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Sacks of Dice with Fair Totals
Ian Morrison

Abstract. A fair sack is a finite set of independent dice, not required to be fair and allowed to
have any number of sides, for which all totals are equally likely. These have been studied for
over 60 years. Most results restrict the possible orders of dice in such a sack and almost no
examples were known. Building on a rather different approach due to Gasarch and Kruskal,
we give a canonical construction of all such sacks.

1. INTRODUCTION. This paper gives a construction of all finite collections or
sacks of independent dice such that, when the dice are rolled, all possible totals of
the sides are equally likely. We begin with a brief history of work on the problem of
characterizing such fair sacks, and then outline the plan of the paper.

Over 60 years ago, the familiar fact that a pair of fair cubical dice has totals that are
unfair prompted Kelly to pose as Monthly problem E 925 [6], the converse question
“Can unfair dice have fair totals?” that has a negative answer. Many papers [2, 4, 5, 6,
7, 8], reviewed at the end of Section 2, have considered this question for more general
sacks. Most give conditions on the orders of the dice in a sack that guarantee unfairness
and very few examples of fair sacks were known.

Gasarch and Kruskal [5], however, asked, “Do all fair sacks share some com-
mon structure?” They found local and global answers that are explained in detail in
Section 2. Locally, all dice in a fair sack must themselves be semifair.1 Globally, the
sack must satisfy Uniqueness of Totals: exactly one roll yields each total. Their work
does not provide any way to test a sack of semifair dice for this global property other
than brute force enumeration of the totals of all rolls,2 and although they gave examples
of fair sacks with this property, they found no systematic construction.

Our main result is a canonical construction of every fair sack. Here is a precis of
how we proceed. Section 3 gives a fuller guide, illustrating the steps by rostering all
fair sacks with largest total t = 12—the smallest t that reveals all the wrinkles of the
general case—and explaining, without proof, how their construction generalizes. De-
tails and proofs of the general constructions are given in Section 4. We start from the
observation that “fair sacks give factorizations of t.” Informally, we would like to invert
this association but it is many-to-one, so we proceed in stages, enhancing factorizations
by first ordering the factors, and then adding an auxiliary partition. Corollary 4.2 pro-
duces an injective map from ordered factorizations to fair sacks, and Proposition 4.4
extends this map to all partitioned factorizations. The extension is no longer injective,
but Theorem 4.6 shows that restricting to interval free partitions (Definition 3.3) gives
an injective map with the same image. In Section 5, after a motivating example again
with t = 12, we prove our main result, Theorem 5.1, which shows that this restriction
is also a surjection—that is, Theorem 4.6 constructs all fair sacks. In Section 6, we give
a few applications. Our methods are completely elementary, relying principally on a
systematic exploitation of Uniqueness of Totals.

doi.org/10.1080/00029890.2018.1473699
MSC: Primary 60C05, Secondary 12D05; 11R18

1 Gasarch and Kruskal use the less suggestive term “nice.”
2 In Section 6, we give an improved algorithm to test sacks of semifair dice for fairness.
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2. THE GASARCH–KRUSKAL THEOREM. In this section, we define notions
and notation used in the sequel, and then state and prove the Gasarch–Kruskal theorem
streamlining the original arguments slightly.

A die d of order n ≥ 2 is a finite probability space whose sample space is the set
〈n〉 := {0, 1, . . . , n− 1} but that may have any probability distribution. Indexing by
〈n〉 rather than the standard [n] := {1, 2, . . . , n} simplifies many formulae in the se-
quel. We use the terms roll and side as synonyms for trial and outcome, respectively,
motivated by the example of standard cubical dice. However, our dice often have sides
with probability 0, so a better mental model is a spinner mounted over a circle divided
into n arbitrary sectors. The language of dice is historical in our problem.

We index sides of dice by j and denote the probability of side j by pd( j), omit-
ting the d when possible. We will confound the die d, the tautological random vari-
able whose value on side j is j, and the die polynomial d(x) := ∑n−1

j=0 p( j)x
j, which is

the generating function of this random variable. For example, a standard fair cubical
die has d(x) := 1

6 (1 + x+ x2 + x3 + x4 + x5). As in this example, we will always write
such polynomials with degrees increasing from left to right.

Definition 2.1. A die is semifair if

(a) each p( j) is either 0 or equal to p(0), which must thus be nonzero,
(b) it is palindromic: that is, p(n− j − 1) = p( j).

Remark 2.2. A few remarks about semifairness are in order.

(a) Henceforth, we abuse notation by rescaling semifair dice so that p(0), the com-
mon value of the nonzero p( j), is 1. Since the probability condition that the
unscaled p( j) sum to exactly 1 allows us to reverse the scaling, we lose nothing
by assuming this. Doing so allows us to avoid denominators and be able to work
with monic polynomials throughout.

(b) Set �t (x) := 1 + x+ · · · + xt−1 = (
1−xt
1−x

)
. The first form shows that �t (x) is

the polynomial of a fair die of order t—see the cubical example above—and the
second that its roots are exactly the tth roots of unity, except for 1.

(c) A die d of order n is semifair if and only if d(x) is obtained from�n(x) by setting
to 0 a palindromic set of the interior coefficients.

