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Abstract

A set C ⊆ V (G) is an identifying code in a graph G if for all v ∈ V (G), C[v] �= ∅, and
for all distinct u, v ∈ V (G), C[u] �= C[v], where C[v] = N [v] ∩ C and N [v] denotes
the closed neighbourhood of v in G. The minimum density of an identifying code
in G is denoted by d∗(G). In this paper, we study the density of king grids which
are strong product of two paths. We show that for every king grid G, d∗(G) ≥ 2/9.
In addition, we show this bound is attained only for king grids which are strong
products of two infinite paths. Given k ≥ 3, we denote by Kk the (infinite) king
strip with k rows. We prove that d∗(K3) = 1/3, d∗(K4) = 5/16, d∗(K5) = 4/15 and
d∗(K6) = 5/18. We also prove that 2

9 + 8
81k ≤ d∗(Kk) ≤ 2

9 + 4
9k for every k ≥ 7.

Keywords: Identifying code, King grid, Discharging Method.

1 Introduction

Let G be a graph. The neighbourhood of a vertex v of G, denoted by N(v), is
the set of vertices adjacent to v in G, and the closed neighbourhood of v is the
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set N [v] = N(v) ∪ {v}. Given a set C ⊆ V (G), let C[v] = N [v] ∩ C. We say
that C is an identifying code of G if C[v] �= ∅ for all v ∈ V (G), and C[u] �= C[v]
for all distinct u, v ∈ V (G). Clearly, a graph G has an identifying code if and
only if it contains no twins (vertices u, v ∈ V (G) with N [u] = N [v]).

Let G be a (finite or infinite) graph with bounded maximum degree. For
any non-negative integer r and vertex v, we denote by Br(v) the ball of radius
r in G centered at v, that is Br(v) = {x | dist(v, x) ≤ r}. For any set of
vertices C ⊆ V (G), the density of C in G, denoted by d(C,G), is defined by

d(C,G) = lim sup
r→+∞

|C ∩ Br(v0)|
|Br(v0)| ,

where v0 is an arbitrary vertex in G. The infimum of the density of an
identifying code in G is denoted by d∗(G). Observe that if G is finite, then
d∗(G) = |C∗|/|V (G)|, where C∗ is a minimum-size identifying code of G.

The problem of finding low-density identifying codes was introduced in [13]
in relation to fault diagnosis in arrays of processors. Particular interest was
dedicated to grids as many processor networks have a grid topology. Many re-
sults have been obtained on square grids [4,1,10,2,12], triangular grids [13,11],
and hexagonal grids [6,8,9]. In this paper, we study king grids, which are
strong products of two paths. The strong product of two graphs G and H,
denoted by G�H, is the graph with vertex set V (G)× V (H) and edge set :

E(G�H) = {(a, b)(a, b′) | a ∈ V (G) and bb′ ∈ E(H)}
∪ {(a, b)(a′, b) | aa′ ∈ E(G) and b ∈ V (H)}
∪ {(a, b)(a′, b′) | aa′ ∈ E(G) and bb′ ∈ E(H)}.

The two-way infinite path, denoted by PZ, is the graph with vertex set Z
and edge set {{i, i+ 1} |∈ Z}, and the one-way infinite path, denoted by PN,
is the graph with vertex set N and edge set {{i, i + 1} | i ∈ N}. A path is a
connected subgraph of PZ. For every positive integer k, Pk is the subgraph of
PZ induced by {1, 2, . . . , k}. A king grid is the strong product of two (finite
or infinite) paths. The plane king grid is GK = PZ � PZ, the half-plane king
grid is HK = PZ � PN, the quarter-plane king grid is QK = PN � PN, and the
king strip of height k is Kk = PZ � Pk.

In 2001, Cohen et al. [7] proved that d∗(GK) ≥ 2/9. In 2002, Charon et
al. [3] obtained an optimal identifying code with density 2/9. They provided
the tile depicted in Fig. 1, which generates a periodic tiling of the plane with
periods (0, 6) and (6, 0), yielding an identifying code C∞ of the bidimensional
infinite king grid with density 2

9
.

In this paper, using the Discharging Method (see Section 3 of [11] for a
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Fig. 1. Tile generating an optimal identifying code of the bidimensional infinite
grid. Black vertices are those of the code.

detailed presentation of this technique for identifying codes), we provide the
following tight general lower bounds on the minimum density of identifying
codes of king grids.

Theorem 1.1 If G is a (finite or infinite) king grid, then d∗(G) ≥ 2
9
.

Theorem 1.2 If G is a finite king grid, then d∗(G) > 2
9
.

Finally, we give some bounds for king strips. Pushing further the proof of
Theorem 1.1, we prove the following.

Theorem 1.3 For every k ≥ 6, d∗(Kk) ≥ 2
9
+ 8

81k
.

Changing C∞, we obtain upper bounds for identifying codes of Kk.

Theorem 1.4 For every k ≥ 5,

d∗(Kk) ≤

⎧
⎪⎨

⎪⎩

2
9
+ 6

18k
, if k ≡ 0 mod 3,

2
9
+ 8

18k
, if k ≡ 1 mod 3,

2
9
+ 7

18k
, if k ≡ 2 mod 3.

Finally, we show some identifying codes of K3, K4, K5 and K6 (see Figs.
2, 3, 4 and 5) and prove that they are optimal. This yields the following.

Theorem 1.5 d∗(K3) = 1/3 = 0.333 . . . d∗(K4) = 5/16 = 0.3125
d∗(K5) = 4/15 = 0.2666 . . . d∗(K6) = 5/18 = 0.2777 . . .

