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Abstract A set of points in Rd is acute if any three points from this set form an acute
triangle. In this note we construct an acute set in R

d of size at least 1.618d . We also
present a simple example of an acute set of size at least 2d/2. Obtained bounds improve
the previously best bound.
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1 Introduction

A set of points in Rd is acute, if any three points of this set form an acute triangle. In
1962 Danzer and Grünbaum [2] posed the following question: what is the maximum
size f (d) of an acute set inRd? They proved a linear lower bound f (d) � 2d −1 and
conjectured that this bound is tight. However, in 1983 Erdős and Füredi [3] disproved
this conjecture in large dimensions. They gave an exponential lower bound

f (d) � 1

2

(
2√
3

)d

> 0.5 · 1.154d . (1)

Their proof is a very elegant application of the probabilistic method. One drawback
of their approach is that only the existence of an acute set of such size is proven, with
no possibility to turn it into an explicit construction.
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In 2009 Ackerman and Ben-Zwi [1] improved (1) by a factor
√
d:

f (d) � c
√
d

(
2√
3

)d

.

In 2011 Harangi [4] refined the approach of Erdős and Füredi and improved the
previous bound to

f (d) � c

(
10

√
144

23

)d

> c · 1.2d .

In this note we give a simple proof of the following inequality:

Theorem 1.1 f (d +2) � 2 f (d), that is, for any d-dimensional acute set there exists
a (d + 2)-dimensional acute set of twice the size.

Theorem 1.1 implies lower bound for f (d):

f (d) � 2d/2.

Let Fd be the d-th Fibonacci number, that is F0 = F1 = 1 and Fd+2 = Fd+1 + Fd .
Also, we prove the following inequality:

Theorem 1.2 There exist d-dimensional acute sets of size Fd+1, that is, f (d) � Fd+1.

Using the formula for Fibonacci numbers we can write an asymptotic inequality
for f (d):

f (d) �
(
1 + √

5

2

)d

� 1.618d .

The proofs of Theorems 1.1 and 1.2 are explicit and allow to construct acute sets
effectively.

The best known upper bound on f (d) is f (d) � 2d −1, and follows from the main
result of [2]. Danzer and Grünbaum proved that if a set S of points in R

d determines
only acute and right angles, then |S| � 2d . Moreover, if |S| = 2d then S must be an
affine image of a d-dimensional cube.

2 Proof of Theorem 1.1

The proofs of both theorems are based on two simple propositions:

Proposition 2.1 For any points a, b, c such that the angle (a, b, c) is acute, there is
ε > 0 such that for all ã, b̃, c̃, ‖a − ã‖, ‖b − b̃‖, ‖c − c̃‖ < ε, the angle (ã, b̃, c̃) is
acute too.

The proof of Proposition 2.1 is trivial and we omit it.
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Proposition 2.2 (The key fact) Suppose that X ⊂ R
d is an acute set and r > 0

is a real number such that 〈x − y, x − z〉 > 4r2 holds for any x, y, z ∈ X, where
x �= y, x �= z. For each x ∈ X we take an arbitary point φ(x) ∈ R

2 on the circle of
radius r with center in the origin such that all points ±φ(x) are different. Then the
set Y = {(x,±φ(x)) | x ∈ X} ⊂ R

d+2 is acute as well.

To prove Theorem 1.1, we apply Proposition 2.2 to a maximal acute set X in R
d ,

|X | = f (d). We get an acute set Y ⊂ R
d+2 of size |Y | = 2|X | which proves the

theorem.

Proof of Proposition 2.2 The scalar product of two vectors u, v is denoted by 〈u, v〉.
Put

s := min{〈y − x, z − x〉 | x, y, z ∈ X, x �= y, x �= z}.

Since the set X is acute, we have s > 0, and we can take a positive number r such that
4r2 < s.

Our aim is to prove that Y is acute. Take three distinct points x̃, ỹ, z̃ ∈ Y , where

x̃ = (x, aφ(x)), ỹ = (y, bφ(y)), z̃ = (z, cφ(z)), a, b, c ∈ {±1}.

Suppose that x �= y and x �= z. Then

〈ỹ − x̃, z̃ − x̃〉 = 〈y − x, z − x〉 + 〈bφ(y) − aφ(x), cφ(z) − aφ(x)〉.