A sack S of size mS is a set of independent dice di of orders ni ≥ 2 indexed by
i ∈ [mS]. To simplify notation, we omit reference to S when it is understood and write,
for example, m for mS. Such an S has a product sample space J indexed by rolls
j = ( j1, j2, . . . , jm) ∈ ∏

i∈[m]〈ni〉 that carries, by independence, the product probability
distribution p(j) = ∏

i∈[m] pdi ( ji).
On J, we have independent random variables for each die di whose value on any roll

j is ji and whose generating function is thus the die polynomial di(x). We sum these
to get the total random variable T(j) := ∑

i∈[m] ji, which takes on the t values in 〈t〉,
where t − 1 := ∑

i∈[m](ni − 1).
Since the generating function of a sum of independent random variables is the prod-

uct of the generating functions of its terms (see [3, p. 180, Theorem 6]), the total T has
generating function

T(x) =
∏
i∈[m]

di(x) =
t−1∑
s=0

( ∑
T (j)=s

p(j)
)
xs . (1)

For two standard dice, this is a shifted form of the familiar formula for totals:

1+2x+3x2+4x3+5x4+6x5+5x6+4x7+3x8+2x9+x10 = (1+x+x2+x3+x4+x5)2.
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A fair sack is simply one for which T(x) = �t (x) (see Remark 2.2(b)).

Gasarch–Kruskal Theorem ([5, Corollary 5]). A sack is fair if and only if

(a) each die in it is semifair,
(b) (Uniqueness of Totals) each total is obtained from a unique effective roll.

We first show that the dice d(x) in a fair sack must be semifair, which is the heart
of the theorem. Palandromicity is easy. If the sack has order t, let ζ be a primitive
tth root of unity. The irreducible real factors of �t (x) are x+ 1, when t is even, and
x2 − (ζ j + ζ− j )x+ 1, for j ∈ [� t−1

2 �]. These are palindromic and d(t ), being real, must
be a product of them, so it is palindromic. The key step is the following.

Lemma 2.3 ([5, Lemma 3]). If d(x) := d′(x) · d′′(x) is semifair and both d′ and d′′
are palindromic, then both d′ and d′′ are semifair.

Given the lemma, an induction on the size s of a fair sack S shows semifairness of
its dice. The case s = 1 is trivial. If s ≥ 2, just take any two dice d′(x) and d′′(x) and
replace them with their product d(x), getting a fair sack of smaller size whose dice, in
particular d(x), must inductively be semifair. Since we know already that d′ and d′′ are
palindromic, the lemma then shows that both are also semifair.

Proof of Lemma 2.3.Without loss of generality, assume that n′ ≤ n′′.

Claim 2.4. For j ∈ [n′ − 1], either p′( j) = 0 or p′′( j) = 0.

Since all the coefficients are nonnegative, the claim will follow if we show that∑n′−1
j=1 p′( j)p′′( j) ≤ 0. To see this, use the palandromicity of d′ once to write

n′−1∑
j=1

p′( j)p′′( j) =
n′−1∑
j=1

p′(n′ − 1 − j)p′′( j) = p(n′ − 1) − p′(n′ − 1)p′′(0),

and then a second time to write

p(n′ − 1) − p′(n′ − 1)p′′(0) = p(n′ − 1) − p′(0)p′′(0) = p(n′ − 1) − p(0) ≤ 0,

with the last inequality following because d(x) is semifair.
For notational convenience, we define p′( j) = 0 for n′ ≤ j < n′′. With this conven-

tion, Claim 2.4 then holds for j ∈ [n′′ − 1]. By palindromicity and monicity p′(0) =
p′′(0) = 1, so we can expand

p( j) :=
j∑

i=0

p′(i)p′′( j − i) = p′( j) +
j−1∑
i=1

p′(i)p′′( j − i) + p′′( j). (2)

We will use this expansion to show, by induction on j ∈ [n′′], that each of p′( j) and
p′′( j) is either 0 or 1. By hypothesis, p( j) and, by induction, all the terms in the middle
sum in (2) are either 0 or 1. Since all terms are nonnegative, if p( j) = 0, then all the
terms in the sum as well as both p′( j) and p′′( j) must also be 0. If p( j) = 1, there are
two possibilities. Either exactly one term in the sum is 1 and both p′( j) and p′′( j) are
0 or all the terms in the sum are 0 and p′( j) + p′′( j) = 1. But, one of p′( j) and p′′( j)
is 0 by the claim, so the other must then equal 1. �
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Semifairness of its dice is necessary but far from sufficient for the fairness of a
sack. For example, although standard dice are semifair, a pair is an unfair sack. Indeed,
Corollary 6.1 shows that most semifair dice do not lie in any fair sack.

To see that the additional global propertyUniqueness of Totals is both necessary and
sufficient for fairness, we ask what (2) implies about a sack S of semifair dice. Since all
pi( j) are either 0 or 1, each product p(j) is also either 0 or 1. In the latter case, we call
j effective and must have pi( ji) = 1 for all i. Thus, the coefficient of xs in T(x) simply
counts the number of effective rolls with total s. So the sack S is fair and all totals are
equally likely if and only if each total arises from the same number of effective rolls.
Since the total 0 arises from exactly one effective roll, with all ji = 0, every total must
arise from exactly one effective roll—Uniqueness of Totals—and T(x) = �t (x).

