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Abstract

We introduce a game-theoretic approach to the study of recommendation systems
with strategic content providers. Such systems should be fair and stable. Showing
that traditional approaches fail to satisfy these requirements, we propose the Shap-
ley mediator. We show that the Shapley mediator fulfills the fairness and stability
requirements, runs in linear time, and is the only economically efficient mechanism
satisfying these properties.

1 Introduction

Recommendation systems (RSs hereinafter) have rapidly developed over the past decade. By
predicting a user preference for an item, RSs have been successfully applied in a variety of applications.
Moreover, the amazing RSs offered by giant e-tailers and e-marketing platforms, such as Amazon
and Google, lie at the heart of online commerce and marketing on the web. However, current
significant challenges faced by personal assistants (e.g. Cortana, Google Now and Alexa) and mobile
applications go way beyond the practice of predicting the satisfaction levels of a user from a set of
offered items. Such systems have to generate recommendations that satisfy the needs of both the end
users and other parties or stakeholders [7, 40]. Consider the following cases:

•When Alice drives her car, her personal assistant runs the default navigation application. When
she makes a stop at a junction, the personal assistant may show Alice advertisements provided by
neighborhood stores, or an update on the stock market status as provided by financial brokers. Each of
these pieces of information — the plain navigation content, the local advertisements and the financial
information — are served by different content providers. These content providers are all competing
over Alice’s attention at a given point. The personal assistant is aware of Alice’s satisfaction with
each content, and needs to select the right content to show at a particular time.

• Bob is reading news of the day on his mobile application. The application, aware of Bob’s interests,
is presenting news deemed most relevant to him. The news is augmented by advertisements, provided
by competing content providers, as well as articles by independent reporters. The mobile application,
balancing Bob’s taste and the interests of the content providers, determines the mix of content shown
to Bob.

In these contexts, the RS integrates information from various providers, often sponsored content,
which is probably relevant to the user. The content providers are strategic — namely, make decisions
based on the way the RS operates, aiming at maximizing their exposure. For instance, to draw Bob’s
attention, a content provider strategically selects the topic of her news item, aiming at maximizing the
exposure to her item. On the one hand, fair content provider treatment is critical for smooth efficient
use of the system and also to maintained content provider engagement over time. On the other hand,
the strategic behavior of the content providers may lead to instability of the system: a content provider
might choose to adjust the content she offers in order to increase the expected number of displays to
the users, assuming the others stick to their offered contents.
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In this paper, we study ways of overcoming this dilemma using canonical concepts in game theory to
impose two requirements on the RS: fairness and stability. Fairness is formalized as the requirement
of satisfying fairness-related properties, and stability is defined as the existence of a pure Nash
equilibrium. Analyzing RSs that satisfy these two requirements is the main goal of this paper.

Our first result is that traditional RSs fail to satisfy both of the above requirements. Traditional RSs
are complete, in the sense that they always show some content to the user, but it turns out that this
completeness property cannot be satisfied simultaneously with the fairness and equilibrium existence
requirements. This impossibility result is striking and calls for a search of a fair and stable RS.
To do so, we model the setting as a cooperative game, binding content provider payoffs with user
satisfaction. We resort to a core solution concept in cooperative game theory, the Shapley value [36],
which is a celebrated mechanism for value distribution in game-theoretic contexts (see, e.g., [28]).
In our work, it is proposed as a tool for recommendations, namely for setting display probabilities.
Since the Shapley value is employed in countless settings for fair allocation, it is not surprising that
it satisfies our fairness properties. In addition, we prove that the related RS, termed the Shapley
mediator, does satisfy the stability requirement. In particular, we show that the Shapley mediator
possesses a potential function [27], and therefore any better-response learning dynamics converge to
an equilibrium (see, e.g., [13, 17]). Note that this far exceeds our minimal stability requirement from
the RS.

Implementation in commercial products would require the mediator to be computationally tractable.
The mediator interacts with users; hence a fast response is of great importance. In another major
result, we show that the Shapley mediator has a computationally efficient implementation. The
latter is in contrast to the intractability of the Shapley value in classical game-theoretic contexts [14].
Another essential property of the Shapley mediator is economic efficiency [37]. Unlike cooperative
games, where the Shapley value can be characterized as the only solution concept to satisfy properties
equivalent to fairness and economic efficiency, in our setting the Shapley mediator is not characterized
solely by fairness and economic efficiency. Namely, one can find other simple mediators that satisfy
these two properties. However, we show that the Shapley mediator is the unique mediator to satisfy
the fairness, economic efficiency and stability requirements. Importantly, our study stems from
a rigorous definition of the minimal requirements from an RS, and so characterizes a unique RS.
Interested in understanding the ramification on user utility, we introduce a rigorous analysis of user
utility in (strategic) recommendation systems, and show that the Shapley mediator is not inferior to
traditional approaches.

1.1 Related work

This work contributes to three interacting topics: fairness in general machine learning, multi-
stakeholder RSs and game theory.

The topic of fairness is receiving increasing attention in machine learning [5, 11, 30, 32] and data
mining [23]. A major line of research is discrimination aware classification [16, 19, 21, 39], where
classification algorithms must maintain high predictive accuracy without discriminating on the basis
of a variable representing membership in a protected class, e.g. ethnicity. In the context of RSs,
the work of Kamishima et al. [20, 22] addresses a different aspect of fairness (or lack thereof): bias
towards popular items. The authors propose a collaborative filtering model which takes into account
viewpoints given by users, thereby tackling the tendency for popular items to be recommended more
frequently, a problem posed in [29]. A related problem is over-specialization, i.e., the tendency to
recommend items similar to those already purchased or liked in the past, which is addressed in [1].

Zheng [40] surveys multi-stakeholder RSs, and highlights practical applications. Examples include
RSs for sharing economies (e.g. AirBnB, Uber, etc.), online dating [31], and recruiting [38]. Burke
[7] discusses fairness in multi-stakeholder RSs, and presents a taxonomy of classes of fairness-aware
RSs. The author distinguishes between user fairness, content provider fairness and pairwise fairness,
and reviews applications for these fairness types. A practical problem concerning fairness in multi-
stakeholder RSs is discussed in [26]. In their work, an online platform is used by users who play two
roles: customers seeking recommendations and content providers aiming for exposure. They report,
based on empirical evidence, that collaborative filtering techniques tend to create rich-gets-richer
scenarios, and propose a method for re-ranking scores, in order to improve exposure distribution
across the content providers.
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Table 1: Consider an arbitrary game, a fixed strategy profile X and an arbitrary user ui. TOP
selects uniformly among the players that satisfy ui the most. The Bradley-Terry-Luce mediator
[6, 25], or simply BTL, selects player j w.p. proportional to her satisfaction level over the sum of
satisfaction levels. NONE displays no item, and RAND selects uniformly among players with a
positive satisfaction level. Both TOP and BTL satisfy F, but do not satisfy S. NONE and RAND
satisfy S, but do not satisfy F. The bottom line refers to the Shapley mediator, SM, which is defined
and analyzed in Section 3. In contrast to the other mediators, SM satisfies both F and S.

