
Full Terms & Conditions of access and use can be found at
http://maa.tandfonline.com/action/journalInformation?journalCode=uamm20

The American Mathematical Monthly

ISSN: 0002-9890 (Print) 1930-0972 (Online) Journal homepage: http://maa.tandfonline.com/loi/uamm20

Infinitude of Primes Using Formal Languages

Aalok Thakkar

To cite this article: Aalok Thakkar (2018) Infinitude of Primes Using Formal Languages, The
American Mathematical Monthly, 125:8, 745-749, DOI: 10.1080/00029890.2018.1496761

To link to this article: https://doi.org/10.1080/00029890.2018.1496761

Published online: 28 Sep 2018.

Submit your article to this journal

Article views: 73

View Crossmark data

http://maa.tandfonline.com/action/journalInformation?journalCode=uamm20
http://maa.tandfonline.com/loi/uamm20
http://maa.tandfonline.com/action/showCitFormats?doi=10.1080/00029890.2018.1496761
https://doi.org/10.1080/00029890.2018.1496761
http://maa.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
http://maa.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2018.1496761&domain=pdf&date_stamp=2018-09-28
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2018.1496761&domain=pdf&date_stamp=2018-09-28

Infinitude of Primes Using Formal Languages

Aalok Thakkar

Abstract. Formal languages are sets of strings of symbols described by a set of rules specific
to them. In this note, we discuss a certain class of formal languages, called regular languages,
and put forward some elementary results. The properties of these languages are then employed
to prove that there are infinitely many prime numbers.

1. INTRODUCTION. If you have used the command line shell of an operating sys-
tem, or search facilities of text editors, undoubtedly you would have come across pat-
tern matching by entering an expression to match with text. These expressions can be
used to describe sets of words. The computer can then simulate a simple model of com-
putation to decide the membership of a given string in these sets. This note presents a
formal characterization of such expressions and the sets they represent. Properties of
these sets are discussed and then used to prove the infinitude of primes.

2. WORDS AND LANGUAGES. To formalize the notion of expressions, we first
look at alphabets, words, and languages. An alphabet � is a set of formal symbols. A
priori, these symbols do not bear any relation to each other (such as order). A finite
word of length k is a concatenated sequence a1 · a2 · . . . · ak, where ai ∈ �. An empty
word is denoted by the symbol ε.

Remark. In the following sections, we only deal with finite alphabet and finite-length
words.

The set of all words over an alphabet � is denoted by �∗. One can think of �∗ as
the free monoid generated by elements of �, with ε as the identity, and concatenation
as the binary operation. Using formal rules, one can describe subsets of �∗ that are
called languages. The nomenclature reflects the idea that letters of the alphabet make
words and words make languages. Formal language theory deals with the study of
these languages, their properties, their representations, and computations using them.
The following are three operations central to formal languages.

• (Concatenation) L1 · L2 = {u · v : u ∈ L1 and v ∈ L2} denotes the set of strings
obtained by concatenating a string in L1 with a string in L2.

• (Union) L1 + L2 = L1 ∪ L2 = {w : w ∈ L1 or w ∈ L2} denotes the union of L1

and L2.
• (Kleene star) L∗ = ∪k≥0L

k where Lk is the k times repeated concatenation of L.
By definition, L0 = {ε}. One can think of L∗ as the smallest set containing ε and L

that is closed under concatenation, or as the free monoid generated by the elements
of L.

3. REGULAR EXPRESSIONS AND REGULAR LANGUAGES. In general, a
language may be infinite, in which case it is necessary to look for a finite represen-
tation of it. Expressions offer one such way to represent a certain class of languages.

doi.org/10.1080/00029890.2018.1496761
MSC: Primary 11A41, Secondary 68Q45

October 2018] NOTES 745

http://dx.doi.org/10.1080/00029890.2018.1496761

Given an alphabet �, an expression is a finite-length string of characters that uses
symbols from � and operators to describe the language. For notation, if e is an expres-
sion, then L(e) denotes the language represented by e. Of the many equivalent ways
to formally describe regular expressions, we opt for the one preferred by most intro-
ductory references for formal language theory (e.g., [1], [3], and [10]).

The following are the constant expressions.