Our other basic tool here is an easy consequence, not mentioned in [5]. If a fair sack
contains a die with a nonzero xs term for any s > 0, then the total s arises from rolling
s on this die and 0 on all the others. By Uniqueness of Totals, we deduce the following.

Corollary 2.5 (Uniqueness of Terms). A fair sack can contain at most one die with
nonzero xs term for any s ∈ [t] and contains such a die if and only if xs does not arise
as a product of terms of strictly lower degree. In particular, there is always a unique
die with nonzero x term.

Since a semifair die of order n has a nonzero xn−1 term, we get the following.

Corollary 2.6. No two dice in a fair sack can have the same order.

We digress for a moment to document work of several earlier authors (most mutually
unaware of each other) on special cases of this result. Almost all the arguments use in-
equalities involving the side probabilities to reach a contradiction. This is the approach
of Moser and Wahab [6] to show there is no fair pair of dice of order 6. Dudewicz and
Dann [4],3 although they do not cite [6], note that, for identical cubical dice, the con-
clusion is a “well-known” exercise and cite the text of Parzen [8], where this is Problem
9.12.4 They prove that no fair sack (other than a singleton) can have all dice of equal
order n by showing that the total n− 1 must have probability strictly greater than 1

t .
Their result is reproved (but not cited) by Chen, Rao, and Shreve [2] by showing that
there must be a pair of totals whose probabilities differ by at least

∣∣m−1
m2n

∣∣. The stronger
claim that all orders must be distinct was first proved by Gasarch and Kruskal [5] (al-
though they cite, incorrectly, [2]), by casting the argument for the s = n− 1 case of
Corollary 2.5 as a series of inequalities.

We should also mention an overlapping result. No fair sack can contain more than
one die of even order. Such dice have polynomials of odd degree that must have a real
root. But �t (x) has no real roots for odd t and exactly one for even t. This argument
first occurs in the proof of Finch and Halmos [6] that there is no fair pair of dice of
order 6 and is also found in [5] and [7] for other even orders.

3 Their title suggests, incorrectly, that no fair sacks exist, and they make a mysterious claim in the last line
of the paper that “similar results” hold for general sacks.

4 That no fair sack consisting of two dice of order n exists is also, as noted by the referee, “well known.” The
reader may enjoy checking this. Hint: Obtain a contradiction by showing that the total n− 1 has probability
at least p0p′

n−1 + pn−1p′
0 = 1

2n−1

( p0
pn−1

+ pn−1

p0

) ≥ 2
2n−1 , seeing the equality by observing that fairness implies

pn−1p′
n−1 = p0p′

0 = 1
2n−1 and the inequality by using a bit of calculus.
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3. GUIDE TO THE CONSTRUCTIONS AND ROSTER OF FAIR SACKS
WITH TOTAL 12.

From fair sacks to unordered factorizations. A factorization of t of length � will be
a tuple a := (a1, a2, . . . , a�), usually indexed by h and viewed as ordered, for which

∏
h∈[�]

ah = t, and with each ah at least 2. (3)

Note that we do not require the ah to be prime.
We start by noting that the Gasarch–Kruskal theorem implies that any fair sack S

yields an unordered factorization a of length equal to the order of S by taking ah to be
the number of nonzero coefficients of dh(x). In (3), the equation holds because each
side counts the number of nonzero terms p(j) in (1) and the inequalities on the ah
hold by Remark 2.2(a). We immediately get the last statement of [5, Corollary 9]: for
t prime, the only fair sack is a single fair t-die. Simply put, “fair sacks give unordered
factorizations.”

From ordered factorizations to fair sacks. The next step is to show that “ordered
factorizations give fair sacks.” More precisely, Corollary 4.2 constructs, from each or-
dered factorization a, a factorization sack Sa of size � with dice dh(x) := �ah (x

bh ),
where bh :=

∏
h′<h ah′ . Table 1 shows the sacks that arise for t = 12.

Table 1. Ordered factorizations a of 12 and their fair sacks Sa.

a1 · a2 . . . a� d1(x) · d2(x) · · ·d�(x))

2 · 2 · 3 (1 + x)(1 + x2)(1 + x4 + x8)

2 · 3 · 2 (1 + x)(1 + x2 + x4)(1 + x6)

2 · 6 (1 + x)(1 + x2 + x4 + x6 + x8 + x10)

3 · 2 · 2 (1 + x+ x2)(1 + x3)(1 + x6)

3 · 4 (1 + x+ x2)(1 + x3 + x6 + x9)

4 · 3 (1 + x+ x2 + x3)(1 + x4 + x8)

6 · 2 (1 + x+ x2 + x3 + x4 + x5)(1 + x6)

12 (1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11)

Lemma 4.1 and Corollary 4.2 imply that the sacks Sa are always fair. That fair sacks
yield factorizations of t and vice-versa yields a converse and sharpening of [5, Corol-
lary 9], even though Corollary 4.2 does not give all fair sacks.

Corollary 3.1. If t has m prime factors, then there are fair sacks or order � with total t
if and only if � ≤ m.