MEDIATOR
PROBABILITY COMPUTATION

P (M(X, ui) = j)
FAIRNESS (F) STABILITY (S)

TOP
1j∈arg max

j′ σi(Xj′ )

|argmaxj′ σi(Xj′ )|
√

× (THEOREM 1)

BTL σi(Xj)∑N
j′=1

σi(Xj′ )

√
× (THEOREM 1)

NONE 0 ×
√

RAND
1σi(Xj)>0∑N

j′=1
1σi(Xj′ )>0

×
√

SM
(SECTION 3) EQUATION (2)

√ √
(THEOREM 2)

Note that all the work above considers traditional machine learning tasks that enforce upon the solution
some form of fairness, as defined specifically for each task. They suggest additional considerations,
but do not consider that the parties (i.e., users, content providers) will change their behavior as a
result of the new mechanism, nor examine the game theoretic aspects imposed by the selection of the
RS in a formal manner. To the best of our knowledge, our work is the first to suggest a fully grounded
approach to content provider fairness in RSs.

Finally, strategic aspects of classical machine learning tasks were also introduced recently [3, 4].
The idea that a recommendation algorithm affects content-provider policy, and as a result must be
accompanied by a game-theoretic study is key to recent works in search/information retrieval [2, 33];
so far, however, such work has not dealt with the issue of fairness.

2 Problem formulation

From here on, our ideas will be exemplified in the following motivational example: a mobile applica-
tion (or simply app) is providing users with valuable content. A set of players (advertisers) publish
their items (advertisements) on the app. When a user enters the app, a mediator (RS/advertising
engine) decides whether to display an item to that user or not, and which player’s item to display.
The reader should notice that while we use that motivation for the purpose of exposition, our formal
model and results are applicable to a whole range of RSs with strategic content providers.

Formally, the recommendation game is defined as follows:

• A set of users U = {u1, . . . , un}, a set of players [N ] = {1, . . . N}, and a mediatorM.

• The set of items (e.g. possible ad formats/messages to select from) available to player j is denoted
by Lj , which we assume to be finite. A strategy of player j is an item from Lj .
• Each user ui has a satisfaction function σi : L → [0, 1], where L =

⋃N
j=1 Lj is the set of all

available items. In general, σi(l) measures the satisfaction level of ui w.r.t. l.

• When triggered by the app,M decides which item to display, if any. Formally, given the strategy
profile X = (X1, . . . , XN ) and a user ui, M(X, ui) is a distribution over [N ] ∪ {∅}, where ∅
symbolizes maintaining the plain content of the app. That is, displaying no item at all. We refer to
P (M(X, ui) = j) as the probability that player j’s item will be displayed to ui under the strategy
profileX .

• Each player gets one monetary unit when her item is displayed to a user. Therefore, the expected
payoff of player j under the strategy profileX is πj(X) =

∑n
i=1 P (M(X, ui) = j).
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• The social welfare of the players under the strategy profileX is the expected number of displays,
V (X) =

∑N
j=1 πj(X).

For ease of notation, we shall sometimes refer to σi(X) as the maximum satisfaction level of user ui
from the items inX , i.e., σi(X) = maxj σi(Xj).

We demonstrate our setting with the following example.
Example 1. Consider a game with two players and three users. Let L1 = {l1, l2},L2 = {l3} such
that the satisfaction levels of the users with respect to the items are

[ u1 u2 u3

l1 0.1 0.9 0.2
l2 0.8 0.7 0.9
l3 0.9 0.8 0.1

]
.

Consider a mediator displaying each user with the most satisfying item to her taste, denoted by TOP.
For example, P(TOP ((l1, l3), u1) = 2) = 1, since σ1(l3) = 0.9 > σ1(l1) = 0.1. The profile (l1, l3)
will probably be materialized in realistic scenarios, since the payoff of player 1 under the strategy
profile (l2, l3) is π1(l2, l3) = 1, while π1(l1, l3) = 2. Notice that from the users’ perspective,1 this
profile is not optimal, since

∑3
i=1 σi(l1, l3) = 0.9 + 0.9 + 0.2 = 2, while

∑3
i=1 σi(l2, l3) = 2.6;

hence, the users suffer from strategic behavior of the players.

After defining general recommendation games, we now present a few properties that one may desire
from a mediator. First and foremost, a mediator has to be fair. The following is a minimal set of
fairness properties:

Null Player. If σi(Xj) = 0, then it holds that P (M(X, ui) = j) = 0. Informally, an item will not
be displayed to ui if it has zero satisfaction level w.r.t. him.

Symmetry. If ui has the same satisfaction level from two items, they will be displayed with the same
probability. Put differently, if σi(Xj) = σi(Xm), then P (M(X, ui) = j) = P (M(X, ui) = m).

User-Independence. Given the selected items, the display probabilities depend only on the user: if
user ui′ is removed from/added to U , P (M(X, ui) = j) will not change, i.e.,

P (M(X, ui) = j) = P (M(X, ui) = j | ui′ ∈ U) .

Leader Monotonicity. M displays the most satisfying items (w.r.t. a specific user) with
higher probability than it displays other items. Formally, if j ∈ arg maxj′∈[N ] σi(Xj′) and
m /∈ arg maxj′∈[N ] σi(Xj′), then P (M(X, ui) = j) > P (M(X, ui) = m).

For brevity, we denote the above set of fairness properties by F. In addition, an essential property
in a system with self-motivated participants is that it will be stable. Instability in such systems is
a result of a player aiming to improve her payoff given the items selected by others. A minimal
requirement in this regard is stability against unilateral deviations as captured by the celebrated
pure Nash equilibrium concept, herein denoted PNE. A strategy profile X = (X1, . . . , XN ) is
called a pure Nash equilibrium if for every player j ∈ [N ] and any strategy X ′j ∈ Lj it holds that
πj(Xj ,X−j) ≥ πj(X ′j ,X−j), whereX−j denotes the vectorX of all strategies, but with the j-th
component deleted. We use the notion of PNE to formalize the stability requirement:

Stability. Under any set of players, available items, users and user satisfaction functions, the game
induced byM possesses a PNE.

For brevity, we denote this property by S. The goal of this paper is to devise a computationally
tractable mediator that satisfies both F and S.2

1For a formal definition of the user utility, see Subsection 6.2.
2One may require the convergence of any better-response dynamics, thereby allowing the players to learn the

environment. In Section 3 we show that our solution satisfies this stronger notion of stability as well.
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2.1 Impossibility of classical approaches

We highlight a few benchmark mediators in Table 1, including TOP, which was introduced informally
in Example 1. Another interesting mediator is BTL, which follows the lines of the Bradley-Terry-
Luce model [6, 25]. BTL is addressed here as a representative of a wide family of weight-based
mediators: mediators that distribute display probability according to weights, determined by a
monotonically increasing function of the user satisfaction (e.g., softmax). Common to TOP,BTL
and any other weight-based mediator, is that an item is displayed to a user with probability 1.3 We
model this property as follows.