Clearly d∗(K1) = 1/2 (as K1 = PZ) and K2 has no identifying code because
it has twins. All these results imply that GK , HK and QK are the unique king
grids having an identifying code with density 2/9 (one can easily derive from
C∞ identifying codes with density 2/9 of HK and QK).

2 Sketches of proofs

Sketch of proof of Theorem 1.1. Let C an identifying code of a king gridG.
We shall prove that d(C,G) ≥ 2/9. For this, we use the Discharging Method.
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Fig. 2. Four tiles generating optimal identifying codes of K3 (density 1/3)
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Fig. 3. Tile generating an optimal identifying code of K4 (density 5/16)
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Fig. 4. Two tiles generating optimal identifying codes of K5 (density 4/15)
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Fig. 5. Two tiles generating optimal identifying codes of K6 (density 5/18)

The initial charge of a vertex v is 1 if v ∈ C and 0 otherwise. We apply some
local discharging rules. We shall prove that the final charge of every vertex
in C is at least 2/9. This would imply the result. Let U = V (G)\C. Given
X ⊆ V (G) and i = 1, . . . , 9, let Xi (resp. X≥i) the set of vertices v ∈ X with
exactly (resp. at least) i vertices in N [v] ∩ C. An X-vertex is a vertex in X.
A vertex is full if its 8 neighbours in GK are in G; otherwise it is a side vertex.

We first prove the following properties of C: (i) two C2-vertices are not
adjacent, (ii) every C-vertex has at most one neighbour in U1, (iii) every full
C2-vertex has at least three neighbours in U≥3, (iv) every full C3-vertex has
a neighbour in U≥3, and (v) every C1-vertex (a, b) has no neighbour in U1

and at most six neighbours in U2; furthermore, if it has six neighbours in U2,
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then either {(a− 1, b− 2), (a− 2, b− 1), (a + 2, b + 1), (a + 1, b + 2)} ⊆ C or
{(a+ 1, b− 2), (a+ 2, b− 1), (a− 2, b+ 1), (a− 1, b+ 2)} ⊆ C.

A defective vertex is a vertex in C1 with six neighbours in U2. Let v = (a, b)
be a defective vertex. The team of v is a set among {(a− 1, b− 2), (a− 2, b−
1), (a + 2, b + 1), (a + 1, b + 2)} and {(a + 1, b − 2), (a + 2, b − 1), (a − 2, b +
1), (a − 1, b + 2)} which is included in C. By Property (v), the team exists.
Moreover, by Property (i), at least two vertices of the team are in C≥3. Those
vertices are the partners of v. We apply the following discharging rules.
(R1) Every C-vertex sends 2

9i
to each of its neighbours in Ui.

(R2) Every defective vertex receives 1
54

from each of its partners.

Using the above properties, we then prove that the final charge of every
vertex v is at least 2/9. �

Sketch of proof of Theorem 1.2. We only need to prove that, at the end
of the proof of Theorem 1.1, one vertex has final charge greater than 2/9. To
do so, we prove that there is a side C-vertex or a C≥3-vertex and check that
such a vertex has final charge at least 2

9
+ 1

27
. �

Sketch of proof of Theorem 1.3. Applying initially the same rules R1 and
R2 as in the proof of Theorem 1.1, we prove that in average, for every column,
there is an extra charge of at least 4

81
on the three top vertices and an extra

charge of at least 4
81

on the three bottom vertices. �

Sketch of proof of Theorem 1.4. If k ≡ 0, 2 mod 3, let C ′
k = (C∞ ∩ Z×

[k]) ∪ {(6a + 2, 3), (6a + 5, 3), (6a + 2, k − 2), (6a + 5, k − 2)|a ∈ Z}. If k ≡ 1
mod 3, let C ′

k = (C∞∩Z×{2, . . . , k+1})∪{(6a+2, 4), (6a+5, 4), (6a+2, k−
1), (6a+ 5, k− 1)|a ∈ Z}. One can check that C ′

k is an identifying code of Kk

when k ≡ 0, 2 mod 3, and that C ′
k is an identifying code of the strip induced

by the rows 2 to k+1 (which is isomorphic to Kk), with the desired densities.
As an example, C ′

5 and C ′
6 are the 2nd identifying codes of Figs. 4 and 5. �

Sketch of proof of Theorem 1.5. The bth row ofKk isRb = {(a, b) | a ∈ Z}.
We have d(C,Kk) =

1
k

∑k
i=1 d(C,Ri). We show that if C is an identifying code

of Kk (k ≥ 3), then d(C,R1) + d(C,R2) ≥ 1/2, d(C,Rk) + d(C,Rk−1) ≥ 1/2,
d(C,R3) ≥ 1/3 and d(C,Rk−2) ≥ 1/3. As a consequence, we obtain that,
if C is an identifying code of K5 (resp. K6), then d(C,K5) ≥ 4/15. (resp.
d(C,K6) ≥ 5/18.) To prove lower bounds on d∗(Kk) for k ∈ {3, 4}, we use
the Discharging Method on the columns Qa = {(a, b) | 1 ≤ b ≤ k}, a ∈ Z.
Let C be an identifying code of Kk. We set the initial charge of every integer
a ∈ Z to chrg0(a) = |Qa ∩ C|. We say that a ∈ Z is satisfied if its charge is
at least qk and unsatisfied otherwise, where q3 = 1 and q4 = 5/4. We apply
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five discharging rules, Rule Ri (i = 1, . . . , 5) one after another. We then prove
that, once the rules R1 to R5 are applied, every a ∈ Z is satisfied. This implies
d(C,Kk) ≥ qk/k. Let chrgi(a) the charge of a after applying Rule Ri.
(Ri) Every unsatisfied a ∈ Z receives min{chrgi−1(a− i)− qk, qk − chrgi−1(a)}
from a− i, if a− i is satisfied (before Rule Ri). �
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