Partition-factorization sacks. Further fair sacks can be produced from factorization
sacks by a collapsing or subtotaling process in which we replace disjoint subsets of
the dice by their total dice. Equivalently, by (1), we can replace the polynomials of the
dice in the subset by their product. Such a collapsing is specified more precisely by
a partition � := [πi, π2, . . . , πm] of [�], which we will view both as a disjoint union
decomposition {1, 2, . . . , �} = ⋃̇m

g=1 πg and as a surjective function from [�] → [m]
with fiber πg over g.
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Definition 3.2. To each part πg of �, associate a subtotal die dg(x) = ∏
h∈πg

dh(x)
which, by (1), is the total die of the subsack of Sa associated to πg and, to the pair
(a, �), the partition-factorization sack Sa,� consisting of the subtotal dice dg(x) of the
parts of �. We say that Sa,� arises from a via �.

Proposition 4.4 implies that all such sacks are fair and that all arise from factoriza-
tions with each ah prime. For t = 12, we get three new fair sacks in this way, by using
the partition � = [{1, 3}, {2}] with the three length 3 factorizations. From 2 · 2 · 3, we
get the factorization (1 + x+ x4 + x5 + x8 + x9)(1 + x2), while 2 · 3 · 2 and 3 · 2 · 2
give (1 + x+ x6 + x7)(1 + x2 + x4) and (1 + x+ x2 + x6 + x7 + x8)(1 + x3), respec-
tively. This turns out to complete the roster of fair sacks with t = 12.

There are other partition-factorization sacks, but they already appear in Table 1. For
example, for the ordered factorization 2 · 2 · 3 whose corresponding dice factorization
is (1 + x)(1 + x2)(1 + x4 + x8), we get the 4 · 3 line in the table from� = [{1, 2}, {3}].
More generally, while the association a → Sa is injective, its extension (a, �) → Sa,�
is not. Restricting to prime factorizations does not cure this: the 6 · 2 line in Table
1 arises from both of the ordered factorizations 2 · 3 · 2 and 3 · 2 · 2 via the partition
� = [{1, 2}, {3}].

Interval-free partitions. Fortunately, there is a simple way, already suggested by the
examples above, to obtain all partition-factorization sacks in a uniqueway by restricting
which partitions are used.

Definition 3.3. A partition � of a is interval free if no part contains consecutive ele-
ments of [�].

In the example with t = 12 above, the interval free partitions are those in Table 1
with all parts singletons and the partition � = [{1, 3}, {2}] that yielded new fair sacks
from the three length 3 factorizations. Although, a priori, requiring interval freeness
eliminates only the ambiguity arising from collapsing consecutive factors, Theorem 4.6
shows that each partition-factorization sack arises uniquely from an interval free parti-
tion of a (possibly different) factorization.

Why do we obtain all fair sacks?. So far, we have constructed lots of fair sacks using
simple combinatorial observations and the reader will see in the next section that the
proofs are all fairly straightforward. We see no a priori reason to expect that our con-
structions produce all fair sacks. Our main result, Theorem 5.1, shows that, in fact, they
do. We prove it in Section 5, by making a careful inspection of a general fair sack to ex-
tract from it the canonical factorization and interval free partition from which it arises.
The details of the analysis are considerably more delicate than what comes before.

4. DETAILS AND PROOFSOF THECONSTRUCTIONS. In this section, we de-
fine general partition-factorization sacks and show they are fair. As for sacks, we try
to simplify notation by omitting reference to the factorization and partition when pos-
sible. We begin with an easy but crucial lemma that shows that factorization sacks are
fair.

Lemma 4.1. Fix an ordered factorization a := (a1, a2, . . . , a�) of t of length �. For
h ∈ [� + 1], define bh :=

∏
h′<h ah′ and note that, by hypothesis, t = b�+1. For h ∈ [�],

define dh(x) := �ah (x
bh ) and eh(x) :=

∏
h′≤h dh′ (x). Then, eh(x) = �bh+1 (x). In partic-

ular, e�(x) = �t (x).
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Proof. Observe that the roots of dh(x) are exactly the bhth roots of all nontrivial ahth
roots of unity or, equivalently, all bhahth roots of unity of order not dividing bh or, again
equivalently, all the bh+1st roots of unity of order not dividing bh. By induction on h,
the roots of eh(x) are exactly the nontrivial bh+1st roots of unity. Since both sides are
monic polynomials with the same roots, eh(x) = �bh+1 (x). �

Corollary 4.2. If a is an ordered factorization of t of length �, the factorization sack
Sa of size � whose dice are defined by dh(x) := �ah (x

bh ) is a fair sack with total t.

We note an equation that follows from Lemma 4.1 by dividing the h = v case by the
h = u case and canceling those dh′ (x) that are factors of both ev (x) and eu(x):

v∏
h=u

dh(x) = �bv+1 (x)

�bu (x)
(4)

This has a consequence that we will need later.

Corollary 4.3. If a is obtained from an ordered factorization a′ of length � by replac-
ing consecutive factors a′

u · · · a′
v by their product, then dh(x) = d′

h(x) for 1 ≤ h < u,
du(x) = ∏v

h=u d
′
h(x), and dh(x) = d′

h+v−u(x) for u < h ≤ � − v + u.