• ∅ denotes the empty set.
• ai denotes the singleton set containing ai (a character in the alphabet �).

One can define the three operations of concatenation, union, and Kleene star for the
expressions analogously. Note that ∅∗ = {ε} by the definition of Kleene star.

Definition (Regular Expression). The set of regular expressions is the smallest set
closed under concatenation, union, and Kleene star that contains the constant expres-
sions. An expression is said to be regular if it belongs to the set of regular expressions.

The expressions used for pattern matching in command line shells are exactly these
regular expressions (sometimes with additional operators such as those to match with
the beginning or the end of a line [9]). The priority of operation is first given to
Kleene star, followed by union, then by concatenation. Therefore, a + b · c∗ means
a + (b · (c∗)). The following examples demonstrate the use of expressions to repre-
sent languages.

Example 0. Let � = {a, b, c}. The language L ⊂ �∗ consisting of words with at
least one a can be represented by the expression (a + b + c)∗ · a · (a + b + c)∗, and
the language L′ ⊂ �∗ consisting of words that do not contain any a can be represented
by (b + c)∗.

Example 1. Let � = {a, b, c}. Let L′′ be the set of strings w ∈ �∗ such that for every
a occurring in w, there is at least one b occurring to the right of it. For a word w in
L′′, if a does not occur in w, then it belongs to the language represented by (b + c)∗.
Otherwise, a occurs in w, and so w can be written as u · b · v where u ∈ �∗ contains
at least one a, and v ∈ �∗ does not contain an a. Hence, L′′ can be represented by the
expression (b + c)∗ + (a + b + c)∗ · a · (a + b + c)∗ · b · (b + c)∗.

Expressions are used to represent languages as they are concise and simple to give
as input to computers. To check if a given string w matches the expression e, that
is, w ∈ L(e), the computer needs to allocate some bounded memory based on the
expression (independent of the length of the word), and then the membership can be
checked in time that is linear in the length of the word. The model of computation
simulated for this process is called a deterministic finite automaton (DFA). Informally,
a DFA is a nonempty set of states Q, of which exactly one is an initial state and zero or
more are final states, together with a transition function δ : Q × � → Q. DFAs also
represent languages, and a word is said to belong to the language of a given DFA if
successive application of the transition function on reading the letters of the word map
the initial state to one of the final states. Continuing Example 1, the DFA representing
L needs only two states as shown in Figure 1 [3].

In 1956, Kleene proved the equivalence of the set of languages represented by reg-
ular expressions and the set of languages recognized by a DFA [2]. We use this equiv-
alence to define regular languages.

746 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125

S0start S1

a

b,c

b

a,c

Figure 1. A DFA accepting the language described in Example 1. S0 is the initial state (as indicated by the
transition from “start”) and the only final state (as indicated by the double-circle). Starting with S0, we remain
in S0 on reading b or c, and move to S1 on reading an a. We remain in S1 on reading a or c, and move to S0 on
reading a b. The word is accepted if and only if we are in S0 when the word ends [3].

Definition (Regular Languages). L ⊂ �∗ is regular if and only if it can be repre-
sented by a regular expression.

To show that the definition is meaningful, we give an example of a language that is
not regular. As �∗ is a countably infinite set, its power set is uncountable. If one shows
that there are only countably many regular expressions, the result is immediate. The
reader is left to fill in the details while we take a constructive approach.

Example 2. Let � = {a}. Let L be the set of strings w ∈ �∗ such that the length of
w is a power of 2. Let us show that L is not regular. For the sake of contradiction,
suppose there is a regular expression e that represents L. As the set L is infinite, the
Kleene star operation must be used somewhere in the expression. The expression can
be decomposed as e = e′ + (eP · (eQ)∗ · eR), where eP , eQ, and eR are nonempty and
eQ is not equal to {ε}. Let w = (ap) · (aq) · (ar) be such that ap ∈ L(eP), aq ∈ L(e∗

Q),
and ar ∈ L(eR). As L(e∗

Q) is infinite, we can chose q > 0. By definition of Kleene star,
for all n ∈ N, anq ∈ L(e∗

q). Hence, ap+nq+r ∈ L(eP · (eQ)∗ · eR) ⊂ L(e). Therefore,
for q �= 0 and for some p and r , (p + r + nq) is a power of 2 for all n ∈ N. We
have produced an arithmetic progression in the set of powers of 2. Elementary number
theory tells us that there is no arithmetic progression in the set of powers of 2. Hence,
there is a contradiction.

