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Department of Algorithms and System Modeling, Faculty of Electronics Telecommunication and Informatics, Gdansk University of
Technology, Poland

a r t i c l e i n f o

Article history:
Received 15 January 2015
Received in revised form 27 May 2016
Accepted 16 June 2016
Available online 20 July 2016

Keywords:
Edge-coloring
3-uniform hypergraph
Scheduling

a b s t r a c t

We consider edge-colorings of 3-uniform hypergraphs which is a natural generalization
of the problem of edge-colorings of graphs. Various classes of hypergraphs are discussed
and we make some initial steps to establish the border between polynomial and NP-
complete cases. Unfortunately, the problem appears to be computationally difficult even
for relatively simple classes of hypergraphs.
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1. Introduction

Let H = (V , E) be a hypergraph, where V = V (H) is the set of vertices and E = E(H) is a multiset of nonempty subsets of
V called edges or hyperedges. Throughout this paper we let n = |V | and m = |E|. We say that a hyperedge e and a vertex v
are incident if v ∈ e. A d-edge e is a hyperedge that contains exactly d vertices. Ψ (e) = |e| denotes the cardinality of an edge
e and Ψ (H) = maxe∈E(H) Ψ (e) is the maximum cardinality of an edge in a hypergraph H . If all edges of a hypergraph are of
the same cardinality d then we say that the hypergraph is d-uniform. A hypergraph is simple if each edge is unique. Notice
that simple 2-uniform hypergraphs are just graphs.

In this article we mainly discuss 3-uniform hypergraphs. Henceforth, by the term hypergraph we mean a 3-uniform
hypergraph, unless otherwise stated.

The degree deg(v) of a vertex v ∈ V is the number of edges to which v is incident.∆(H) = maxv∈V deg(v) is the degree of
H . The neighborhood N(e) of an edge e is the set of all edges in H that share at least one vertex with e. N(H) is the cardinality
of the maximal neighborhood of an edge in H .

A proper edge-coloring of a hypergraph H with k colors is a function c : E(H) → {1, . . . , k} such that no two edges that
share a vertex get the same color (number). Any coloring that uses the minimum number of colors is called optimal. The
chromatic index χ ′(H) of H is defined to be the number of colors in an optimal coloring of H .

For a hypergraph H , the line graph L(H) is a simple graph representing adjacencies between hyperedges in H . More
precisely, each hyperedge of H is assigned a vertex in L(H) and two vertices in L(H) are adjacent if and only if their
corresponding hyperedges share a vertex in H . It is easy to notice that an edge-coloring of a hypergraph is equivalent to
a vertex coloring of its line graph.

There are some natural applications of edge-colorings of 3-uniform hypergraphs. It can be directly applied to scheduling
of unit execution time tasks on dedicated processors, under the assumption that each task requires exactly three processors
for its execution. For each scheduling problem a scheduling hypergraphmay be obtained in the following manner. Associate
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a vertex with each processor. Each task, which is going to be executed on three prespecified processors, is assigned a 3-
hyperedge that consists of the three corresponding vertices. Colors in the edge-coloring problem represent time slots, hence
each coloring of the scheduling hypergraph corresponds to a timetable. Furthermore, an optimal coloring implies an optimal
schedule.

The model of edge-coloring of 3-uniform hypergraphs may be also applied to solving some variants of Clos networks
control [4,9].

2. Bounds on the chromatic index

The following fact gives simple bounds for the chromatic index of 3-uniform hypergraphs.

Fact 2.1. For any 3-uniform hypergraph H the following two inequalities hold: ∆(H) ≤ χ ′(H) ≤ 3∆(H) − 2.

The first inequality is obvious. The second one can be justified in the following manner. Let us consider any greedy
algorithm for the hypergraph edge-coloring problem. Each edge in a 3-uniformhypergraph has atmost 3∆(H)−3 neighbors.
Hence, for a certain edge e even if all the adjacent edges have various colors, the algorithm has always one color available in
a palette of 3∆(H) − 2 colors.

The above fact can be easily generalized to χ ′(H) ≤ N(H) + 1, or due to Brooks theorem [3], even to χ ′(H) ≤ N(H)
unless L(H) is a complete graph or an odd cycle.

Conjecture 2.1. For any 3-uniform hypergraph H the following upper bound for chromatic index holds: χ ′(H) ≤ 2∆(H) + 1.

Notice that for ∆ ≤ 3 Fact 2.1 is stronger than the conjecture. However, for bigger values of ∆ the problem remains open.
The conjecture is inspired by Vizing’s Theorem [14] for simple graphs. One additional vertex at each edge (in comparison to
simple graphs) generates ∆ extra connections. Note that Berge conjectured a similar problem for line graphs (Conjecture B
in [1]) and proved it for hypergraphs without repeated 2-edges. Hence, for linear 3-uniform hypergraphs the conjecture
is true. In [11] an asymptotic result was proven that for sufficiently large hypergraphs the chromatic index is close to the
degree. The gap between this result and our conjecture is significant, which could suggest that the boundmay be tightened.
However, the conjecture, for example, is sharp for the Fano plane.