Proof. By construction, we have ah = a′
h for 1 ≤ h < u, we have au = ∏v

h=u a
′
h, and

we have ah = ah+v−u for u < h ≤ � − v + u. Therefore, bh = b′
h for h ≤ u, bu+1 =

b′
u′

∏v
h=u a

′
h = b′

v+1, and bh = bh+v−u for u < h ≤ � − v + u. Thus, only the formula
for du(x) is not immediate. We may view du(x) as the left side of (4) applied to a with
v = u and the product

∏v
h=u d

′
h(x) as the left side of (4) applied to a

′. The formula just
given for bu+1 says that these two instances of (4) have equal right-hand sides. Hence,
they have equal left-hand sides. �

Next, we check that partition-factorization sacks are fair and that all arise, though
generally in many ways, from partitions of prime factorizations.

Proposition 4.4.

(a) Every partition-factorization sack is fair.
(b) Every partition-factorization sack arises from an ordered prime factorization.

Proof. Because � simply partitions the dh(x) into disjoint groups with products dg(x),
the product of all the dh(x) and of all of the dg(x) are equal. The former, by Lemma 4.1,
equals �t (x). Hence, the sack Sa,� is also fair.

For (b), first construct an ordered prime factorization a′ by simply replacing each ah
by an ordered prime factorization, writing the factors of a1 first, then those of a2 and so
on. By an inductive application of Corollary 4.3, the product of the dice polynomials
associated to the prime factors of any ah equals dh(x). This implies that if �′ is the
partition with m parts π ′

g each consisting of all the prime factors of the ah in πg, then
the dice associated to the gth parts of � and �′ are equal. �

Remark 4.5. Proposition 4.4 can be used to construct all the fair sacks on p. 137 of [5].5

5 For the interested reader, here are the factorizations (and the partitions, if any parts are not singletons) giving
each sack with its location on p. 137 of [5] in parentheses: 2 · i (2); i · 2 (3); 3 · i (4); 2 · 2 · i via [{1, 3}, {2}]
(5); 3 · 4 and 2 · 2 · 3 via [{1, 3}, {2}] (first paragraph after 5); 2 · 2 . . . · 2 (second paragraph after 5).
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We close this section by checking that each partition-factorization sack is uniquely
specified if we require interval freeness (see Definition 3.3).

Theorem 4.6. Every partition-factorization sack S arises from an interval free parti-
tion of an ordered factorization, both of which are uniquely determined by S.

Proof. Given a factorization and a partition of it, here is how to obtain from it a new
factorization and an interval free partition without changing either the number of parts
or any of the associated dice. If any of the given parts contains consecutive factors,
replace these by their product in the factorization and assign this product factor to the
part formerly containing the consecutive factors, leaving all other parts unchanged. The
partition of the collapsed factorization that this produces is interval free. An applica-
tion of Corollary 4.3 like that used in proving Proposition 4.4(b) shows that the dice
associated to each of the corresponding old and new parts will be equal and, hence,
they yield the same sack.

We will prove the uniqueness of the interval free realization for a given sack S by in-
duction on the length � of the factorization a. If this number is 1, then we have a fair die.
Otherwise, observe that, by Uniqueness of Terms (Corollary 2.5), there is a unique part
πgwhose die dπg(x) has nonzero x coefficient. In the construction of factorization sacks,
only the die d1(x) has nonzero x coefficient so 1 must lie in πg. We claim that a1 is the
smallest s such that coefficient of xs in dπg(x) equals 0. No smaller power can have a zero
coefficient because d1(x) = �a1 (x) is a factor of dπg(x). Again, by construction, only
the die d2(x) has nonzero xa1 coefficient. So, if this coefficient were nonzero in dπg(x),
then d2(x) would be a factor, and hence 2 would also lie in πg, contradicting the interval
freeness of �. Thus, S determines both a1 and the index g of the part containing 1.

Now, we replace t by t ′ := t
a1
, define an ordered factorization a′ of t ′ by deleting a1

from a, and define an interval free partition �′ of n− 1 by first deleting 1 from πg (and
deleting πg from � if it is now empty) and then shifting all parts left 1. This yields an
interval free realization of a sack S′, also determined by S, but with � reduced by 1. By
induction, S′ determines a′ and �′. But from a′ and a1 we recover a. Similarly, from
�′ and the index g of the part containing 1 (or the fact that 1 lay in a deleted part), we
recover �. �

5. THE MAIN THEOREM. The goal of this section is to prove that Theorem 4.6
constructs all fair sacks.

Theorem 5.1. Every fair sack S of size m and total t equals Sa,� for � a uniquely
determined interval free partition with m parts of an ordered factorization a of t.

To get a feel for how the argument goes and where the key difficulty lies, con-
sider how we might reconstruct, given only the dice themselves, the factorization and
interval free partition associated to the two sacks of total 12 with a = 2 · 3 · 2, one
with � = [{1}, {2}, {3}] and dice (1 + x) · (1 + x2 + x4) · (1 + x6) and the other with
� = [{1, 3}, {2}] and dice (1 + x+ x6 + x7) · (1 + x2 + x4).