Complete. For any recommendation game and any strategy profileX ,
∑N
j=1 P (M(X, ui) = j) =

1.

Since the goal of an RS is to provide useful content to users, satisfying Complete seems justified.
Although it seems unreasonable to avoid showing any content to a certain user at a certain time, it
turns out that this avoidance is crucial in order to satisfy our requirements.
Theorem 1. No mediator can satisfy F,S and Complete.

Proof sketch. We construct a game with two players, three users and three strategies, and show that
no mediator can satisfy F,S and Complete. Importantly, our technique can be used to show that any
arbitrary game does not possess a PNE or that a slight modification of this game does not possess a
PNE.

Consider the following satisfaction matrix:

[ u1 u2 u3

l1 0 y x
l2 x 0 y
l3 y x 0

]
,

where (x, y) ∈ (0, 1]2. Let L1 = L2 = {l1, l2, l3} (i.e., a symmetric two-player game). By using
the properties of F we characterize the structure of the induced normal form game. We show that
in this normal form game, a PNE only exists if P (M((l2, l3), u1) = 1) = 0.5 (and similarly to
the other users and strategy profiles, due to User-Independence). Since this holds for every x
and y, the mediator displays a random item for each user under any strategy profile. Recall that a
random selection does not satisfy Leader Monotonicity; hence, no mediator can satisfy F,S and
Complete.

Moreover, Theorem 1 is not sensitive to the sum of the display probabilities being equal to
1. One can show a similar argument for any mediator that displays items with constant prob-
abilities, i.e.,

∑N
j=1 P (M(X, ui) = j) = c for some 0 < c ≤ 1. Theorem 1 suggests that∑N

j=1 P (M(X, ui) = j) should be bounded to the user satisfaction levels. In the next section,
we show a novel way of doing so.

3 Our approach: the Shapley mediator

In order to provide a fair and stable mediator, we resort to cooperative game theory. Informally,
a cooperative game consists of two elements: a set of players [N ] and a characteristic function
v : 2[N ] → R, where v determines the value given to every coalition, i.e., every subset of players.
The analysis of cooperative games focuses on how the collective payoff of a coalition should be
distributed among its members.

One core solution concept in cooperative game theory is the Shapley value [36].
Definition 1 (Shapley value). Let (v, [N ]) be a cooperative game such that v(∅) = 0. According to
the Shapley value, the amount that player j gets is

1

N !

∑
R∈Π([N ])

(
v(PRj ∪ {j})− v(PRj )

)
, (1)

3Perhaps excluding profiles X where σi(X) = 0. We allowM to behave arbitrarily in this case.
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where Π([N ]) is the set of all permutations of [N ] and PRj is the set of players in [N ] which precede
player j in the permutation R.

One way to describe the Shapley value, is by imagining the process in which coalitions are formed:
when player j joins coalition C, she demands her contribution to the collective payoff of the coalition,
namely v(C∪{j})−v(C). Equation (1) is simply summing over all such possible demands, assuming
that all coalitions are equally likely to occur.

For our purposes, we fix a strategy profile X , and focus on an arbitrary user ui. How should a
mediator assign the probabilities of being displayed in a fair fashion? The induced cooperative game
contains the same set of players. For every C ⊆ [N ], let XC denote the strategy profile where all
players missing from C are removed. We define the characteristic function of the induced cooperative
game as

vi(C;X) = σi(XC),

where σi(XC) is the maximal satisfaction level a user ui may obtain from the items chosen by the
members of C. Indeed, this formulation represents a collaborative behavior of the players, when they
aim to maximize the satisfaction of ui. Observe that vi(·;X) : 2[N ] → R is a valid characteristic
function, hence (vi(·;X), [N ]) is a well defined cooperative game. Note that the selection of a
mediator fully determines the probability of the eventsM(X, ui) = j, and vice versa. The mediator
that sets the probability of the eventM(X, ui) = j according to the Shapley value of the induced
cooperative game (vi(·;X), [N ]) is hereinafter referred to as the Shapley mediator, or SM for
abbreviation.

3.1 Properties of the Shapley mediator

Since the Shapley value is employed in countless settings for fair allocation, it is not surprising that it
satisfies our fairness properties.
Proposition 1. SM satisfies F.

We now show that recommendation games with SM possess a PNE. This is done using the notion
of potential games [27]. A non-cooperative game is called an exact potential game if there exists a
function Φ :

∏
j Lj → R such that for any strategy profileX = (X1, . . . , XN ) ∈∏j Lj , any player

j and any strategy X ′j ∈ Lj , whenever player j switches from Xj to X ′j , the change in her payoff
function equals the change in Φ, i.e.,

Φ(Xj ,X−j)− Φ(X ′j ,X−j) = πj(Xj ,X−j)− πj(X ′j ,X−j).
This brings us to the main result of this section:
Theorem 2. Recommendation games with the Shapley mediator are exact potential games.

Thus, due to Monderer and Shapley [27], any recommendation game with the Shapley mediator
possesses at least one PNE, and the set of pure Nash equilibria corresponds to the set of argmax
points of the potential function; therefore, SM satisfies S.
Corollary 1. SM satisfies S.

In fact, Theorem 2 proves a much stronger claim than merely the existence of PNE. A better-response
dynamics is a sequential process, where in each iteration an arbitrary player unilaterally deviates to a
strategy which increases her payoff.
Corollary 2. In recommendation games with the Shapley mediator, any better-response dynamics
converges.

This convergence guarantee allows the players to learn which items to pick in order to maximize
their payoffs. Indeed, as has been observed by work on the topic of online recommendation and
advertising systems (e.g. sponsored search [9]), convergence to PNE is essential for system stability,
as otherwise inefficient fluctuations may occur.

4 Linear time implementation

In Section 3 we showed that the Shapley mediator, SM, satisfies F and S. Therefore, it fulfills our
requirements stated in Section 2. However, implementation in commercial products would require
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the mediator to be computationally tractable. The mediator interacts with users; hence a fast response
is of great importance. In general, since Equation (1) includes 2N summands, the computation of the
Shapley value in a cooperative game need not be tractable. Indeed, the computation often involves
marginal contribution nets [10, 18]. In the following theorem we derive a closed-form formula for
calculating the display probabilities under the Shapley mediator, which allows it to compute the
display probabilities in linear time.

