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Abstract
In this article, we propose a polynomial-time algorithm to

test whether a given graph contains a subdivision of 𝐾4 as

an induced subgraph. This continues the study of detect-

ing an induced subdivision of 𝐻 for some fixed graph 𝐻 ,

which is still far from being complete. Our result answers a

question by Chudnovsky et al. and Lévêque et al.

K E Y W O R D S
detecting, induced subgraph, ISK4

1 INTRODUCTION

We say that a graph 𝐺 contains some graph𝐻 if there exists an induced subgraph of 𝐺 isomorphic to

𝐻 . A graph 𝐺 is 𝐻-free if 𝐺 does not contain 𝐻 . For 𝑛 ≥ 1, denote by 𝐾𝑛 the complete graph on 𝑛

vertices. A triangle is a graph isomorphic to𝐾3. A subdivision of a graph𝐺 is obtained by subdividing

its edges into paths of arbitrary length (at least one). For 𝑛 ≥ 3, we say that 𝐻 is an ISK𝑛 of a graph
𝐺 if 𝐻 is an induced subgraph of 𝐺 and 𝐻 is a subdivision of 𝐾𝑛. A graph that does not contain any

induced subdivision of 𝐾𝑛 is ISK𝑛-free. A twin wheel is a graph consisting of a chordless cycle 𝐶 of

length at least four and a vertex with exactly three consecutive neighbors in 𝐶 . Note that 𝐾4 and twin

wheels are two special kinds of ISK4.

The class of ISK4-free graphs has recently been studied. In [8], a decomposition theorem for this

class is given. However, it does not lead to a recognition algorithm. The chromatic number of this class

is also proved to be bounded by 24 in [6], while it is conjectured to be bounded by 4 [8]. Given a

graph𝐻 , the line graph of𝐻 is the graph 𝐿(𝐻) with vertex set 𝐸(𝐺) and edge set {𝑒𝑓 ∶ 𝑒 ∩ 𝑓 ≠ ∅}.

Since the class of ISK4-free graphs contains the line graph of every cubic graph, where finding the

edge chromatic number is known to be NP-hard [4], we know that finding the chromatic number of

ISK4-free graphs is also NP-hard.

For a fixed graph 𝐻 , the question of detecting an induced subdivision of 𝐻 in a given graph has

been studied in [7]. There are certain graphs𝐻 where the problem is known to be NP-hard and graphs

𝐻 where there exists a polynomial algorithm. For example, detecting an induced subdivision of 𝐾3 is

trivial since a graph is ISK3-free if and only if it is a forest. On the other hand, detecting an induced
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subdivision of 𝐾5 has been shown to be NP-hard [7]. So far, apart from the trivial cases, the only two

subcubic graphs for which we have a polynomial-time algorithm to detect their induced subdivision are

𝐾2,3 [1] and net [2]. Here, we answer the question of detecting ISK4, which was asked in [7] and [2],

by proving the following:

1.1
There is an algorithm with the following specifications:

• Input: Graph 𝐺.

• Output:

– An ISK4 in 𝐺, or
– Conclude that 𝐺 is ISK4-free.

• Running time: 𝑂(𝑛9).

2 PRELIMINARIES

We first introduce some notions that we use in this article. Let 𝐺(𝑉 ,𝐸) be a graph with 𝑛 vertices. For

𝑋 ⊆ 𝑉 (𝐺), we denote by 𝐺 ⧵𝑋 the subgraph of 𝐺 induced by 𝑉 (𝐺) ⧵𝑋. For 𝑢 ∈ 𝑉 (𝐺), let 𝑁𝐺(𝑢)
denote the neighborhood of 𝑢 in 𝐺 - the set of neighbors of 𝑢 in 𝐺 and𝑁𝐺[𝑢] = 𝑁𝐺(𝑢) ∪ {𝑢}. We also

extend that notion for a subset 𝑋 ⊆ 𝑉 (𝐺), let 𝑁𝐺(𝑋) = ∪𝑥∈𝑋𝑁𝐺(𝑥) ⧵𝑋 and 𝑁𝐺[𝑋] = 𝑁𝐺(𝑥) ∪𝑋.

If the context is clear, we write 𝑁(𝑢) and 𝑁(𝑋) instead of 𝑁𝐺(𝑢) and 𝑁𝐺(𝑋). For 𝑘 ≥ 1, a graph 𝑃

on {𝑥1,… , 𝑥𝑘} is a path if 𝑥𝑖𝑥𝑗 ∈ 𝐸(𝑃 ) if and only if |𝑖 − 𝑗| = 1 (this is often referred to as induced
or chordless path in literature). The length of a path is the number of its edges. The two ends of 𝑃

are 𝑥1 and 𝑥𝑘. The interior of 𝑃 is {𝑥2,… , 𝑥𝑘−1}. We denote by 𝑥𝑖𝑃𝑥𝑗 the subpath of 𝑃 from 𝑥𝑖 to

𝑥𝑗 and denote by 𝑃 ∗ the subpath of 𝑃 from 𝑥2 to 𝑥𝑘−1 (𝑥2𝑃𝑥𝑘−1). A claw is a graph on four vertices

{𝑢, 𝑥, 𝑦, 𝑧} that has exactly three edges: 𝑢𝑥, 𝑢𝑦, 𝑢𝑧. Vertex 𝑢 is called the center of that claw.

Let 𝑥, 𝑦, 𝑧 be three distinct pairwise nonadjacent vertices in 𝐺. A graph𝐻 is an (𝑥, 𝑦, 𝑧)-radar in 𝐺

if it is an induced subgraph of 𝐺 and:

• 𝑉 (𝐻) = 𝑉 (𝐶) ∪ 𝑉 (𝑃𝑥) ∪ 𝑉 (𝑃𝑦) ∪ 𝑉 (𝑃𝑧).
• 𝐶 is an induced cycle of length ≥ 3 containing three distinct vertices 𝑥′, 𝑦′, 𝑧′.

• 𝑃𝑥 is a path from 𝑥 to 𝑥′, 𝑃𝑦 is a path from 𝑦 to 𝑦′, 𝑃𝑧 is a path from 𝑧 to 𝑧′.