In both cases, Uniqueness of Terms (Corollary 2.5) locates the first die as the unique
one with nonzero x term and the first factor a1 = 2 as the smallest degree not appearing
in its polynomial. Likewise, the second die is the one that does have an x2 term, and
the second factor a2 = 3 is the smallest integer such that this die has no term of degree
2a2. Note that while both a1 and a1 · a2 divide t = 12, the way we chose them gives no
guarantee that they must. In both cases, products of known terms exactly account for
all totals s less than b2 := a1a2 = 6. Again, Uniqueness of Terms thus guarantees that
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the only terms of degree less than b2 = 6 in either die are those already known: 1 + x
in the first and 1 + x2 + x4 in the second. To this point, the argument works in general,
changing, of course, a1 and a2.

At this point, there must be a unique die with an x6 term. It has no x12 term, so
we set a3 = 2. Only now are we assured that the ah give a factorization of 12. When
� = [{1}, {2}, {3}], the x6 term occurs in the third die and products of known terms
account for all totals s < 12. Hence, no other nonzero terms can occur, and we are
done. But, when � = [{1, 3}, {2}], such products do not produce an x7 term since now
the known terms x and x6 both occur in the first die. So, Uniqueness of Terms tells us
that there must be an x7 term in some die. The key point that must be checked is that
this term must occur in the first die (and, more generally, in similar situations, in the
same die as the x6 term we have just located). Once we know that it does, then products
of known terms in the two dice we have constructed uniquely account for all totals
s < 12, and we are again done.

Why can the x7 term not lie in the second die, nor in some potential third die that
we have yet to encounter in reconstructing the sack? If it did, the total x8 would arise
in two ways, as the product of the x6 term in the first die and the x2 term in the second,
and as the product of the x term in the first die and the x7 term in the second or third
die. This cannot happen, again by Uniqueness of Terms.

The proof of Theorem 5.1 for general S uses the same basic ideas. However, as
the number of factors increases, we encounter interval free partitions with arbitrarily
large parts, for which the number of “missing” terms like x7 that must be shown to be
correctly located grows exponentially. The need to set up an induction that both keeps
track of all these “missing” terms and allows us to identify for each, a degree, like 8 in
the example above, for which Uniqueness of Terms would be violated if the “missing”
term were incorrectly located motivates the following definition.

Definition 5.2. For an ordered �-tuple a := (a1, a2, . . . , a�) with each ah > 1, define,
as above, bh = ∏

h′<h ah′ for h ≤ � + 1 (with b1 = 1). Such an a together with a map
� : [�] → [m] (thought of as the set of dice in S) is a truncated realization of S if

(a) for all g ∈ [m],

dg(x) ≡
∏

h∈�−1(g)

�ah (x
bh ) mod

(
xb�+1

); (5)

(b) for 1 ≤ h < �, �(h) = �(h+ 1); and
(c) the b�+1 term in d�(�)(x) is zero.

We say that (a′, �′) extends (a, �) if the initial � values of both a′ and �′ match those
of a and �, respectively.

Remark 5.3. Intuitively, (a) says that the dice in Sa,� and the degree b�+1 truncations
of those in S are matching fair sacks with total b�+1, modulo dice in S with trivial
truncations; (b) says that � is interval free; and (c) lets us choose an extension that
preserves (b).

Suppose that we have a truncated realization for which b�+1 ≥ t. Then, by the pre-
ceding remark, we have S = Sa,�, but now without truncation of S. Hence, we must
have b�+1 = t and, retrospectively, amust be a factorization of t. Finally, since all dice
in S are nontrivial, � must be surjective and its fibers determine an interval free parti-
tion. Thus, Theorem 5.1 will follow by induction, with a trivial base case when � = 0
once we prove the following.
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Claim 5.4. Any truncated realization (a, �) of S of length � − 1 with b� < t can be
extended to a truncated realization (a′, �′) of length �.

Given (a, �) of length � − 1, we first find �′. Remark 5.3 implies that xb� does not
arise as a product of lower degree terms in the dg(x). By Uniqueness of Terms for S,
there must be a unique die dγ (x) with nonzero xb� term. We define �′(�) = γ . The
condition that the b�th term in d�(�−1)(x) is zero in 5.2(c) ensures that �(� − 1) =
�′(�). This and 5.2(b) for � yield 5.2(b) for �′. Next, we define a� to be the smallest
positive integer such that the a�b� term in dγ (x) is 0. Again, this guarantees 5.2(c) for
�′. We must now show that the equations (5) known inductively for (a, �) imply those
needed for (a′, �′).

To clarify what this means, let [a, b) := {a, a+ 1, . . . , b− 1}. For a die d, define
S(d, a, b) to be the set of degrees s′ ∈ [a, b) of nonzero terms in d. In these terms, (5)
for (a, �) determines S(d, 0, b�) for all d and what we have to check is the following.

Claim 5.5.

(a) For r ∈ [1, a�), S(dγ , rb�, (r + 1)b�) = rb� + S(dγ , 0, b�).
(b) For r ∈ [1, a�) and all g = γ , S(dg, rb�, (r + 1)b�) = ∅.