The first scalar product on the right hand side is at least s by the definition of s, while
the second scalar product is at least −4r2. By the choice of r , the sum of these two
scalar products is positive, which means that the angle (ỹ, x̃, z̃) is acute.

Suppose that x = y (the case x = z is treated in the same way). We have a+b = 0,
so

〈ỹ − x̃, z̃ − x̃〉 = 〈bφ(y) − aφ(x), cφ(z) − aφ(x)〉 = 〈2aφ(x), aφ(x) − cφ(z)〉
= 2

(‖φ(x)‖2 ± 〈φ(x), φ(z)〉) > 0,

because φ(x) �= ±φ(z). Thus, the angle (ỹ, x̃, z̃) is acute in this case as well. 	


3 Proof of Theorem 1.2

Sketch of the proof.We prove that there exists a d-dimensional acute set of size Fd+1
with the property that there exists a (d − 1)-dimensional hyperplane H ⊂ R

d such
that H contains Fd points and the remaining Fd−1 points are on the same side of H .

The proof is by induction. The basic idea is the same as in the first construction:
we want to replace a point v with two points v ± φ(v). However, this time we have
only one extra dimension. So we do this only for the points on the hyperplane H . It
is not hard to see that if we choose the vectors φ(v) carefully, then this results in a
(d + 1)-dimensional acute set of size Fd+2.
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To get the “hyperplane property”, one needs to modify this procedure a bit. At
first we construct an auxiliary set, which is almost what we need: hyperplane and size
properties hold but some angles of this set became right.We correct them by perturbing
the set and by invoking Proposition 2.2.

We will derive by induction Theorem 1.2 from the following lemma:

Lemma 3.1 Suppose that X ⊂ R
d is an acute set and h is a hyperplane such that X

lies on one side of h. Then there is an acute set X ′ ⊂ R
d+1 and a hyperplane H in

R
d+1 such that |X ′| = |X | + |X ∩ h|, |X ′ ∩ H | = |X | and X ′ lies on one side of H.

Proof of Theorem 1.2 For d = 1 we take X = {0, 1} ⊂ R
1 and a hyperplane h =

{x ∈ R
1 | x = 0}. Clearly, |X | = F2, |X ∩ h| = F1 and the pair (X, h) satisfies

conditions of Lemma 3.1.
Suppose that we constructed an acute set X ⊂ R

d and a hyperplane h such that
|X | = Fd+1, |X ∩ h| = Fd and X lies on one side of h. Then, by Lemma 3.1, there is
an acute set X ′ ⊂ R

d+1 and a hyperplane H such that

|X ′| = |X | + |X ∩ h| = Fd+1 + Fd = Fd+2, |X ′ ∩ H | = |X | = Fd+1

and X ′ lies on one side of H . So the induction step is completed. 	

The proof of the lemma is based on Propositions 2.1 and 2.2.

Proof of Lemma 3.1 By embedding X into Rd+1 we can assume that

h = {(x1, . . . , xd−1, 0, 0) | xi ∈ R},
X ⊂ P = {(x1, . . . , xd , 0) | xi ∈ R}.

Let A = X ∩ h, B = X \ A.
Consider a (d − 1)-plane h2 ⊂ P parallel to h such that X lies between h and h2.

Let

h3 = h + (0, . . . , 0, r) ⊂ R
d+1,

where r > 0 is a sufficiently small positive number. Let H ′ ⊂ R
d+1 be the hyperplane

passing through h2 and h3. Consider sets A+ = A + (0, . . . , 0, 0, r), A− = A −
(0, . . . , 0, 0, r) and let BH be the orthogonal projection of B onto H ′.