• 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 are vertex-disjoint and 𝑥′, 𝑦′, 𝑧′ are the only common vertices between them and 𝐶 .

• These are the only edges in𝐻 .

Note that the length of each path 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 could be 0, therefore an induced cycle in 𝐺 passing

through 𝑥, 𝑦, 𝑧 is considered as an (𝑥, 𝑦, 𝑧)-radar. We will see that 1.1 is a direct consequence of the

following algorithm.

2.1
There is an algorithm with the following specifications:

• Input: A graph 𝐺, four vertices 𝑢, 𝑥, 𝑦, 𝑧 ∈ 𝑉 (𝐺) such that {𝑢, 𝑥, 𝑦, 𝑧} induces a claw with center 𝑢
in 𝐺.
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• Output: One of the following:

– An ISK4 in 𝐺, or
– Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ = 𝐺 ⧵ (𝑁[𝑢] ⧵ {𝑥, 𝑦, 𝑧}).

• Running time: 𝑂(𝑛5).

The following is trivial:

2.2
An ISK4 is either 𝐾4, a twin wheel or contains a claw.

Proof of 1.1 by 2.1. We describe an algorithm to detect an ISK4 in 𝐺 as follows. First, we check if

there is a𝐾4 or a twin wheel in𝐺. Checking if there exists a𝐾4 takes𝑂(𝑛4). Checking if there is a twin

wheel in 𝐺 can be done as follows: list all 4-tuples (𝑎, 𝑏, 𝑐, 𝑑) of vertices in 𝐺 such that they induce a

𝐾4 ⧵ 𝑒 (a graph obtained from𝐾4 by removing one edge, usually called a diamond) where 𝑎𝑑 ∉ 𝐸(𝐺);
for each tuple, check if 𝑎 and 𝑑 are connected in 𝐺 ⧵ ((𝑁[𝑏] ∪𝑁[𝑐]) ⧵ {𝑎, 𝑑}). Since we have 𝑂(𝑛4)
such tuples, this can be done in 𝑂(𝑛6). If there exists a 𝐾4 or a twin wheel in 𝐺, then output that ISK4

in 𝐺. Otherwise, move on to next step.

Now we may assume that 𝐺 is {𝐾4, twin wheel}-free. The following claim is true thanks to 2.2:

𝐺 contains an ISK4 if and only if there exists some 4-tuple (𝑢, 𝑥, 𝑦, 𝑧) of vertices in 𝐺 such that they

induce a claw with center 𝑢 and there is an (𝑥, 𝑦, 𝑧)-radar in 𝐺′. The last step in our algorithm is the

following: generate every 4-tuple (𝑢, 𝑥, 𝑦, 𝑧) of vertices in 𝐺 such that they induce a claw with center 𝑢

and run Algorithm 2.1 for each tuple. If for some tuple (𝑢, 𝑥, 𝑦, 𝑧), we detect an ISK4 in 𝐺 then output

that ISK4 and stop. If for all the tuples, we conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ then we can

conclude that 𝐺 contains no ISK4. Since we have 𝑂(𝑛4) such tuples, and it takes 𝑂(𝑛5) for each tuple

by Algorithm 2.1 then the running time of our algorithm is 𝑂(𝑛9). ■

The rest of our article is therefore devoted to the proof of 2.1. In the next section, we introduce some

useful structures and the main proof is presented in Section 4.

3 ANTENNAS AND CABLES

First we introduce two useful structures in our algorithm.

Let 𝑥, 𝑦, 𝑧 be three distinct pairwise nonadjacent vertices in 𝐺. An (𝑥, 𝑦, 𝑧)-antenna in 𝐺 is an

induced subgraph𝐻 of 𝐺 such that:

• 𝑉 (𝐻) = {𝑐} ∪ 𝑉 (𝑃𝑥) ∪ 𝑉 (𝑃𝑦) ∪ 𝑉 (𝑃𝑧).
• 𝑐 ∉ {𝑥, 𝑦, 𝑧} ∪ 𝑉 (𝑃𝑥) ∪ 𝑉 (𝑃𝑦) ∪ 𝑉 (𝑃𝑧).
• 𝑃𝑥 is a path from 𝑥 to 𝑥′, 𝑃𝑦 is a path from 𝑦 to 𝑦′, 𝑃𝑧 is a path from 𝑧 to 𝑧′.

• 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 are vertex-disjoint and at least one of them has length ≥ 1.

• 𝑐𝑥′, 𝑐𝑦′, 𝑐𝑧′ ∈ 𝐸(𝐻).
• These are the only edges in𝐻 .

• For any vertex 𝑣 in 𝐺 ⧵𝐻 :

– 𝑣 has either at most one neighbor in𝐻 , or
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– 𝑣 has exactly two neighbors 𝑣1, 𝑣2 in𝐻 such that for some 𝑡 ∈ {𝑥, 𝑦, 𝑧}, 𝑣1, 𝑣2 ∈ 𝑃𝑡 ∪ {𝑐} and

their distance in𝐻 is 1 (so they are adjacent) or 2.

We also define a cable given three distinct pairwise nonadjacent vertices 𝑥, 𝑦, 𝑧 in 𝐺. An (𝑥, 𝑦, 𝑧)-
cable in 𝐺 is an induced subgraph𝐻 of 𝐺 such that:

• 𝐻 is a path from 𝑥′ to 𝑧′ going through 𝑦′ for some permutation (𝑥′, 𝑦′, 𝑧′) of {𝑥, 𝑦, 𝑧}.

• For any vertex 𝑣 in 𝐺 ⧵𝐻 :

– 𝑣 has no neighbor in𝐻 or exactly one neighbor in𝐻 , or

– 𝑣 has exactly two neighbors 𝑣1, 𝑣2 in 𝐻 such that for some 𝑡 ∈ {𝑥′, 𝑧′}, 𝑣1, 𝑣2 are in the path

𝑦′𝐻𝑡 and their distance in𝐻 is 1 or 2, or

– 𝑣 has exactly three neighbors in𝐻 , which are 𝑦′ and the two neighbors of 𝑦′ in𝐻 .