Theorem 3. LetX be a strategy profile, and let σmi (X) denote the m’th entry in the result of sorting
(σi(X1), . . . , σi(XN )) in ascending order, preserving duplicate elements. The Shapley mediator
displays player j’s item to a user ui with probability

P (SM(X, ui) = j) =

ρji (X)∑
m=1

σmi (X)− σm−1
i (X)

N −m+ 1
, (2)

where σ0
i (X) = 0, and ρji (X) is an index such that σi(Xj) = σ

ρji (X)
i (X).

The Shapley mediator is implemented in Algorithm 1. As an input, it receives a strategy profile and
a user, or equivalently user satisfaction levels from that strategy profile. It outputs a player’s item
with a probability equal to her Shapley value in the cooperative game defined above. Note that the
run-time of Algorithm 1 is linear in the number of players, i.e., O(N). A direct result from Theorem
3 and User-Independence (see Section 2) is that player payoffs can be calculated efficiently.

Corollary 3. In recommendation games with the Shapley mediator, the payoff of player j under the

strategy profileX is given by πj(X) =
∑n
i=1

∑ρji (X)
m=1

σmi (X)−σm−1
i (X)

N−m+1 .

To facilitate understanding of the Shapley mediator and its fast computation, we reconsider Example
1 above.
Example 2. Consider the game given in Example 1. According to the Shapley mediator, the display
probabilities of player 1 under the strategy profileX = (l2, l3) are

P(SM (X, u1) = 1) =
σ1

1 (X)− σ0
1 (X)

2
=

0.8− 0

2
= 0.4,

P(SM (X, u2) = 1) =
σ1

2 (X)− σ0
2 (X)

2
=

0.7− 0

2
= 0.35,

P(SM (X, u3) = 1) =
σ1

3 (X)− σ0
3 (X)

2
+
σ2

3 (X)− σ1
3 (X)

1
=

0.1− 0

2
+

0.9− 0.1

1
= 0.85.

It follows that π1(l2, l3) = 8
5 while π1(l1, l3) = 7

10 , and the profile to be materialized is (l2, l3).
Indeed, it can be verified that this is the unique PNE of the corresponding game. Moreover, while the
unique PNE under TOP (see Example 1 in Section 2) results in a user utility of 2, the unique PNE
under the Shapley mediator results in user utility of

3∑
i=1

(σi(l2)P(SM ((l2, l3), ui) = 1)) + (σi(l3)P(SM ((l2, l3), ui) = 2)) = 2.145 > 2.

Hence, the users benefit from the Shapley mediator is greater than from the TOP mediator. This is in
addition to the main property of the Shapley mediator, probabilistic selection according to the central
measure of fair allocation.

5 Uniqueness of the Shapley mediator

As analyzed in Subsection 2.1, Theorem 1 suggests that a mediator cannot satisfy both F and S if
it sets the probabilities such that

∑N
j=1 P (M(X, ui) = j) is constant. One way of determining∑N

j=1 P (M(X, ui) = j) is defined as follows.

Efficiency. The probability of displaying an item to ui is the maximal satisfaction level ui may
obtain from the items chosen inX . Formally,

∑N
j=1 P (M(X, ui) = j) = σi(X).

7



Algorithm 1: Shapley Mediator
Input: A strategy profileX = (X1, . . . , XN ) and a user ui
Output: An element from {∅, X1, . . . , XN}

1 Pick Y uniformly at random from (0, 1)
2 if Y > maxj∈[N ] σi(Xj) then
3 return ∅
4 else
5 Return an element uniformly at random from {Xj | j ∈ [N ], σi(Xj) ≥ Y }

Efficiency (for brevity, EF) binds player payoffs with the maximum satisfaction level of ui from the
items chosen by the players under X . It is well known [15, 36] that the Shapley value is uniquely
characterized by properties equivalent to F and EF, when stated in terms of cooperative games. It is
therefore obvious that the Shapley mediator satisfies EF. 4 Thus, one would expect that the Shapley
mediator will be the only mediator that satisfies F and EF. This is, however, not the case: consider a
mediator that runs TOP w.p. σi(X) and NONE otherwise. Clearly, it satisfies F and EF. In fact,
given a mediatorM satisfying F and Complete, we can defineM′ such that

P (M′(X, ui) = j) = P (M(X, ui) = j) · σi(X), (3)

thereby obtaining a mediator satisfying F and EF. The question of uniqueness then arises: is S
derived by satisfying F and EF? Or even more broadly, are there mediators that satisfy F, S and EF
besides the Shapley mediator? Had the answer been yes, this recipe for generating new mediators
would have allowed us to seek potentially better mediators, e.g., one satisfying F,S and EF while
maximizing user utility. However, as we show next, the Shapley mediator is unique in satisfying F, S
and EF.
Theorem 4. The only mediator satisfying F,S and EF is the Shapley mediator.

6 Implications of strategic behavior

In this section we examine the implications of strategic behavior of the players on their payoffs and
user utility. Comprehensive treatment of the integration of multiple stakeholders into recommendation
calculations was discussed only recently [8], and appears to be challenging. As our work is concerned
with strategic content providers, it is natural to consider the Price of Anarchy [24, 35], a common
inefficiency measure in non-cooperative games.

6.1 Player payoffs

The Price of Anarchy, herein denoted PoA, measures the inefficiency in terms of social welfare, as a
result of selfish behavior of the players. Specifically, it is the ratio between an optimal dictatorial
scenario and the social welfare of the worst PNE. Formally, if EM ⊆

∏
j Lj is the set of PNE profiles

induced by a mediatorM, then PoAM =
maxX∈

∏
j Lj V (X)

minX∈EM V (X) ≥ 1. We use the subscriptM to stress
that the PoAM depends on the mediator, through the definition of social welfare function V and
player payoffs. Notice that the PoA of a mediator that does not satisfy S can be unbounded, as a PNE
may not exist. Quantifying the PoA can be technically challenging; thus we restrict our analysis to
PoASM, the PoA of the Shapley mediator.
Theorem 5. PoASM ≤ 2N−1

N , and this bound is tight.

Hence, under the Shapley mediator the social welfare of the players can decrease by at most a factor
of 2, when compared to an optimal solution.

6.2 User utility

We now examine the implications of using the Shapley mediator on the users. For that, we shall
assume that the utility of a user from an item is his satisfaction level from that item. Namely, when

4 See the proof of Proposition 1 in the appendix. Leader Monotonicity, as opposed to the other fairness
properties, is not one of Shapley’s axioms but rather a byproduct of Shapley’s characterization.
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item l is displayed to ui, his utility is σi(l). As a result, the expected utility of the users under the
strategy profileX and a mediatorM is defined by

UM(X) =

n∑
i=1

N∑
j=1

P (M(X, ui) = j)σi(Xj) +

n∑
i=1

P (M(X, ui) = ∅)σi(∅).