Figure 1 spells out Claim 5.5 visually. Each line describes a die with the first line
giving γ . The thick black vertical segment indicates b� and the thinner one(s) its mul-
tiples. Inductively known terms to the left of the b�-bar are indicated by dots starting in
degree 0 on the left, with small dots for zero terms and large dots for nonzero ones. The
squares and triangles to the right of the b�-bar are the terms in dγ that we need to show
are present, generalizing the “missing” x7 in the example at the start of this section. All
the small dots to the right of the b�-bar are terms we need to show are zero.

Figure 1. Known and missing terms as predicted by equation (5).

We will check Claim 5.5 by a “per-vertical-bar” induction on r. The inductive step
follows, by a second “per-square-and-triangle” induction on s, from the following re-
fined claim.

Claim 5.6. For s ∈ S(dγ , 0, b�), S(dγ , rb�, rb� + s) = rb� + S(dγ , 0, s).

This claim for a given s (that is, for one of squares or triangles in the top γ row of
Figure 1) shows that we obtain exactly the totals in the range [rb�, rb� + s) from those
in [0, s) by replacing a dγ factor xs

′
by xrb�+s′ and leaving all factors from other dice

unchanged. By Uniqueness of Terms, no die dg except dγ can have any term of degree
in the range [rb�, rb� + s). This gives Claim 5.5(a) up to degree rb� + s and shows that
products of terms of smaller degree do not yield the total rb� + s. By Uniqueness of
Terms, some die must contain an xrb�+s term. To complete the induction, we need to
check that this die must be dγ .

588 C© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125



Here is the key step. Pick the largest h in πγ for which rb� + s is divisible by bh. This
h is also the smallest h for which the s term of dγ picks up a term of positive degree from
the factor�ah (x

bh ) of dγ . By construction, s′ := s− bh is also in S(dγ , 0, s) and, by our
induction on s, we know that dγ contains a term of degree rb� + s′. If �(h+ 1) = g,
then, by interval freeness, g = γ . By construction, we therefore know that dg contains
a term of degree bh+1 and that dγ contains a term of degree (ah − 1)bh = (bh+1 − bh).

Figure 2 illustrates these choices for the two examples in Figure 1. For each term
s ∈ rb� + S(dγ , 0, b�), one arrow is drawn going left from s to the s′ = s− bh that we
know inductively to be nonzero in dγ and a second is drawn from the (bh+1 − bh) term
of dγ going down and right to the bh+1 term of dg. Terms with the same value of h use
the same marker (triangle or square) and line style (straight or snaked).

Figure 2. Nonzero coefficients of degrees differing by +bh and by −bh.

We now obtain a contradiction to Uniqueness of Terms if there is a term of degree
rb� + s in any dg′ with g′ not equal to γ (but possibly equal to g). Indeed, we would be
able to produce terms of degree rb� + s+ bh+1 − bh in two distinct ways: first, using
the terms of degrees bh+1 − bh in dγ and rb� + s in dg′ and the constant terms from all
other dice; and, second, using the terms of degrees rb� + s− bh in dγ and bh+1 in dg
and the constant terms from all other dice. Therefore, dγ must contain an xrb�+s term
as claimed in (5.5) and Theorem 5.1 follows.

Figure 3 illustrates this last step graphically, following Figures 1 and 2. A potential
term of degree rb� + s in a dg′ with g′ = γ is indicated by large black circle. A styled
path joins this circle to the known term in dγ of degree smaller by bh. A second path
in the same style goes down and across between known nonzero terms of degrees less
than b� and differing by bh as in Figure 2. Several potential terms may share a “down-
and-across” path, as happens in the top example. For each potential term, the common
total of the smaller degree from either of its paths and the larger degree from the other
is marked by a vertical segment in the common style.

Figure 3. Duplicated totals when an xs term occurs in a die dg other than dγ .

6. APPLICATIONS AND FURTHER QUESTIONS.

What dice lie in fair sacks?. Viewing theGasarch–Kruskal theorem as saying that “Ev-
ery die in a fair sack is semifair” naturally suggests the question, “Does every semifair
die occur in a fair sack?” The answer is usually negative, and the simplest examples
are the dice es(x) = 1 + xs + x2s−1 + x3s−1 for s ≥ 2. Indeed, the term giving the total
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s− 1 must use the constant term from es and hence can be used with the xs term from
es to duplicate the total 2s− 1. A much larger class of semifair dice can be ruled out
by the following.

Corollary 6.1. A die d lies in a fair sack if and only if d(x) = ∏m
j=1 �a j (x

bj ) with
a jb j|b j+1 for 1 ≤ j < m. In particular, the degrees of all nonzero terms of d(x) are
multiples of the smallest positive such degree.

Proof. Any die in a partition-factorization sack has the claimed form; hence, the first
statement follows from Theorem 5.1. It immediately implies the second. �

As an example of a new restriction on the orders of dice in a fair sack, we sharpen
Corollary 9 of [5], which shows that a fair sack with total t must contain a die of order
at least φ(t ) + 1, where φ is the Euler totient function.

Corollary 6.2. If p is the smallest prime dividing t, then a fair sack with total t always
contains a die of order at least t(1 − 1

p ) + 1. In particular, every fair sack with total t
contains a die of order at least t2 + 1.