Note that the existence of an (𝑥, 𝑦, 𝑧)-antenna or an (𝑥, 𝑦, 𝑧)-cable in𝐺 implies that there is no vertex

in 𝐺 adjacent to all three vertices 𝑥, 𝑦, 𝑧.

The Steiner problem is the following. Given a graph𝐺 = (𝑉 ,𝐸) with nonnegative edge weights and

let 𝑆 ⊆ 𝑉 be a subset of the vertices, called terminals. The task is to find a minimum-weight Steiner

tree—a tree in 𝐺 that spans 𝑆. This problem is well-known to be NP-hard in general [5]. We will use

the following algorithm, which is a direct consequence of Steiner problem in graphs for fixed number

of terminals:

3.1
There is an algorithm with the following specifications:

• Input: A graph 𝐺, a subset 𝑋 ⊆ 𝑉 (𝐺) of size 𝑘 (𝑘 is fixed).

• Output: A minimum subgraph of 𝐺 connecting every vertex in 𝑋 (minimum with respect to the
number of vertices).

• Running time: 𝑂(𝑛3).

Proof. By considering 𝑋 as the set of terminals and the weight of every edge is 1, the solution for

Steiner problem in 𝐺 with 𝑘 terminals gives a tree 𝑇 (a subgraph of 𝐺) connecting 𝑋 with minimum

number of edges. Since 𝑇 is a tree, the number of its vertices differs exactly one from the number of

its edges, therefore graph 𝐺 induced by 𝑉 (𝑇 ) is also a solution for 3.1. An 𝑂(𝑛3) algorithm for Steiner

problem in graphs with fixed number of terminals is given in [3]. ■

3.2
Given a connected graph𝐺 and three vertices 𝑥, 𝑦, 𝑧 ∈ 𝑉 (𝐺), a minimum subgraph𝐻 of𝐺 connecting
𝑥, 𝑦, 𝑧 induces either:

1. A path, or
2. A tree containing exactly one claw, or
3. The line graph of a tree containing exactly one claw.

Proof. If there are more edges, we would find a smaller subgraph in 𝐺 connecting 𝑥, 𝑦, 𝑧, a

contradiction. ■

E LE 3163



From now on, we always denote by 𝐺, 𝑢, 𝑥, 𝑦, 𝑧 the input of Algorithm 2.1 and denote by 𝐺′ the

graph 𝐺 ⧵ (𝑁[𝑢] ⧵ {𝑥, 𝑦, 𝑧}). The following algorithm shows that we can detect some nice structures

in 𝐺′ in polynomial time.

3.3
There is an algorithm with the following specifications:

• Input: 𝐺, 𝑢, 𝑥, 𝑦, 𝑧.
• Output: One of the following:

– An ISK4 in 𝐺, or
– Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′, or
– A vertex 𝑣 ∈ 𝐺′ adjacent to all three vertices 𝑥, 𝑦, 𝑧, or
– An (𝑥, 𝑦, 𝑧)-antenna𝐻 in 𝐺′, or
– An (𝑥, 𝑦, 𝑧)-cable𝐻 in 𝐺′.

• Running time: 𝑂(𝑛3).

Proof. First, we check if 𝑥, 𝑦, 𝑧 are connected in 𝐺′ in 𝑂(𝑛2). If they are not connected, conclude that

there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′. Now suppose that they are connected, we can find a minimum induced

subgraph 𝐻 of 𝐺 connecting 𝑥, 𝑦, 𝑧 by Algorithm 3.1. By 3.2, if 𝐻 does not induce a path or a tree,

output 𝐻 ∪ {𝑢} as an ISK4 in 𝐺. Therefore, we may assume that 𝐻 induces a path or a tree. If 𝐻

contains a vertex adjacent to both 𝑥, 𝑦, 𝑧, output that vertex and stop. Otherwise, we will prove that𝐻

must be an (𝑥, 𝑦, 𝑧)-antenna or an (𝑥, 𝑦, 𝑧)-cable in 𝐺′, or 𝐺 contains an ISK4. It is clear that now 𝐻

must have the same induced structure as an antenna or a cable. We are left to prove that the attachment

of a vertex 𝑣 ∈ 𝐺′ ⧵𝐻 also satisfies the conditions in both cases:

• Case 1: 𝐻 has the same induced structure as an (𝑥, 𝑦, 𝑧)-antenna. Let 𝑐 be the center of the only

claw in 𝐻 . Let 𝑥′, 𝑦′, 𝑧′ be three neighbors of 𝑐 such that 𝑥′ (𝑦′, 𝑧′) is the one closest to 𝑥 (𝑦, 𝑧,

respectively) in 𝐻 . Denote by 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 the paths from 𝑥 to 𝑥′, 𝑦 to 𝑦′, 𝑧 to 𝑧′ in 𝐻 , respectively.

Let 𝑣 ∈ 𝐺′ ⧵𝐻 . The following is true:

– 𝑣 cannot have neighbors in all of 𝑃𝑥, 𝑃𝑦, 𝑃𝑧.

If 𝑣 does, 𝑁𝐻 (𝑣) = {𝑥′, 𝑦′, 𝑧′, 𝑐} or 𝑁𝐻 (𝑣) = {𝑥′, 𝑦′, 𝑧′}, otherwise (𝐻 ⧵ {𝑐, 𝑡}) ∪ {𝑣} is a

graph connecting 𝑥, 𝑦, 𝑧 that is smaller than 𝐻 , where 𝑡 is one of {𝑥′, 𝑦′, 𝑧′}, a contradiction.

If 𝑁𝐻 (𝑣) = {𝑥′, 𝑦′, 𝑧′, 𝑐}, {𝑢, 𝑣, 𝑐} ∪ 𝑃𝑥 ∪ 𝑃𝑦 induces an ISK4 in 𝐺. If 𝑁𝐻 (𝑣) = {𝑥′, 𝑦′, 𝑧′},

suppose that 𝑧′ ≠ 𝑧 (since 𝑣 is not adjacent to all of 𝑥, 𝑦, 𝑧), then {𝑢, 𝑣, 𝑐, 𝑧′} ∪ 𝑃𝑥 ∪ 𝑃𝑦 induces

an ISK4 in 𝐺.