3. Chromatic index for bounded degree hypergraphs

At first let us consider a hypergraphH of degree 2. Themaximumdegree of the line graph L(H) is∆(L(H)) = 3 since each
hyperedge of H has at most three neighbors. It is well known that a vertex coloring of graphs of degree 3 can be obtained in
polynomial time. This implies that for 3-uniform hypergraphs of degree 2 an edge-coloring can be obtained in polynomial
time.

The problem becomes more complex if hypergraphs of degree ∆ = 3 are considered. At first let us observe that each
graph can be easily converted to a 3-uniform hypergraph by adding one additional, say ‘pendant’ vertex to each edge (2-
edge). It was proven by Holyer [8] that it is NP-complete to decide whether the chromatic index of a cubic (each vertex of
degree 3) graph is 3. This implies that edge-coloring of 3-uniform hypergraphs of degree 3 is also NP-hard.

4. Hypercycles and hypercacti

We say that a hypergraph H has an underlying (host) graph G (spanned on the same set of vertices) if each hyperedge
from E(H) induces a connected subgraph in G.

We say that a hypergraph that has an underlying tree is a hypertree. It was proven, e.g. in [10], that edge-coloring of
hypertrees can be done in polynomial time using a modification of the BFS algorithm.

A hypergraph H is a hypercycle if and only if there exists a cycle (simple graph) that is a host graph for H . The problem
of edge-coloring hypercycles is equivalent to vertex coloring of circular arc graphs. Recall that G is a circular arc graph if
there is a finite collection of arcs on a circle such that G is an intersection graph of this model [2]. A hypercycle can be
transformed into arcs on a cycle by putting vertices on a cycle in an order corresponding to one in the underlying cycle.
Then, the hyperedges can be regarded as arcs crossing equivalent vertices. Note that the opposite transformation is similar.
Since coloring of a circular arc graph was proven to be NP-complete [7], edge-coloring of hypercycles is also NP-complete.
However, in this article we discuss 3-uniform hypergraphs and we will prove a slightly more general case of Ψ (H) = 3 to
be polynomial.

Lemma 4.1. Let H be a hypercycle with m edges and Ψ (H) = 3. Then edge coloring of H can be accomplished in time O(m3/2).
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Fig. 1. Part of the hypercycle in which each 2-hyperedge and 3-hyperedge appears twice (upper part of the figure). Proper circular arcs (lower part of the
figure) that represent the corresponding part of the hypercycle.

Fig. 2. An example of a 3-uniform hypercactus. Dashed lines stand for a host cactus for the hypercactus.

Proof. In [12] it was shown that a proper circular arc graph (no arc properly contains another) can be colored using Teng
and Tucker’s approach from [13] in O(n3/2) time. A straightforward transformation from a hypercycle to a circular arc graph
obviously does not give a proper circular arc graph. However, if we assume that a hypercycle consists of 2-hyperedges and
3-hyperedges only, a transformation to proper circular arcs becomes possible. For a 3-uniform hypercycle, consider any
three consecutive vertices a, b and c of the underlying cycle. Arcs related to 3-edges {a, b, c} (assume that they are of the
same length) cannot be contained one in another, so we shift them slightly. Arcs associated with 2-edges {a, b}may also not
be contained one in another, thus they are shifted as well. Moreover, they all must start before the arcs {a, b, c}. A similar
tactic is applied to the edges {b, c} however here the related arcs must all finish after all {a, b, c}. The strategy is presented
in Fig. 1. Using Teng and Tucker’s approach from [13] we get a coloring of the proper circular arc as well as the coloring of
the hypercycle. Finally, if we include 1-hyperedges, each of them can be colored with a color missing at the corresponding
vertex. Since the transformation to circular arcs and coloring of 1-hyperedges can be both done in linear time, it is the Tucker
algorithm that dominates the complexity. �

Now, we would like to discuss edge-colorings of 3-uniform hypercacti. A hypercactus is a hypergraph for which there
exist a cactus (simple graph) that underlies it. An exemplary hypercactus is presented in Fig. 2. We remind that a cactus
is a graph in which each edge belongs to at most one cycle. In general, coloring hypercacti is NP-complete as they include
hypercycles. However, we propose a polynomial time algorithm for edge-coloring of 3-uniform hypercacti.

Theorem 4.1. Edge-coloring of a 3-uniform hypercactus with m edges can be done in time O(m3/2).

