4, there is a G(γ , j) that contains x and every w with dGγ (x, w) ≤ γ and 
d(G(γ , j)) = O (γ ) = O (dG (u, v)). Therefore, there exists a constant c1 > 0 (96 would do) such that d(G(γ , j)) ≤ c1dG (u, v). 
It is easy to see that DS0(γ , j) returns a minimum distance among all the oracles at this scale containing x, y. By oracle 
DS0(γ , j), we get a distance d̃0(x, y) with dG(γ , j)(x, y) ≤ d̃0(x, y) ≤ dG(γ , j)(x, y) + 7ε0d(G(γ , j)). Since G(γ , j) is a subgraph 
of Gγ which is obtained by contracting every edge e of G with l(e) < γ /n2, dG(γ , j)(x, y) ≤ dG(u, v). Let L be the largest 
sum of the lengths of the contracted edges in any path in G . Then dG (u, v) ≤ dG(γ , j)(x, y) + L and L < γ /n. From γ <

2d̃T (u, v) ≤ 4dG(u, v) and ε > 5/n, L < γ /n ≤ 4
5 εdG(u, v). Let d̃(u, v) = d̃0(x, y) + γ /n. Then

dG(u, v) ≤ d̃(u, v) = d̃0(x, y) + γ /n ≤ dG(γ , j)(x, y) + 7ε0d(G(γ , j)) + γ /n

≤ dG(u, v) + 7c1
ε

c′ dG(u, v) + 4

5
εdG(u, v).

By choosing c′ = 35c1, we have dG(u, v) ≤ d̃G(u, v) ≤ (1 + ε)dG (u, v). By Lemma 2, it takes O (1) time to compute d̃T (u, v). 
Given γ , u and v , the vertex x covering u and vertex y covering v can be found in O (1) time. From Lemma 4, there are 
O (1) graphs G(γ , j) containing x and y. From this and Theorem 3, it takes O (1) time to compute d̃(u, v). �
Lemma 13. Data structure DS1 requires O (n logn(log n/ε + f (ε))) space and can be computed in O (n log n(log3 n/ε2 + f (ε))) time.

Proof. DST requires O (n log n) space. Each DS0(γ , j) requires O (nγ j lognγ j/ε + nγ j f (ε)) space, where nγ j = |V (G(γ , j))|. 
Each edge e of G appears in O (log n) different scales and in each scale γ , e appears in O (1) subgraphs G(γ , j). From 
this, 

∑
γ , j nγ j = O (n log n). For every scale γ , DS1 keeps every vertex x in scale γ and index j of every subgraph G(γ , j)

that contains x. This requires O (n log n) space since each edge of G appears in O (log n) scales and each x appears in O (1)

subgraphs. By Lemma 11, data structure Find-Ancestor has size O (n log n). Therefore, DS1 requires space O (n log n(log n/ε +
f (ε))).

D ST can be computed in O (n log3 n) time and the sparse neighborhood covers can be computed in O (n log2 n) time. The 
time for computing DS0(γ , j) for each G(γ , j) is O (nγ j log3 nγ j/ε

2 + f (ε)). By Lemma 11, data structure Find-Ancestor can 
be computed in O (n log4 n) time. Therefore, DS1 can be computed in O (n log n(log3 n/ε2 + f (ε)) time. �

From Lemmas 12 and 13, we get Theorem 1 which is restated below.
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Theorem 1. For ε > 0, there is a (1 + ε)-approximate distance oracle for G with O (1) query time, O (n logn(log n/ε + f (ε))) size 
and O (n log n(log3 n/ε2 + f (ε))) pre-processing time.

Using the oracle in Theorem 4 instead of DS0, we get Theorem 2.

5. Concluding remarks

It is open whether there is a (1 + ε)-approximate distance oracle with O (1) query time and size nearly linear in n for 
weighted directed planar graphs. For undirected planar graphs, it is interesting to reduce oracle size and pre-processing 
time (the function f (ε)) for the oracles in this paper. Experimental studies for fast query time distance oracles are worth 
investigating.
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