– 𝑣 has at most two neighbors in 𝑃𝑥 ∪ {𝑐} (this holds for 𝑃𝑦, 𝑃𝑧 also).

If 𝑣 has at least four neighbors in 𝑃𝑥 ∪ {𝑐}, let 𝑃 be a shortest path from 𝑥 to 𝑐 in 𝐻 ∪ {𝑣},

then 𝑃 ∪ 𝑃𝑦 ∪ 𝑃𝑧 induces a graph connecting 𝑥, 𝑦, 𝑧 that is smaller than𝐻 , a contradiction. If

𝑣 has exactly three neighbors in 𝑃𝑥 ∪ {𝑐}, suppose that 𝑣 has no neighbor in 𝑃𝑧 (since 𝑣 cannot

have neighbors in all of 𝑃𝑥, 𝑃𝑦, 𝑃𝑧), then {𝑢, 𝑣, 𝑐} ∪ 𝑃𝑥 ∪ 𝑃𝑧 induces an ISK4 in 𝐺.

– 𝑣 cannot have neighbors in two paths among 𝑃𝑥, 𝑃𝑦, 𝑃𝑧.

Without loss of generality, suppose that 𝑣 has neighbors in both 𝑃𝑥 and 𝑃𝑦, we might assume

that 𝑣 has no neighbor in 𝑃𝑧. If 𝑣 has two neighbors in one of 𝑃𝑥 ∪ {𝑐} and 𝑃𝑦 ∪ {𝑐}, suppose
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that is 𝑃𝑥 ∪ {𝑐}, let 𝑡 be the neighbor of 𝑣 in 𝑃𝑦 that is closest to 𝑐. In this case, {𝑢, 𝑣} ∪ 𝑃𝑥 ∪
𝑃𝑧 ∪ 𝑡𝑃𝑦𝑦′ induces an ISK4 in𝐺. Therefore, 𝑣 has exactly one neighbor in 𝑃𝑥 and one neighbor

in 𝑃𝑦 and𝐻 ∪ {𝑢, 𝑣} induces an ISK4 in 𝐺.

– If 𝑣 has exactly two neighbors in 𝑃𝑥 ∪ {𝑐}, then they must be of distance 1 or 2 in𝐻 .

Otherwise, we find a graph connecting 𝑥, 𝑦, 𝑧 smaller than𝐻 , a contradiction.

• Case 2:𝐻 has the same induced structure as an (𝑥, 𝑦, 𝑧)-cable. Suppose that𝐻 is a path from 𝑥 to 𝑧

going through 𝑦. Let 𝑥′, 𝑧′ be the two neighbors of 𝑦 in𝐻 such that 𝑥′ is closer to 𝑥 in𝐻 . Denote by

𝑃𝑥, 𝑃𝑧 the paths from 𝑥 to 𝑥′, 𝑧 to 𝑧′ in𝐻 , respectively. Let 𝑣 ∈ 𝐺′ ⧵𝐻 . The following is true:

– 𝑣 has at most two neighbors in 𝑃𝑥 ∪ {𝑦}.

If 𝑣 has four neighbors in 𝑃𝑥 ∪ {𝑦}, let 𝑃 be a shortest path from 𝑥 to 𝑦 in𝐻 ∪ {𝑣}, then 𝑃 ∪ 𝑃𝑧
is a subgraph connecting 𝑥, 𝑦, 𝑧 that is smaller than 𝐻 , a contradiction. If 𝑣 has exactly three

neighbors in 𝑃𝑥 ∪ {𝑦}, then {𝑢, 𝑣, 𝑦} ∪ 𝑃𝑥 induces an ISK4 in 𝐺.

– If 𝑣 has neighbors in both 𝑃𝑥, 𝑃𝑧, then𝑁𝐻 (𝑣) = {𝑥′, 𝑦, 𝑧′}.

We first show that 𝑣 is adjacent to 𝑦. Suppose that 𝑣 is not adjacent to 𝑦. If 𝑣 has two neighbors

in 𝑃𝑥, let 𝑡 be the neighbor of 𝑣 in 𝑃𝑧 that is closest to 𝑦. In this case, {𝑢, 𝑣, 𝑦} ∪ 𝑃𝑥 ∪ 𝑡𝑃𝑧𝑧′
induces an ISK4 in𝐺. Therefore, 𝑣 has exactly one neighbor in 𝑃𝑥 and one neighbor in 𝑃𝑦. But

now, {𝑢, 𝑣} ∪𝐻 induces an ISK4 in 𝐺.

Now, 𝑣 is adjacent to 𝑦. Since 𝑣 has at most two neighbors in 𝑃𝑥 ∪ {𝑦} and two neighbors in

𝑃𝑧 ∪ {𝑦}, 𝑣 has exactly one neighbor in 𝑃𝑥 and one neighbor in 𝑃𝑧. If 𝑣 is not adjacent to 𝑥′,

let 𝑡 be the neighbor of 𝑣 in 𝑃𝑥. Now {𝑢, 𝑣, 𝑦} ∪ 𝑃𝑧 ∪ 𝑥𝑃𝑥𝑡 induces an ISK4 in 𝐺. Therefore,

𝑁𝐻 (𝑣) = {𝑥′, 𝑦, 𝑧′}.

– If 𝑣 has exactly two neighbors in 𝑃𝑥, then they must be of distance 1 or 2 in𝐻 .

Otherwise, we find a graph connecting 𝑥, 𝑦, 𝑧 smaller than𝐻 , a contradiction. ■

Actually, there is an alternative way to implement Algorithm 3.3 more efficiently by not using 3.1.

Basically, we only have to consider a shortest path 𝑃𝑥𝑦 from 𝑥 to 𝑦, then find a shortest path from 𝑧

to 𝑃𝑥𝑦. By that we would obtain immediately an (𝑥, 𝑦, 𝑧)-antenna or an (𝑥, 𝑦, 𝑧)-cable. However, we

use 3.1 since it gives us a more convenient proof. The first case we need to handle in Algorithm 3.3 is

when there is some vertex 𝑣 adjacent to all of 𝑥, 𝑦, and 𝑧.