Proof. Let us consider a 3-uniform hypercactus that is not a hypertree. Then there is a hypercycle in it. For example if we
take the far left hypercycle of the hypergraph from Fig. 2, we get the hypercycle presented in Fig. 3. Note that hyperedges
that are not entirely in the cycle are reduced bymissing vertices but are present in the cycle. Since the selected 2-connected
component is a hypercycle, by Lemma 4.1, we can color it in time O(m3/2). Next, we need to choose another block of the
hypercactus that is connected with the colored part. If the current block is a hypercycle it may be colored with Tucker’s
algorithm otherwise it is a path on two vertices and such hypergraphs can be colored in linear time. To make our approach
valid, we need to unify the colors of the two parts. Notice that all hyperedges that appear both in the precolored part and the
current block have a vertex in common, hence they get different colors. All we need to do is to permute color labels in the
current 2-connected component, so that theymatch the colors of the precolored part. The procedure of choosing consecutive
blocks connected with the colored part and coloring it should be repeated as long as there are uncolored hyperedges. �

5. 3-partite hypergraphs

Let us define a 3-partite hypergraph as a 3-uniform hypergraph whose vertices can be partitioned into three non-
intersecting sets and each hyperedge is incident to exactly one vertex from each partition.
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Fig. 3. Hypercycle.

Fig. 4. Gadget used to replace the precoloring function.

Theorem 5.1. It is NP-complete to decide whether a 3-partite hypergraph of degree 3 is 3-edge-colorable.

Proof. Wewill show a polynomial time reduction from the problem of edge precoloring extension to proper 3-coloring for
bipartite graphs of degree 3 precolored with at most three colors, which has been proven to be NP-complete by Fiala [6].
However, a similar reduction could be built on amuch earlier intractability result for list edge-coloring of subcubic, bipartite
graphs [5].

Let us consider a bipartite graphG of degree 3 and its partial precoloring using only three colors.We are going to transform
this graph into a 3-partite hypergraphwhich is three colorable if and only if the precoloring ofG can be completedwith three
colors.

At first let us transform G to a 3-uniform hypergraph by adding one pendant vertex to each edge. Later we will use these
pendant vertices to connect edges of a specially created hypergraph (gadget), whichwill replace the precoloring of the graph
G. Obviously the achieved hypergraph is 3-partite as G is bipartite.

The gadget is constructed as follows. Consider one vertex v00 and three hyperedges incident with it, namely: e1, e2 and
e3. e1 is connected with a hyperpath which consists of one and two parallel hyperedges alternatingly, as shown in Fig. 4. We
distinguish vertices v11, v12, etc. that are vertices in the path on the two parallel hyperedges that are not connected to the
other hyperedges. Edges e2 and e3 also have their equivalent hyperpaths with distinguished vertices. Notice, that if we try
to color such a hypergraph (gadget) with 3 colors, the coloring is determined by the colors of the edges e1, e2 and e3. Let us
assume that e1 is colored with color 1, e2 with color 2 and e3 with color 3. Then the vertices v11, v12 . . . are not incident with
edges colored with color 1 but the two remaining colors are used. In this way we can get any number of vertices with such
a convenient property. However, we need only as many vertices v1i as the number of edges in G precolored with the first
color. The situation with vertices v21, v22 . . . , v31, v32 . . . and the second and the third color is analogous.

Now let us remind that we have a bipartite graph G precoloredwith three colors, that has beenmodified into a 3-uniform
hypergraph. All we need to do is to unify the pendant vertices of edges precoloredwith the j-th color with one unique vertex
vji of our gadget.

The coloring extension of G with three colors is possible if and only if the obtained hypergraph can be colored with 3
colors.

Since the degree of G is three, the hypergraph is also of degree three. The vertex set of the final hypergraph can be
partitioned into three independent sets in the following way. The graph G is bipartite so we have two partitions. The added
pendant vertices (unified with vertices vji) are in the third partition. Also the vertex v00 and vertices of degree 1 on paths
should be placed in the third partition. The remaining vertices of the gadget (those being part of the paths) are assigned one
to the first and another to the second partition accordingly. During the unification process we connect vertices of the third
partition in the modified graph G with gadget vertices that are also in the third partition. In this way the result of joining
two 3-partite hypergraphs is 3-partite as well. �
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6. Final remarks

In this article, we have shown that edge-coloring of 3-uniform hypergraphs is computationally difficult even for classes
of hypergraphs with a relatively simple structure. On the other hand, for some highly-structured classes of hypergraphs the
problem is polynomial. Our work makes the first step towards establishing the border between polynomial and intractable
instances. In future wewould like to direct our research to linear, simple or planar hypergraphs. We also would like to focus
our attention on Clos networks and classes of hypergraphs that represent this problem more precisely.
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