Note that the first term results from the displayed items, and the second term from the plain content of
the app (displaying no item at all). To quantify the inefficiency of user utility due to selfish behavior
of the players underM, we define the User Price of Anarchy,

UPoAM =
maxM′,X∈ΠNj=1Lj UM

′(X)

minX∈EM UM(X)
.

The UPoA serves as our benchmark for inefficiency of user utility. The nominator is the best possible
case: the user utility under any mediatorM′ and any strategy profile X . The denominator is the
worst user utility underM, where EM is again the set of PNE profiles induced byM. Note that the
nominator is independent ofM. We first treat users as having zero satisfaction when only the plain
content is displayed, i.e., σi(∅) = 0, and consider the complementary case afterwards. The following
is a negative result for the Shapley mediator.
Proposition 2. The User PoA of the Shapley mediator, UPoASM, is unbounded.

Proposition 2 questions the applicability of the Shapley mediator. An unavoidable consequence of
its use is a potentially destructive effect on user utility. While content-provider fairness is essential,
users are the driving force of the RS. Therefore, one may advocate for other mediators that perform
better with respect to user utility, albeit not necessarily satisfying S. If S is discarded and a mediator
satisfying Complete adopted, would this result in better user utility? Unfortunately, other mediators
may lead to a similar decrease in user utility due to strategic behavior of the players, so there appears
to be no better solution in this regard.
Proposition 3. The User PoA of TOP, UPoATOP, is unbounded.

Using similar arguments, one can show that UPoABTL is unbounded as well.

In many situations, it is reasonable to assume that when no item is displayed to a user, his utility is
1. Namely, σi(∅) = 1 for every user ui. Indeed, this seems aligned with the ads-in-apps model: the
user is interrupted when an advertisement is displayed. We refer to this scenario as the optimal plain
content case. From here on, we adopt this perspective for upper-bounding the UPoA. Observe that
user utility is therefore maximized when no item is displayed whatsoever. Nevertheless, displaying
no item will also result in zero payoff for the players. Here too, UPoATOP is unbounded, while
UPoANONE = 1. The following lemma bounds the User PoA of the Shapley mediator.
Lemma 1. In the optimal plain content case, it holds that UPoASM ≤ 4.

In fact, numerical calculations show that UPoASM is bounded by 1.76, see the appendix for further
discussion.

7 Discussion

Our results are readily extendable in the following important direction (which is even further elabo-
rated in the appendix). In many online scenarios, content providers typically customize the items they
offer to accommodate specific individuals. Indeed, personalization is applied in a variety of fields in
order to improve user satisfaction. Specifically, consider the case where each player may promote a
set of items, where different items may be targeted towards different users, and the size of this set is
determined exogenously (e.g., by her budget). In this case, a player selects a set of items which she
then provides to the mediator. Here the Shapley mediator satisfies F and S; the game induced by the
Shapley mediator is still a potential game, and the computation of the Shapley mediator still takes
linear time.
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A Omitted proofs

A.1 Proof of Theorem 1

Proof. We first construct a game with two players, three users and three strategies, and show that no
mediator can satisfy F,S and Complete. Afterwards, we explain how our technique can be used to
show that for any arbitrary game there exists a slight modification of this game that does not possess
a PNE.

Consider the following satisfaction matrix:

[ u1 u2 u3

l1 0 y x
l2 x 0 y
l3 y x 0

]
,

where (x, y) ∈ (0, 1]2. Let L1 = L2 = {l1, l2, l3} (i.e., a symmetric two-player game). This
recommendation game induces a normal form game. SinceM satisfies User-Independence, it sets
the display probability as a function of the satisfaction levels only (i.e., regardless of the identity of
the user). Therefore, to facilitate writing the proof, we denote

M1(σi(l1), σi(l2)) , P (M((l1, l2), ui) = 1) .

Namely,M1(σi(l1), σi(l2)) is the probability that player 1’s item will be displayed to ui under the
strategy profile (l1, l2). SinceM satisfies Complete and Symmetry,

M1(σi(l1), σi(l2)) = 1−M2(σi(l1), σi(l2)) =M2(σi(l2), σi(l1)).

SinceM satisfies both Complete and Null Player, one has to define what happens if the satisfaction
vector is the zero vector (see Footnote 3). DenoteM1(0, 0) = α, and due to SymmetryM2(0, 0) =
α also (notice that α ≤ 0.5). The following matrix describes the payoff of player 1 under any possible
strategy profile:


l1 l2 l3

l1 α+M1(x, x) +M1(y, y) M1(0, x) +M1(y, 0) +M1(x, y) M1(0, y) +M1(y, x) +M1(x, 0)
l2 M1(x, 0) +M1(0, y) +M1(y, x) α+M1(x, x) +M1(y, y) M1(x, y) +M1(0, x) +M1(y, 0)
l3 M1(y, 0) +M1(x, y) +M1(0, x) M1(y, x) +M1(x, 0) +M1(0, y) α+M1(x, x) +M1(y, y)

,
Denote β =M1(0, x) +M1(y, 0) +M1(x, y). Due to Symmetry, the game is described by the
following bi-matrix:

[ l1 l2 l3

l1 1 + α, 1 + α β, 3− β 3− β, β
l2 3− β, β 1 + α, 1 + α β, 3− β
l3 β, 3− β 3− β, β 1 + α, 1 + α

]
.

Clearly, since α ≤ 0.5, this game possesses a PNE only if β = 1.5. Otherwise, under any strategy
profile there exists a player with a beneficial deviation. Hence,

β =M1(0, x) +M1(y, 0) +M1(x, y) = 1.5.

Due to Null Player, we haveM1(0, x) = 0,M1(y, 0) = 1; thereforeM1(x, y) = 0.5 for every
(x, y) ∈ (0, 1]2, and Leader Monotonicity does not hold. This sums up the proof for the given
two-player game.

Next, consider any arbitrary game. If the game does not contain a PNE, then we are done. Otherwise,
letX = (X1, . . . Xn) be a PNE. By adding three additional users and copying each strategy inX
and extending it to the three new users, we can reproduce the behavior in the two-player game above.
By doing so to every equilibrium profile, we are guaranteed that an equilibrium cannot exist.

A.2 Proof of Proposition 1

Proof. Denote the Shapley value of player j in a cooperative game (v, [N ]) by

φj(v) =
1

N !

∑
R∈Π([N ])

(
v(PRj ∪ {j})− v(PRj )

)
. (4)

It is well known (see, e.g., [15, 36]) that the Shapley value satisfies the following properties:
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C1. Null Player: If v(C ∪ {j}) = v(C) for every coalition C ⊆ [N ], then φj(v) = 0.

C2. Symmetry: If v(C ∪ {j}) = v(C ∪ {m}) for every coalition C ⊆ [N ] \ {j,m}, then
φj(v) = φm(v).

C3. Linearity: If (v, [N ]) and (w, [N ]) are two cooperative games and λ is a real number, it
holds that

φj(v + λw) = φj(v) + λφj(w).