3.4
There is an algorithm with the following specifications:

• Input: 𝐺, 𝑢, 𝑥, 𝑦, 𝑧, some vertex 𝑣 ∈ 𝐺′ adjacent to 𝑥, 𝑦, 𝑧.
• Output: One of the following:

– An ISK4 in 𝐺, or
– Conclude that 𝑣 is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′.

• Running time: 𝑂(𝑛2).

Proof. It is not hard to see the following: 𝑣 is contained in some (𝑥, 𝑦, 𝑧)-radar in 𝐺′ if and only if

there exists a path from 𝑦 to 𝑧 in 𝐺𝑥 = 𝐺′ ⧵ ((𝑁[𝑥] ∪𝑁[𝑣]) ⧵ {𝑦, 𝑧}) (up to a relabeling of 𝑥, 𝑦, 𝑧).

Therefore, we only have to test if 𝑦 and 𝑧 are connected in 𝐺𝑥 (and symmetries). If we find some path

𝑃 from 𝑦 to 𝑧 in 𝐺𝑥, output {𝑢, 𝑥, 𝑣} ∪ 𝑃 as an ISK4. If no such path exists, we can conclude that
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𝑣 is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′. Since we only have to test the connection three times

(between 𝑦 and 𝑧 in 𝐺𝑥, and symmetries), the running time of this algorithm is 𝑂(𝑛2). ■

We also have the following algorithm to handle the antenna.

3.5
There is an algorithm with the following specifications:

• Input: 𝐺, 𝑢, 𝑥, 𝑦, 𝑧, an (𝑥, 𝑦, 𝑧)-antenna𝐻 in 𝐺′.

• Output: One of the following:

– An ISK4 in 𝐺, or
– Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′, or
– Some vertex 𝑐 ∈ 𝐺′ that is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′.

• Running time: 𝑂(𝑛4).

Proof. Denote by 𝑐, 𝑥′, 𝑦′, 𝑧′, 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 the elements of 𝐻 as in the definition of an antenna. In this

proof, we always denote by𝑁(𝑋) the neighborhood of𝑋 in𝐺′. First, we prove that any path connecting

any pair of {𝑥, 𝑦, 𝑧} in𝐺′ ⧵ 𝑐 that contains at most two neighbors of 𝑐 certifies the existence of an ISK4

in 𝐺. Such a path can be found by generating every pair (𝑣, 𝑡) of neighbors of 𝑐 in 𝐺′, and for each

pair, finding a shortest path between each pair of {𝑥, 𝑦, 𝑧} in𝐺′ ⧵ (𝑁[𝑐] ⧵ {𝑣, 𝑡}). It is clear that if such

a path is found by this algorithm, then it has at most two neighbors of 𝑐 and if no path is reported,

we can conclude that it does not exist. Since we have 𝑂(𝑛2) pairs (𝑣, 𝑡) and finding a shortest path

between some pair of vertices in a graph takes 𝑂(𝑛2), this algorithm runs in 𝑂(𝑛4). Now we prove

that such a path certifies the existence of an ISK4. Let 𝑃 be a path between some pair in {𝑥, 𝑦, 𝑧}
that contains at most two neighbors of 𝑐, without loss of generality, assume that 𝑃 is from 𝑥 to 𝑦. We

say that a path 𝑄 is a (𝑃𝑥, 𝑃𝑦)-connection if one end of 𝑄 is in 𝑁(𝑃𝑥), the other end is in 𝑁(𝑃𝑦) and

𝑄∗ ∩ (𝑁(𝑃𝑥) ∪𝑁(𝑃𝑦)) = ∅ (we make symmetric definitions for (𝑥, 𝑧) and (𝑦, 𝑧)). We also say that a

path 𝑄 is 𝑆-independent for some 𝑆 ⊆ 𝑉 (𝐺′) if 𝑄 ∩𝑁[𝑆] = ∅. We consider following cases:

1. 𝑃 contains no neighbor of 𝑐.

It is clear that there exists a subpath 𝑃 ′ of 𝑃 such that 𝑃 ′ is a (𝑃𝑥, 𝑃𝑦)-connection. Furthermore,

we may assume that 𝑃 ′ is 𝑃𝑧-independent since otherwise there exists some subpath 𝑃 ′′ of 𝑃 ′ that

is a (𝑃𝑥, 𝑃𝑧)-connection and is 𝑃𝑦-independent. Let 𝑥′′, 𝑦′′ be two ends of 𝑃 ′ that are in 𝑁(𝑃𝑥)
and 𝑁(𝑃𝑦), respectively. We see that 𝑥′′ ≠ 𝑦′′ because 𝐻 is an antenna. Moreover, 𝑥′′ and 𝑦′′ are

not adjacent to 𝑐 since 𝑃 ′ contains no neighbor of 𝑐. We have the following cases based on the

attachment on an antenna:

1. 𝑥′′ and 𝑦′′, each has exactly one neighbor in 𝑃𝑥 and 𝑃𝑦, respectively. Then {𝑢} ∪ 𝑃 ′ ∪𝐻 induces

an ISK4 in 𝐺.

2. 𝑥′′ has exactly one neighbor in 𝑃𝑥 and 𝑦′′ has exactly two neighbors in 𝑃𝑦 (or symmetric). Then

{𝑢, 𝑐} ∪ 𝑃 ′ ∪ 𝑃𝑥 ∪ 𝑃𝑦 induces an ISK4 in 𝐺.

3. 𝑥′′ and 𝑦′′, each has exactly two neighbors in 𝑃𝑥 and 𝑃𝑦, respectively. Let 𝑡 be the neighbor of 𝑥

in 𝑃𝑥 that is closer to 𝑐. Then {𝑢, 𝑐} ∪ 𝑃 ′ ∪ 𝑡𝑃𝑥𝑥′ ∪ 𝑃𝑦 ∪ 𝑃𝑧 induces an ISK4 in 𝐺.