Proposition 3.2 For a sufficiently small r and arbitrary x, y, z ∈ A+ ∪ A− ∪ BH

such that {x, y, z} �⊂ A+ ∪ A−, the triangle {x, y, z} is acute.
Proof of Proposition 3.2 The distance between x ∈ X and any corresponding point
x̃ ∈ A+ ∪ A− ∪ BH is at most r , thus, by Proposition 2.1, for all sufficiently small
r an obtuse angle can occur only in triangles {x, y, z} = {a+, a−, b}, where a+ =
(a, 0, r), a− = (a, 0,−r) and (a, 0, 0) ∈ A, b ∈ BH . Since the distance between
a+ and a− equals 2r , the distances between a± and b are bounded from below by a
number not depending on r , therefore, the angle (a+, b, a−) is acute for small r . By
the choice of H ′, the point b lies between the hyperplanes P ± (0, . . . , 0, r), thus the
angles (a, 0, r) and (a, 0,−r) of the triangle {a+, a−, b} are acute too. 	
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Proposition 3.2 shows that the constructed set A+ ∪ A− ∪ BH is almost what we
need: all the angles of this set except the angles inside A+ ∪ A− are acute, the set
BH ∪ A+ lies in the hyperplane H ′ and it is obvious that A− lies on one side of H ′.
To sort out the problem with the set A+ ∪ A− we perturb the hyperplane H ′ and the
corresponding points in the following way.

For each x ∈ A we denote by C(v) ⊂ R
d+1 the circle of radius r with center v and

orthogonal to h.

Proposition 3.3 For any ε > 0 there is a hyperplane H such that:

1. For each point v ∈ BH the distance from v to H is less than ε.
2. For each point (v, 0, 0) ∈ A there exists a point v̄ = (v, φ(v)) ∈ H ∩ C(v) such

that ‖(v, 0, r) − v̄‖ < ε and all points ±φ(v) are distinct.

Proof 3.3 Let u ∈ R
d+1 be such that H ′ = {x ∈ R

d+1|〈x, u〉 = 1}. Choose a vector
α ∈ R

d+1 such that ‖α‖ < δ for sufficiently small δ > 0 and α is not orthogonal to any
of the vectors v1 − v2 where v1, v2 ∈ A. We take H = {x ∈ R

d+1 | 〈x, u + α〉 = 1}.
1. For v ∈ BH

ρ(v, H2) = |〈v, u + α〉 − 1|
‖u + α‖ � |〈v, α〉|

‖u‖ − δ
� δ

‖v‖
‖u‖ − δ

< ε

as δ is sufficiently small.
2. Consider the intersection l ′ and l of the hyperplanes H ′ and H with the 2-

dimensional plane {(v, xd , xd+1) | xi ∈ R}, where (v, 0, 0) ∈ A. Clearly, l ′
intersects C(v) in two points (one of them is (v, 0, r)), and so for small δ the
line l intersects C(x) in two points as well, and also one of these points tends to
(v, 0, r) as δ → 0. This point we denote by (v, φ(v)). It is sufficient to show that
all points ±φ(v) are distinct for (v, 0, 0) ∈ A.

As ‖φ(v) − (0, r)‖ < r for all small enough δ, φ(v1) �= −φ(v2). Take v̄1 =
(v1, 0, 0), v̄2 = (v2, 0, 0) ∈ A. If φ(v1) = φ(v2), then

(v1, φ(v1)) − (v1, 0, 0) = (v2, φ(v2)) − (v2, 0, 0),

that is

(v1, φ(v1)) − (v2, φ(v2)) = v̄1 − v̄2 = w̄

but (v1, φ(v1)) and (v2, φ(v2)) lie in H , consequently w̄ is orthogonal to u+α which
contradicts the definition of α. Therefore all points ±φ(v) are distinct. 	


Now we take sufficiently small ε and a corresponding hyperplane H and a map φ.
Let B̃ be the orthogonal projection of BH onto H , also let

Ã+ = {(x, φ(x)) | (x, 0, 0) ∈ A}, Ã− = {(x,−φ(x)) | (x, 0, 0) ∈ A}.

Combining Propositions 2.1 and 3.3 we can claim that Proposition 3.2 is still true
for corresponding sets Ã+, Ã− and B̃. We have to check that the set Y = Ã+ ∪ Ã−
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is acute. But this immediately follows from Proposition 2.2. We conclude that the set
X ′ = Ã+ ∪ Ã− ∪ B̃ is acute. We have |X ′| = | Ã+| + | Ã−| + |B̃| = |X | + |X ∩ h|,
also Ã+ ∪ B̃ ⊂ H and X ′ lie on one side of H . Thus, the pair (X ′, H) has claimed in
Lemma 3.1 properties. 	
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