C4. Efficiency:
∑
j∈[N ] φj(v) = v([N ]).

Note that properties C1–C4 are akin to F and EF defined in Sections 2 and 5 respectively. However,
C1–C4 are properties of the Shapley value in cooperative game (v, [N ]), while F,EF refer to
recommendation games. Hence, we ought to show that the Shapley mediator, defined as the Shapley
value in the cooperative game vi(·;X), satisfies F and EF. Denote by φj (vi(·;X)) the Shapley
value of player j in (vi(·;X), [N ]), where vi(C;X) = σi(XC). Recall that by definition of the
Shapley mediator,

φj (vi(·;X)) = P (SM(X, ui) = j) . (5)

Null Player. If σi(Xj) = 0,

vi(C ∪ {j};X) = max
j′∈C∪{j}

σi(Xj′) = max
j′∈C

σi(Xj′) = vi(C;X).

Therefore,
P (SM(X, ui) = j)

Eq (5)
= φj (vi(·;X))

C1
= 0.

Symmetry. If σi(Xj) = σi(Xm), for every C ⊆ [N ] \ {j,m} it holds that

vi(C ∪ {j};X) = max
j′∈C∪{j}

σi(Xj′) =

{
σi(Xj) σi(Xj) ≥ maxj′∈C σi(Xj′)

maxj′∈C σi(Xj′) otherwise

=

{
σi(Xm) σi(Xm) ≥ maxj′∈C σi(Xj′)

maxj′∈C σi(Xj′) otherwise

= max
j′∈C∪{m}

σi(Xj′) = vi(C ∪ {m};X). (6)

Therefore,

P (SM(X, ui) = j) = φj (vi(·;X))
C2
= φm (vi(·;X)) = P (SM(X, ui) = m) .

User-Independence. Notice that φj (vi(·;X)) is solely determined by (σi(X1, ) . . . , σi(XN )).
Therefore

P (M(X, ui) = j) = φj (vi(·;X)) = P (M(X, ui) = j | ui′ ∈ U) .

Leader Monotonicity. Let j ∈ arg maxj′∈[N ] σi(Xj′) and m /∈ arg maxj′∈[N ] σi(Xj′), and hence
σi(Xj) > σi(Xm). Given a permutation R over the elements of [N ], define R(j ↔ m) to be
the same permutation vector where j and m are swapped. Notice that if j precedes m in R, then
vi(P

R
j ) = vi

(
P
R(j↔m)
m

)
. Thus,

vi(P
R
j ∪ {j};X)− vi(PRj ;X) ≥ vi(PR(j↔m)

m ∪ {m};X)− vi
(
PR(j↔m)
m ;X

)
. (7)

Alternatively, if m precedes j in R (and therefore j precedes m in R(j ↔ m)) we have

vi(P
R(j↔m)
m ∪ {m};X) = vi

(
PR(j↔m)
m ;X

)
,

vi(P
R
j ∪ {j};X)− vi(PRj ;X) ≥ vi(PR(j↔m)

m ∪ {m};X)− vi
(
PR(j↔m)
m ;X

)
= 0. (8)

In addition, for R∗ in which j appears in the first entry, it holds that

σi(Xj) = vi(P
R∗

j ∪ {j};X)− vi(PR
∗

j ;X) > vi(P
R∗(j↔m)
m ∪ {m};X)− vi

(
PR

∗(j↔m)
m ;X

)
= σi(Xm). (9)
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Finally, due to Equations (7),(8) and (9), by summing over all permutations and dividing by 1
N ! we

get

φj(vi(·;X))
Def.
=

1

N !

∑
R∈Π([N ])

(
vi(P

R
j ∪ {j};X))− vi(PRj ;X))

)
>

1

N !

∑
R(j↔m)∈Π([N ])

(
vi(P

R(j↔m)
j ∪ {j};X))− vi(PR(j↔m)

j ;X))
)

=
1

N !

∑
R∈Π([N ])

(
vi(P

R
m ∪ {m};X))− vi(PRm ;X))

)
= φm(vi(·;X)), (10)

hence P (M(X, ui) = j) > P (M(X, ui) = m).

EF. We have∑
j∈[N ]

P (M(X, ui) = j) =
∑
j∈[N ]

φj (vi(·;X))
C4
= vi([N ];X)

Def.
= σi(X).

This concludes the proof of the proposition.

A.3 Proof of Theorem 2

Proof. We prove Theorem 2 by showing that recommendation games with the Shapley mediator
(denoted RGSM for brevity) belong to the class of congestion games [34]. Due to [27], this implies
that RGSM are potential games. A congestion game is a non-cooperative game, defined by players
and resources, where the payoff of each player depends solely on the resources she chooses and on
the number of players that chose each of the corresponding resources. Formally, a congestion game
is a tuple

(
[N ],R, (Sj)j∈[N ], (wr)r∈R

)
where:

• [N ] is the set of players.

• R is the set of resources.

• Sj denotes the set of possible strategies of player j, where any sj ∈ Sj is a subset of all
resources.

• The number of players who select resource r under the strategy profile s = (s1, . . . sN ) is
given by kr(s) = |{j : r ∈ sj}|.

• wr is a utility function, wr : N→ R+, such that wr(k) is given to any player whose strategy
contains resource r, in case exactly k players chose r.

• The payoff of player j under the strategy profile s is given by
∑
r∈sj wr(kr(s)).

Given an RGSM game instance, we construct a corresponding congestion game, and show that the
payoffs of the players under any strategy profile is exactly the same in both games. Importantly, the
complexity of the below reduction is irrelevant, and the reduction is presented only to assure the
existence of a PNE in our analyzed class of games.

Denote
E = {σi(l) : i ∈ [n], l ∈ L} ∪ {0, 1},

and observe that B , |E| − 1 ≤ n |L| − 1 <∞. Let ε0, ε1, . . . εB be the ordered elements of E in
ascending order. Next, we aim to represent a strategy profile as a selection of corresponding resources
by the players. DenoteR = {rim : m = 1 . . . B, i = 1 . . . n}, where for each user ui resource rim is
associated with the interval [εm−1, εm]. The strategy of selecting item l ∈ L is modeled as selecting
all resources associated with intervals that are subsets of [0, σi(l)], namely

A(l) =
{
rim : σi(l) ≥ εm,m ∈ [B], i ∈ [n]

}
.
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Thus, there is an induced one-to-one function from the set of items to the power set of resources,
A : L → 2R. Mapping between items and resources, we define the set of possible strategies of player
j:

Sj = {A(l) : l ∈ Lj} .
The load of each resource (the number of players that select this resource) under the strategy profile
X = (X1, . . . , XN ) is:

kim(A(X)) =
∣∣{j : rim ∈ A(Xj)}

∣∣ ,
where A(X) = (A(X1), . . . ,A(XN )). The utility of selecting resource rim depends only on the
number of players who select it, and is defined as follows:

wim(x) =



0 if x = 0

. . . . . .
εm−εm−1

k if x = k

. . . . . .
εm−εm−1

N if x = N

.