2. 𝑃 contains exactly one neighbor of 𝑐.
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Similar to the argument of the previous case, there exists a path 𝑃 ′ with two ends 𝑥′′ and 𝑦′′ such that

𝑃 ′ is a (𝑃𝑥, 𝑃𝑦)-connection and is 𝑃𝑧-independent. We may assume that 𝑐 has exactly one neighbor

𝑐′ in 𝑃 ′, otherwise we are back to previous case. In this case, at most one vertex in {𝑥′′, 𝑦′′} can

be adjacent to 𝑐 (in other words, at most one vertex in {𝑥′′, 𝑦′′} can be identical to 𝑐′). We consider

the following cases:

1. 𝑥′′ has exactly one neighbor in𝑃𝑥 ∪ {𝑐} (therefore exactly one neighbor in𝑃𝑥) and 𝑦′′ has exactly

one neighbor in 𝑃𝑦 ∪ {𝑐} (therefore exactly one neighbor in 𝑃𝑦). Then {𝑢, 𝑐} ∪ 𝑃 ′ ∪ 𝑃𝑥 ∪ 𝑃𝑦
induces an ISK4 in 𝐺.

2. 𝑥′′ has exactly one neighbor in 𝑃𝑥 ∪ {𝑐} (this neighbor must be in 𝑃𝑥) and 𝑦′′ has exactly two

neighbors in 𝑃𝑦 ∪ {𝑐} (or symmetric). If 𝑦′′ is adjacent to 𝑐, then {𝑢, 𝑐} ∪ 𝑃 ′ ∪ 𝑃𝑥 ∪ 𝑃𝑦 induces

an ISK4 in 𝐺. Otherwise 𝑦′′ has two neighbors in 𝑃𝑦 and {𝑢, 𝑐} ∪ 𝑐′𝑃 ′𝑦′′ ∪ 𝑃𝑥 ∪ 𝑃𝑦 induces an

ISK4 in 𝐺.

3. 𝑥′′ has exactly two neighbors in 𝑃𝑥 ∪ {𝑐} and 𝑦′′ has exactly two neighbors in 𝑃𝑦 ∪ {𝑐}. Since

at most one of them is adjacent to 𝑐, we might assume that 𝑦′′ is not adjacent to 𝑐. Then {𝑢, 𝑐} ∪
𝑐′𝑃 ′𝑦′′ ∪ 𝑃𝑦 ∪ 𝑃𝑧 induces an ISK4 in 𝐺.

3. 𝑃 contains exactly two neighbors of 𝑐.

We may assume that 𝑃 is 𝑃𝑧-independent since otherwise we have some subpath of 𝑃 that is a

(𝑃𝑧, 𝑃𝑥)-connection or (𝑃𝑧, 𝑃𝑦)-connection and contains at most one neighbor of 𝑐 and we can argue

like in preceding cases. Therefore, {𝑢, 𝑐} ∪ 𝑃 ∪ 𝑃𝑧 induces an ISK4.

It is easy to see that above argument can be turned into an algorithm to output an ISK4 in each case.

Now we can describe our algorithm for 3.5. First, test if there exists a path in𝐺′ ⧵ 𝑐 between some pair

of {𝑥, 𝑦, 𝑧} that contains at most two neighbors of 𝑐:

1. If such a path exists, output the corresponding ISK4 in 𝐺.

2. If no such path exists, test the connection between each pair of {𝑥, 𝑦, 𝑧} in 𝐺′ ⧵ 𝑐:
(a) If {𝑐} is a cutset in 𝐺′ disconnecting some pair of {𝑥, 𝑦, 𝑧}, then conclude that there is no

(𝑥, 𝑦, 𝑧)-radar in 𝐺′.

(b) Otherwise, conclude that 𝑐 is the vertex not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′.

Now we explain why this algorithm is correct. If Case 1 happens, it outputs correctly the ISK4 by the

argument above. If Case 2 happens, we know that there are only two possible cases for the connection

between each pair of {𝑥, 𝑦, 𝑧} in 𝐺′ ⧵ 𝑐, for example for (𝑥, 𝑦):

• 𝑥 and 𝑦 are not connected in 𝐺′ ⧵ 𝑐, or

• Every path from 𝑥 to 𝑦 in 𝐺′ ⧵ 𝑐 contains at least three neighbors of 𝑐.

Therefore, Case 2a corresponds to one of the following cases, both lead to the conclusion that there

is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′:

• Each pair of {𝑥, 𝑦, 𝑧} is not connected in 𝐺′ ⧵ 𝑐.
• 𝑥 is not connected to {𝑦, 𝑧}, while 𝑦 and 𝑧 are still connected in 𝐺′ ⧵ 𝑐 (or symmetric). In this case,

every path from 𝑦 to 𝑧 in 𝐺′ ⧵ 𝑐 contains at least three neighbors of 𝑐.

If Case 2b happens, we know that each pair of {𝑥, 𝑦, 𝑧} is still connected in 𝐺′ ⧵ 𝑐 and furthermore

every path between them contains at least three neighbors of 𝑐. This implies that 𝑐 is not contained in

E LE 3167



any (𝑥, 𝑦, 𝑧)-radar, since if 𝑐 is in some (𝑥, 𝑦, 𝑧)-radar, we can easily find a path between some pair of

{𝑥, 𝑦, 𝑧} in that radar containing at most two neighbors of 𝑐, a contradiction.

The complexity of the whole algorithm is still 𝑂(𝑛4) since we can find an ISK4 in Case 1 in 𝑂(𝑛2)
and test the connection in Case 2 in 𝑂(𝑛2). ■

The next algorithm deals with cable.

3.6
There is an algorithm with the following specifications:

• Input: 𝐺, 𝑢, 𝑥, 𝑦, 𝑧, an (𝑥, 𝑦, 𝑧)-cable𝐻 in 𝐺′.

• Output: One of the following:

– An ISK4 in 𝐺, or
– Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′, or
– Some vertex 𝑐 ∈ 𝐺′ that is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′.

• Running time: 𝑂(𝑛4).