Proof. Realize S as a partition-factorization sack arising from a prime factorization a
of length � using Proposition 4.4(b). The polynomial �a�

(xb� ) is a factor of the dg(x)
associated to the part πg containing �. Since the degree of �a�

(xb� ) is equal to (a� −
1)b� = t − b� = t(1 − 1

a�
), the degree of dg(x) is at least this large. Since a� ≥ p, the

corresponding die has order at least t(1 − 1
p ) + 1. �

Algorithmic aspects. Theorem 5.1 does a bit more than show that any fair sack arises
from the constructions of Section 4. Its proof amounts to an algorithm for finding the
factorization and interval free partition from which it arises.

Likewise, Corollary 6.1 yields an algorithm for determining whether a given sack S
of semifair dice is fair that is more efficient than the brute force check of the uniqueness
of all totals suggested in [5, Corollary 6]. Since such algorithms are of purely theoretical
interest, we only sketch the idea, leaving details to the reader.

The first step is to check that each die d has the form of the corollary, by a procedure
like that in the proof of Theorem 5.1. For example, if b1 is the lowest degree of a term
occurring in d and a1 is the smallest positive number for which d has not have a a1b1
term, then �a1 (x

b1 ) must divide d(x). If it does, we repeat this test for the quotient,
inductively producing the sequence of a j and b j of the corollary and stopping when the
quotient is 1.

If each die in S passes these tests, we let PS be the disjoint union of the sets of pairs
(a j, b j ) for all dice d in S ordered so that the b j are nondecreasing, and set � := |PS|
and b�+1 := a�b�. Then, S is fair exactly when this yields an ordered factorization of
its total t: that is, b1 = 1, bh+1 = ahbh for 1 ≤ h ≤ � and b�+1 = t.

Atomizations. Finally, each die in a partition-factorization sack is itself the total die
of the subsack determined by its part. This motivates the following definition that leads
to our most striking corollary.

A die is atomic if it is not the total die of any sack of size 2 or more—equivalently, if
d(x) does not factor inR+[x]. A sack is atomic if all its dice are. Every die d is the total
die of an atomic sack, that we call an atomization of d, by a standard argument. (If d is
not itself atomic, then it is the total die of a sack of dice, all of strictly smaller orders.
By induction, these have atomizations whose union is an atomic sack with total d.)

Note, however, that atomizations are usually not unique. For example, in view of (c)
of Corollary 6.3, the die in line 12 of Table 1 has 3 atomizations, given in the 2 · 2 · 3,
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2 · 3 · 2, and 3 · 2 · 2 lines. The atomizations of a sack S are the sacks obtained by
atomizing, in any way, all the dice in S.

Corollary 6.3.
(a) Any atomization of a fair sack is fair.
(b) The atomic dice that lie in some fair sacks are those of the form �p(xb) with p

prime.
(c) The atomic fair sacks are the factorization sacks of ordered prime factoriza-

tions a.
(d) Every atomic fair sack of size m contains a unique fair subsack Sm′ of each size

m′ ≤ m consisting of dice associated to the first m′ factors in a.

Proof. The first claim holds because totals are preserved under atomization. The proof
of Proposition 4.4 shows that only sacks associated to prime factorizations can be
atomic. If a die in such a sack was not itself atomic, then by atomizing it we would ob-
tain a fair sack contradicting Theorem 5.1. This proves the second and third assertions.
Lemma 4.1 implies the fairness of the subsacks Sm′ in the last statement. Uniqueness
follows by induction on m. If a fair subsack S′ of size m′ < m does not contain the die
dm associated to the last factor in a, its intersection with Sm−1 is a fair subsack of size
m′ that, inductively, must equal Sm′ . If dm ∈ S′, we get a contradiction by removing it
to produce a fair subsack S′′ of Sm−1 of size m′ − 1 . By induction, S′′ = Sm′−1, which
does not contain dm′−1. Now, adding dm back to Sm′−1 to get S′ yields an unfair sack
because the total bm′−1 does not occur. �

Closing questions for the reader. We conclude by posing a few questions to the
reader. We can factor the dice es(x) defined above as es(x) = (1 + xs)(1 + x2s−1) =
�2(xs)�2(x2s−1). This is an atomization by Corollary 6.3(c) and, at least for small s,
there are no others.6 All other atomizations of semifair dice not lying in a fair sack that
we have found contain only semifair dice, but this does not follow from (b) above and
we have not found any proof. So, we ask the reader, “Must every semifair die have a
semifair atomization?” or, more greedily, “Is semifairness closed under atomization?”

In a related direction, we may define, following Cesarz et al. [1], the elasticity of
a polynomial in R

+[x] to be the maximum of the ratios n
n′ for which the polynomial

has an atomization with n atoms and a second with n′. Examples are given in [1] of
polynomials having elasticity equal to any rational number r ≥ 1. But, while �t (x) has
many atomizations by Corollary 6.3, the number of atoms in all of them is the number
of prime factors of t. That is, �t (x) has elasticity 1. So, we close by asking, “What
are the possible elasticities of more general semifair polynomials?” or, more greedily
again, “Do all semifair polynomials have elasticity exactly 1?”
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