Thus the congestion game
(
[N ],R, (Sj)j∈[N ], (wr)r∈R

)
is properly defined. The remaining ingredi-

ent of the reduction is:

Lemma 2. The sum of utilities of each player j in the congestion game under the strategy profile
A(X) is exactly her payoff in the RGSM under the strategy profileX:

πj(X) =
∑
i,m:

rim∈A(Xj)

wim
(
kim(A(X))

)
.

Proof. Fix a user ui. Recall that σmi (X) is the m’th satisfaction level ui obtains from the items inX
(in ascending order, σ0

i (X) = 0), and ρji (X) is the number of items offered to ui with a satisfaction
level less or equal to σi(Xj).

Under the strategy profileX , define εα1 , . . . , εαN to be the elements in E such that εαm = σmi (X).
Observe that for any m ∈ [N ] the number of players that selected resources associated with intervals
contained in [εαm−1

, εαm ] isN−m+1. In addition, let α(m) be the index such that εα(m) = σmi (X).

The strategy Xj of player j is mapped to the set of resources A(Xj). Therefore,

B∑
m=1

wim
(
kim(A(X))

)
1rim∈A(Xj) =

α(j)∑
m=1

wim
(
kim(A(X))

)
=

α(j)∑
m=1

εm − εm−1

kim(A(X))
=

ρji (X)∑
m=1

εαm − εαm−1

N −m+ 1

=

ρji (X)∑
m=1

σmi (X)− σm−1
i (X)

N −m+ 1
= P (SM(X, ui) = j) .

By summing over all users we get

n∑
i=1

B∑
m=1

wim
(
kim(A(X))

)
1rim∈A(Xj)

=

n∑
i=1

P (SM(X, ui) = j) = πj(X).

This concludes the proof of Lemma 2.

Ultimately, since RGSM belong to the class of congestion games, they possess a potential function,
and every better response dynamic converges [27]. This concludes the proof of Theorem 2.
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In fact, using standard arguments, we can show that

Φ(X) =
∑
rim∈R

kim(A(X))∑
j=1

wim(j)

is the potential function of RGSM.

A.4 Proof of Theorem 3

Proof. Denote σji = σi(Xj), and w.l.o.g. let σ1
i ≤ σ2

i ≤ · · · ≤ σNi . As defined earlier, the collective
payoff of coalition C is the maximum satisfaction level of ui from an item offered by a player in C
(the player with the highest index), namely

vi(C;x) = σi(XC) = max
j∈C

σji = σmax C
i .

For any permutation R such that maxPRj > j it follows that vi(PRj ∪ {j};X) = vi(P
R
j ;X). Put

differently, if in a permutation R there is a player with index greater than j that precedes player j,
then player j’s contribution to the collective payoff of the coalition PRj ∪ {j} is zero. Thus, we ought
to look only at permutations where maxPRj < j, and ignore the rest. Denote bj as the number of all
such permutations. We have:

bj =

j−1∑
m=0

m!(N −m− 1)!

(
j − 1

m

)
.

The latter holds since in every preceding set PRj (prefix of R) with
∣∣PRj ∣∣ = m, j is located in the

(m+ 1)-th entry in R. Thus we have
(
j−1
m

)
indices to choose from (less than j), m! ways to order

them, and another (N −m− 1)! ways to order the suffix (the remaining N −m− 1 elements).

For r < j, we denote by ar the number of permutations where maxPRj = r. Hence:

ar =

r−1∑
m=0

(m+ 1)!(N −m− 2)!

(
r − 1

m

)
.

Again, we turn to counting arguments: for every prefix PRj of size m+ 1, if m+ 1 > r then there
must be an index greater than r; therefore m ≤ r − 1. Besides r, there are m indices in PRj ,

(
r−1
m

)
ways to choose these indices, (m+ 1)! ways to order the prefix, and (N −m− 2)! ways to order the
suffix.

Lemma 3. It holds that br = N !
N−r+1 , ar = br+1 − br.

The proof of Lemma 3 appears after this proof. Next, the Shapley value of player j in the cooperative
game (vi(·;X), [N ]) is:

φj(σi) ,
1

N !

∑
R∈Π([N ])

(
vi(P

R
j ∪ {j};X)− vi(PRj ;X)

)
=

1

N !

∑
R∈Π([N ])

(
σi(XPRj ∪{j})− σi(XPRj

)
)
.

Since we care only about permutations where the maximum index of a player in the preceding set of
player j is less than j, we have

φj(σi) =
1

N !

∑
R∈Π([N ])

1maxPRj <j

(
σji − σ

maxPRj
i

)
.

Now, using the counting arguments presented above, we derive the following:

φj(σi) =
1

N !

(
bjσ

j
i −

j−1∑
r=1

arσ
r
i

)
.
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Applying the concise form of ar from Lemma 3 we get:

φj(σi) =
1

N !

( j∑
r=1

brσ
r
i −

j−1∑
r=1

br+1σ
r
i

)
=

1

N !

( j∑
r=1

br ·
(
σri − σr−1

i

))
Ultimately, by using the concise form of b from Lemma 3 we have:

φj(σi) =

j∑
r=1

σri − σr−1
i

N − r + 1
.

A.5 Proof of Lemma 3

Proof. First we show that br = N !
N−r+1 :

bj =

j−1∑
m=0

(
j − 1

m

)
m!(N −m− 1)!

=

j−1∑
m=0

[
(N − j)!
(N − j)!

(j − 1)!

m!(j −m− 1)!
m!(N −m− 1)!

]

= (N − j)!(j − 1)!

j−1∑
m=0

[
(N −m− 1)!

(N − j)!(j −m− 1)!

]

= (N − j)!(j − 1)!

j−1∑
m=0

(
N −m− 1

N − j

)
m′=N−m−1

= (N − j)!(j − 1)!

N−j∑
m′=N−1

(
m′

N − j

)
r=N−j

= (N − j)!(j − 1)!

N−1∑
m′=r

(
m′

r

)
.

(11)

By Chu Shih-Chieh’s Identity (see e.g. [12]) it holds that

k∑
i=r

(
i

r

)
=

(
k + 1

r + 1

)
. (12)

Applying Equation (12) to Equation (11) with r = N − j, k = N − 1 we get:

bj = (N − j)!(j − 1)!

(
N

N − j + 1

)
= (N − j)!(j − 1)!

N !

(N − j + 1)!(j − 1)!

=
N !

N − j + 1
.

17



In addition, ar = br+1 − br since:

br+1 − br =

r∑
m=0

(
r

m

)
m!(N −m− 1)!