Proof. Without loss of generality, we may assume that the cable 𝐻 is a path from 𝑥 to 𝑧 containing

𝑦. Let 𝑥′ be the neighbor of 𝑦 in 𝐻 that is closer to 𝑥 and 𝑧′ be the other neighbor of 𝑦 in 𝐻 . Let

𝑃𝑥 = 𝑥𝐻𝑥′ and 𝑃𝑧 = 𝑧𝐻𝑧′. In this proof, we denote by𝑁(𝑋) the neighborhood of 𝑋 in 𝐺′. We also

say that a path 𝑄 is a (𝑃𝑥, 𝑃𝑧)-connection if one end of 𝑄 is in 𝑁(𝑃𝑥), the other end is in 𝑁(𝑃𝑧) and

𝑄∗ ∩ (𝑁(𝑃𝑥) ∪𝑁(𝑃𝑧)) = ∅. Before the algorithm, we first prove the following:

(1) Every path 𝑃 from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing no neighbor of 𝑦 certifies an ISK4 in 𝐺.

Let 𝑃 ′ be a subpath of 𝑃 such that 𝑃 ′ is a (𝑃𝑥, 𝑃𝑧)-connection. Let 𝑥′′ and 𝑧′′ be two ends of

𝑃 ′ such that 𝑥′′ ∈ 𝑁(𝑃𝑥) and 𝑧′′ ∈ 𝑁(𝑃𝑧). Since 𝑃 ′ has no neighbor of 𝑦, both 𝑥′′ and 𝑧′′ are

not adjacent to 𝑦. We consider the following cases based on the attachment on a cable:

(a) 𝑥′′ and 𝑧′′, each has exactly one neighbor in 𝑃𝑥 and 𝑃𝑧, respectively. Then {𝑢} ∪𝐻 ∪ 𝑃 ′

induces an ISK4 in 𝐺.

(b) 𝑥′′ has exactly two neighbors in 𝑃𝑥 and 𝑧′′ has exactly one neighbor in 𝑃𝑧 (or symmetric).

Let 𝑡 be the neighbor of 𝑧′′ in 𝑃𝑧.

• If 𝑡 ≠ 𝑧 then {𝑢, 𝑦} ∪ 𝑃 ′ ∪ 𝑃𝑥 ∪ 𝑡𝑃𝑧𝑧′ induces an ISK4 in 𝐺.

• If 𝑡 = 𝑧 then {𝑢, 𝑦, 𝑧} ∪ 𝑃 ′ ∪ 𝑃𝑥 induces an ISK4 in 𝐺.

(c) 𝑥′′ and 𝑧′′, each has exactly two neighbors in 𝑃𝑥 and 𝑃𝑧, respectively. Let 𝑡 be one of the

two neighbors of 𝑧′′ that is closer to 𝑦. Then {𝑢, 𝑦} ∪ 𝑃 ′ ∪ 𝑃𝑥 ∪ 𝑡𝑃𝑧𝑧′ induces an ISK4 in

𝐺.

(2) Every path 𝑃 from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing exactly two neighbors of 𝑦 certifies an ISK4 in

𝐺.

It is clear since {𝑢, 𝑦} ∪ 𝑃 induces an ISK4 in 𝐺.

(3) Assume that every path from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 contains at least one neighbor of 𝑦. If there exists

some path from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing exactly one neighbor of 𝑦, then a shortest such path

𝑃 satisfies that 𝑃 ∪ {𝑦} is an (𝑥, 𝑦, 𝑧)-antenna in 𝐺′, or 𝐺 contains an ISK4.

Let us prove (3). It is clear that 𝑃 ∪ {𝑦} has the same induced structure as an antenna, we only

have to prove the attachment on it. Let 𝑐 be the only neighbor of 𝑦 on 𝑃 and 𝑥′, 𝑧′ be the two
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neighbors of 𝑐 different from 𝑦 such that 𝑥′ is the one closer to 𝑥 in 𝑃 . Denote 𝑃𝑥 = 𝑥𝑃𝑥′,
𝑃𝑧 = 𝑧𝑃𝑧′. Let 𝑣 be a vertex in 𝐺′ ⧵ (𝑃 ∪ {𝑦}), we consider the following cases:

• 𝑣 is not adjacent to 𝑦. The following is true:

– 𝑣 cannot have neighbors on both 𝑃𝑥 and 𝑃𝑧.

If 𝑣 does, there exists a path in𝐺′ from 𝑥 to 𝑧 (passing through 𝑣) containing no neighbor

of 𝑦, a contradiction.

– 𝑣 has at most two neighbors in 𝑃𝑥 ∪ {𝑐}.

If 𝑣 has at least three neighbors in 𝑃𝑥 ∪ {𝑐}, they must be exactly three consecutive neigh-

bors in 𝑃 , otherwise there exists a shorter path than 𝑃 satisfying the assumption. But if

𝑣 has three consecutive neighbors in 𝑃𝑥 ∪ {𝑐}, then {𝑢, 𝑣} ∪ 𝑃 induces an ISK4.

– If 𝑣 has exactly two neighbors in 𝑃𝑥 ∪ {𝑐}, they must be of distance 1 or 2 in 𝑃 .

Otherwise, we have a shorter path than 𝑃 (passing through 𝑣) satisfying the assumption.

• 𝑣 is adjacent to 𝑦. The following is true:

– 𝑣 cannot have neighbors on both 𝑃𝑥 and 𝑃𝑧.

If 𝑣 does, then𝑁(𝑣) ∩ 𝑃𝑥 = {𝑥′} and𝑁(𝑣) ∩ 𝑃𝑧 = {𝑧′}, otherwise there exists a shorter

path than 𝑃 (passing through 𝑣) satisfying the assumption. If 𝑣 is adjacent to 𝑐, then

{𝑢, 𝑣} ∪ 𝑃 induces an ISK4. If 𝑣 is not adjacent to 𝑐, since 𝑣 cannot be adjacent to both 𝑥

and 𝑧 (by definition of a cable), we may assume that 𝑣 is not adjacent to 𝑥 (or equivalently

𝑥 ≠ 𝑥′). In this case, {𝑢, 𝑣, 𝑦, 𝑐, 𝑥′} ∪ 𝑃𝑧 induces an ISK4 in 𝐺.

– 𝑣 cannot have at least three neighbors in 𝑃𝑥 ∪ {𝑐}.

If 𝑣 does, there exists a path (passing through 𝑣) from 𝑥 to 𝑧 containing exactly two

neighbors of 𝑦 (which are 𝑣 and 𝑐). This path certifies an ISK4 by (2).