To prove irregularity using only the expressions, one needs to work combinatori-
ally. This becomes involved when the alphabet is not singleton, and the language does
not have such a simple structure. In such cases, distinguishing extensions provide an
alternative.

Definition (Distinguishing Extension). Given a language L ⊂ �∗, and a pair of
strings x and y in �∗, a distinguishing extension is a string z ∈ �∗ such that exactly
one of the two strings xz or yz is a member of L.

The distinguishing extensions partition �∗ into equivalence classes that describe
certain properties of the language. For regular languages, we have the following.

Theorem 1 (Myhill–Nerode [5], [6]). Let x ≡L y if there is no distinguishing exten-
sion for x and y with respect to L. Then L is regular if and only if ≡L induces finitely
many equivalence classes.

Theorem 1 is a strong and useful characterization of regular languages and provides
a systematic way to deal with regularity testing. Other alternatives are the pumping
lemma, Parikh’s theorem, and tests based on the closure properties [1], [3], [7], and
[10] . The following examples show the application of Theorem 1.

October 2018] NOTES 747

Example 3. Let � = {a, b} and let |w| denote the length of a word w. Let L be the set
of all strings w ∈ �∗ with length of the form 5k + 3, that is, |w| ≡ 3 mod 5. Given
u, v ∈ �∗ such that m ≡ |u| �≡ |v| mod 5 and 0 ≤ m < 4, let w = a8−m. Notice that
|u · w| = m + 8 − m ≡ 3 mod 5 while |v · w| �≡ m + 8 − m ≡ 3 mod 5. Hence w

distinguishes u and v. Also, if |u| ≡ |v| mod 5, then there is no distinguishing string
and hence u ≡L v. This implies that ≡L induces exactly five equivalence classes, par-
titioning �∗ into the classes based on the length of a string modulo five, which is to say
that, given a string w, it must be equivalent to a, a2, a3, a4, or a5 under ≡L. Therefore,
by Theorem 1, L is regular.

Example 4. Let � = {a} and let L be the set of all strings w ∈ �∗ with length equal
to a Fibonacci number. Let F(i) be the ith Fibonacci number. Let A = {aF(3k) : k ∈
N, F (k) > 1}. For two distinct elements x = aF(3i) and y = aF(3j) of A with i > j ,
z = aF(3i−1) is a distinguishing extension as xz ∈ L and yz �∈ L, by the definition of
Fibonacci numbers. Hence no two elements of A can belong to the same equivalence
class, and by Theorem 1, we have that L is not regular.

Not only does Theorem 1 put forward a rigorous test of regularity, but it also brings
out the algebraic character of formal language theory. The concept of distinguish-
ing extensions was further developed by Schützenberger in his seminal paper on star-
free languages [8], and by Krohn and Rhodes in their work on an algebraic theory of
machines [4]. One can appreciate the parallels between algebra and computation—the
spirit of formalism, the affection for abstraction, and the strive for elegance. Encom-
passing logic and proof theory, combinatorics and computation complexity, the domain
of the intersection of the two subjects also provides the following proof of infinitude
of primes.

4. A CLASS OF REGULAR LANGUAGES. To prove the infinitude of primes, we
look at a particular class of languages. Consider the alphabet � = {a, b}. Let |w|α
denote the number of occurrences of the character α in the string w, and set ξ(w) =
|w|a − |w|b. For n ∈ Z

+, let

Ln = {w ∈ �∗ : ξ(w) is divisible by n}.
Proposition 1. For all n ∈ Z

+, the language Ln is regular.

Proof. Similar to Example 3, given u, v ∈ �∗, let m ≡ ξ(u) �≡ ξ(v) mod n where
0 ≤ m < n. The string an−m distinguishes u from v. Indeed, note that ξ is addi-
tive, which is to say that ξ(u · v) = ξ(u) + ξ(v). Now, ξ(uan−m) = ξ(u) + ξ(an−m) ≡
m + n − m ≡ 0 mod n, which implies that uan−m ∈ Ln. A similar calculation shows
that van−m �∈ Ln. If ξ(u) ≡ ξ(v) mod n, then there is no distinguishing extension.
Therefore, ≡Ln induces exactly n equivalence classes, that is, any word w ∈ �∗ is
equivalent to one of the elements of the set {ai : 0 ≤ i < n}. By Theorem 1, Ln is
regular.