– 𝑣 cannot have exactly two neighbors in 𝑃𝑥 ∪ {𝑐}.

If 𝑣 does, {𝑢, 𝑣, 𝑦, 𝑐} ∪ 𝑃𝑥 induces an ISK4.

– If 𝑣 has exactly one neighbor in 𝑃𝑥 ∪ {𝑐}, it must be 𝑐.

If 𝑣 has exactly one neighbor in 𝑃𝑥 ∪ {𝑐} that is not 𝑐, then {𝑢, 𝑣, 𝑦} ∪ 𝑃 induces an ISK4.

The above discussion shows that either 𝐺 contains an ISK4 (and we can detect in 𝑂(𝑛2)), or

𝑃 ∪ {𝑦} is an (𝑥, 𝑦, 𝑧)-antenna in 𝐺′. This proves (3).

Now we describe our algorithm for 3.6:

1. Test if there exists a path 𝑃 from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing no neighbor of 𝑦.

1. If such a path exists, output an ISK4 by the argument in (1).

2. If no such path exists, move to the next step.

2. Find a shortest path 𝑃 from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing exactly one neighbor of 𝑦 if such a path

exists.

1. If such a path 𝑃 exists, by the argument in (3), either we detect an ISK4 in 𝐺, output it and stop,

or we find an (𝑥, 𝑦, 𝑧)-antenna 𝑃 ∪ {𝑦} in 𝐺′, run Algorithm 3.5 given this antenna as input,

output the corresponding conclusion.

2. If no such path exists, move to the next step.

3. Test if there exists a path 𝑃 from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 containing exactly two neighbors of 𝑦.

1. If such a path 𝑃 exists, output an ISK4 in 𝐺 by the argument in (2).
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2. If no such path exists, conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ (since at this point, every

path from 𝑥 to 𝑧 in 𝐺′ ⧵ 𝑦 contains at least three neighbors of 𝑦).

Step 1 can be done in 𝑂(𝑛2) by checking the connection between 𝑥 and 𝑧 in 𝐺′ ⧵𝑁[𝑦]. Step 2 runs

in 𝑂(𝑛3) by generating every neighbor 𝑡 of 𝑦 and for each 𝑡, find a shortest path between 𝑥 and 𝑧 in

𝐺′ ⧵ (𝑁[𝑦] ⧵ {𝑡}). Then pick the shortest one over all such paths. Since we call the Algorithm 3.5, step

2a takes 𝑂(𝑛4). Step 3 can be done in 𝑂(𝑛4) by generating every pair (𝑡, 𝑤) of neighbors of 𝑦 and for

each pair (𝑡, 𝑤), check the connection between 𝑥 and 𝑧 in 𝐺′ ⧵ (𝑁[𝑦] ⧵ {𝑡, 𝑤}). Therefore, the total

running time of Algorithm 3.6 is 𝑂(𝑛4). ■

4 PROOF OF 2.1

Now we sum up everything in previous section and describe the algorithm for 2.1:

1. Run Algorithm 3.3. Output is one of the following:

i. An ISK4 in 𝐺: output it and stop.

ii. Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ and stop.

iii. A vertex 𝑣 adjacent to 𝑥, 𝑦, 𝑧: run Algorithm 3.4 with 𝑣 as input. Output is one of the following:

(i) An ISK4 in 𝐺: output it and stop.

(ii) Conclude that 𝑣 is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′: Run Algorithm 2.1 recursively

for (𝐺 ⧵ 𝑣, 𝑢, 𝑥, 𝑦, 𝑧).
iv. An (𝑥, 𝑦, 𝑧)-antenna 𝐻 in 𝐺′: run Algorithm 3.5 with 𝐻 as input. Output is one of the follow-

ing:

(1) An ISK4 in 𝐺: output it and stop.

(2) Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ and stop.

(3) Some vertex 𝑐 ∈ 𝐺′ that is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′: Run Algorithm 2.1

recursively for (𝐺 ⧵ 𝑐, 𝑢, 𝑥, 𝑦, 𝑧).
v. An (𝑥, 𝑦, 𝑧)-cable𝐻 in𝐺′: run Algorithm 3.6 with𝐻 as input. Output is one of the following:

(1) An ISK4 in 𝐺: output it and stop.

(2) Conclude that there is no (𝑥, 𝑦, 𝑧)-radar in 𝐺′ and stop.

(3) Some vertex 𝑐 ∈ 𝐺′ that is not contained in any (𝑥, 𝑦, 𝑧)-radar in 𝐺′: Run Algorithm 2.1

recursively for (𝐺 ⧵ 𝑐, 𝑢, 𝑥, 𝑦, 𝑧).

The correctness of this algorithm is based on the correctness of the Algorithms 3.3, 3.4, 3.5, and

3.6. Now we analyse its complexity. Let 𝑓 (𝑛) be the complexity of this algorithm. Since we have five

cases, each case takes 𝑂(𝑛4) and at most a recursive call with the complexity 𝑓 (𝑛 − 1). Therefore

𝑓 (𝑛) ≤ 𝑂(𝑛4) + 𝑓 (𝑛 − 1) and 𝑓 (𝑛) = 𝑂(𝑛5).

5 CONCLUSION

In this article, we give an 𝑂(𝑛9) algorithm to detect an induced subdivision of 𝐾4 in a given graph.

We believe that the complexity might be improved to 𝑂(𝑛7) by first decomposing the graph by clique

cutset until there is no 𝐾3,3 (using decomposition theorem in [8]). Now every (ISK4, 𝐾3,3)-free graph
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has a linear number of edges since it is 𝑐-degenerate by some constant 𝑐 as shown in [8]. Therefore,

testing the connection in this graph takes only𝑂(𝑛), instead of𝑂(𝑛2) as in the algorithm. Also, we only

have to consider 𝑂(𝑛3) triples of three independent vertices and test every possible center of that claw

at the same time instead of generating all 𝑂(𝑛4) claws. But we prefer to keep our algorithm as 𝑂(𝑛9)
since it is simple and does not rely on decomposition theorem. We leave the following open question

as conclusion:

Open question. Given a graph 𝐻 of maximum degree 3, can we detect an induced subdivision of

𝐻 in polynomial time?
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