Let P ⊂ N be the set of primes. Let

L =
⋃

p∈P
Lp. (1)

Proposition 2. L = {w ∈ �∗ : ξ(w) �= ±1}.

748 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125

Proof. By definition, for every integer other than +1 and −1, there exists a prime
number dividing it, and there is no prime number dividing +1 or −1. For w ∈ �∗, if
ξ(w) �= ±1, then some p ∈ P divides ξ(w), and if ξ(w) = ±1, then no prime in P

divides ξ(w). Therefore, w ∈ ∪p∈PLp if and only if ξ(w) �= ±1.

Proposition 3. L is not regular.

Proof. Consider the set A = {a3k : k ∈ N}. For x = a3i and y = a3j in A with i > j ,
the string z = b3j+1 distinguishes the two as ξ(xz) = ξ(a3ib3j+1) = 3(i − j) − 1 ≥ 2,
which implies xz ∈ L, whereas ξ(yz) = ξ(a3j b3j+1) = −1 so yz �∈ L. Therefore, no
two elements of the infinite set A belong to the same equivalence class. By Theorem 1,
L is not regular.

5. INFINITUDE OF PRIMES. By the definition of regular expressions, the union of
two regular languages is regular, and hence regularity is preserved under finite union.
For the sake of contradiction, suppose there are only finitely many primes; then we
have L as a finite union of regular languages Lp making L regular. This contradicts
Proposition 3. Hence, we have shown that there must be infinitely many prime num-
bers. A motivated reader may now assume the infinitude of primes and prove that the
language of words of prime length is not regular.

ACKNOWLEDGMENTS. The author is grateful to Professor Aiswarya Cyriac and Professor K. Narayan
Kumar for their valuable guidance, to Gayathri Shankar and Nivedita Ganesh for help with phrasing and
presentation, and to the anonymous referees for their comments which helped improve this note significantly.
The editorial team and the editor have been very kind in assisting the drafting and revision process.

REFERENCES

[1] Hopcroft, J., Motwani, R., Ullman, J. D. (2001). Introduction to Automata Theory, Languages, and
Computation, 2nd ed. Boston, MA: Addison-Wesley.

[2] Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In: Shannon, C.,
McCarthy, J., eds. Automata Studies. Princeton, NJ: Princeton Univ. Press, pp. 3–42.

[3] Kozen, D. C. (2006). Theory of Computation. London: Springer-Verlag.
[4] Krohn, K., Rhodes, J. (1965). Algebraic theory of machines. I. Prime decomposition theorem for finite

semigroups and machines. Trans. Amer. Math. Soc. 116: 450–464.
[5] Myhill, J. (1957). Finite automata and the representation of events. Technical Report WADC TR-57-

624, Dayton, OH: Wright Patterson Air Force Base.
[6] Nerode, A. (1958). Linear automaton transformations. Proc. Amer. Math. Soc. 9: 541–544.
[7] Parikh, R. (1966). On context-free languages J. ACM. 13: 570–581.
[8] Schützenberger, M. P. (1955–1956). Une théorie algébrique du codage. Séminaire Dubreil. Algébre et

Théorie des Nombres 9: 1–24. numdam.org/item?id=SD 1955-1956 9 A10 0
[9] Shotts Jr., W. E. (2012). Linux Command, the Linux command line. linuxcommand.org/tlcl.php

[10] Sipser, M. (2012). Introduction to the Theory of Computation, 3rd ed. Boston, MA: Cengage Learning.

Chennai Mathematical Institute, Chennai 603103, India
aalok@cmi.ac.in

October 2018] NOTES 749

http://www.numdam.org/item?id=SD_1955-1956__9__A10_0
http://linuxcommand.org/tlcl.php
mailto:aalok@cmi.ac.in

	Introduction.
	Words and Languages.
	Regular Expressions and Regular Languages.
	A Class of Regular Languages.
	Infinitude of Primes.