−
r−1∑
m=0

(
r − 1

m

)
m!(N −m− 1)!

=

r∑
m=0

m!(N −m− 1)!

[(
r

m

)
−
(
r − 1

m

)]

=

r∑
m=1

m!(N −m− 1)!

[(
r

m

)
−
(
r − 1

m

)]
Using Pascal’s rule (

r

m

)
=

(
r − 1

m− 1

)
+

(
r − 1

m

)
,

we get

br+1 − br =

r∑
m=1

m!(N −m− 1)!

(
r − 1

m− 1

)

=

r∑
m=0

(m+ 1)!(N −m− 2)!

(
r − 1

m

)
= ar.

A.6 Proof of Theorem 4

The proof of Theorem 4 relies on several supporting lemmas.

Due to User-Independence,M sets the display probabilities according to the satisfaction vector
only. Thus, it is enough to show thatM satisfying F,S must distribute the display probabilities
exactly as the Shapley mediator does for any satisfaction vector σ. Since we do not have a specific
user in mind, we denote byMi(σ) the probability thatM will display an arbitrary user the item of
player i under the satisfaction vector σ. Namely, if the strategy profileX induces a satisfaction vector
σ for user uj we denoteMi(σ) = P (M(X, uj) = i). Let σ =

(
σ1, σ2, . . . , σN

)
, and w.l.o.g. let

σ1 ≤ σ2 ≤ · · · ≤ σN . Let σ−i denote the vector σ with the i-th component deleted.
Observation 1. If σ contains one non-zero entry i, thenMi(σ) = SMi(σ) for every player i.

This observation follows immediately from Null Player and EF. Next, we show that in a two player
game, each player gets her Shapley value.
Lemma 4. Let N = 2. For every (σ1, σ2) ∈ R2 and every i ∈ {1, 2}, it holds thatMi(σ

1, σ2) =
SMi(σ

1, σ2).

Proof. Assume by contradiction that M(σ1, σ2) 6= SM(σ1, σ2). First, we analyze the case
M(σ1, σ2) = (σ

1

2 + ε, σ2 − σ1

2 − ε) for some ε > 0. Consider the following satisfaction ma-
trix: 

u1 u2 u3

x1 σ1 0 0
y1 0 0 σ1 + ε

2
x2 σ2 0 0

y2 0 σ2 − σ1

2 − ε
2 0

,
with L1 = {x1, y1} and L2 = {x2, y2}. This satisfaction matrix induces the following bimatrix
game [ x2 y2

x1
σ1

2 + ε, σ2 − σ1

2 − ε σ1, σ2 − σ1

2 − ε
2

y1 σ1 + ε
2 , σ

2 σ1 + ε
2 , σ

2 − σ1

2 − ε
2

]
,
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since

• (π1(x1, x2), π2(x1, x2)) =
(
M1(σ1, σ2),M2(σ1, σ2)

)
=

(
σ1

2
+ ε, σ2 − σ1

2
− ε
)
.

• (π1(x1, y2), π2(x1, y2)) =

(
M1(σ1, 0),M2

(
0, σ2 − σ1

2
− ε

2

))
=

(
σ1, σ2 − σ1

2
− ε

2

)
.

• (π1(y1, y2), π2(y1, y2)) =

(
M1

(
σ1 +

ε

2
, 0
)
,M2

(
0, σ2 − σ1

2
− ε

2

))
=

(
σ1 +

ε

2
, σ2 − σ1

2
− ε

2

)
.

• (π1(y1, x2), π2(y1, x2)) =
(
M1

(
σ1 +

ε

2
, 0
)
,M2

(
0, σ2

))
=
(
σ1 +

ε

2
, σ2
)
.

This 2×2 normal-form game contains a cycle of beneficial deviations, which implies the non-existence
of PNE; hence, we obtain a contradiction.

On the other hand, letM(σ1, σ2) = (σ
1

2 − ε, σ2 − σ1

2 + ε) for some ε > 0. Consider the following
satisfaction matrix: 

u1 u2 u3

x1 σ1 0 0
y1 0 σ1 − ε 0
x2 σ2 σ1 − ε 0

y2 0 0 σ2 + σ1

2 − ε
4


where again L1 = {x1, y1} and L2 = {x2, y2}. This satisfaction matrix induces the following 2× 2
normal-form game:

[ x2 y2

x1
σ1

2 − ε, σ2 + σ1

2 σ1, σ2 + σ1

2 − ε
4

y1
σ1

2 − ε
2 , σ

2 + σ1

2 − ε
2 σ1 − ε, σ2 + σ1

2 − ε
4

]
,

since

• (π1(x1, x2), π2(x1, x2)) =
(
M1(σ1, σ2),M2(σ1, σ2) +M2(σ1 − ε, 0)

)
=

(
σ1

2
− ε, σ2 − σ1

2
+ ε+ σ1 − ε

)
=

(
σ1

2
− ε, σ2 +

σ1

2

)
.

• (π1(y1, x2), π2(y1, x2)) =
(
M1(σ1 − ε, σ1 − ε),M2(0, σ2) +M2(σ1 − ε, σ1 − ε)

)
=

(
σ1

2
− ε

2
, σ2 +

σ1

2
− ε

2

)
.

• (π1(y1, y2), π2(y1, y2)) =

(
M1(σ1 − ε, 0),M2

(
0, σ2 +

σ1

2
− ε

4

))
=

(
σ1 − ε, σ2 +

σ1

2
− ε

4

)
.

• (π1(x1, y2), π2(x1, y2)) =

(
M1(σ1, 0),M2

(
0, σ2 +

σ1

2
− ε

4

))
=

(
σ1, σ2 +

σ1

2
− ε

4

)
.

Again we obtained a contradiction to satisfying S. Overall,M must produce the same distribution as
SM for N = 2.

Since any mediator behaves like the Shapley mediator when N = 2, due to Null Player it also holds
for N ≥ 2 for satisfaction vector σ with only two non-zero entries.

Lemma 5. Let 0 ≤ σ1′ ≤ σ1 ≤ σ2 ≤ · · · ≤ σN . It holds thatM1(σ−1, σ1′) + σ1−σ1′

N =M1(σ).

Proof. The assertion holds for σ′1 = σ1. Otherwise, we prove the assertion by induction, where
Lemma 4 serves as the base case. Assume the claim holds for N − 1, and does not hold for N .
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Case 1:M1(σ)−M1(σ−1, σ1′)− σ1−σ1′

N > ε > 0. Due to EF,
N∑
i=1

(
Mi(σ

−1, σ1′)−Mi(σ)
)

= 0

⇒
N∑
i=2

(
Mi(σ

−1, σ1′)−Mi(σ)
)

=M1(σ)−M1(σ−1, σ1′) >
σ1 − σ1′

N

⇒ max
i

(
Mi(σ

−1, σ1′)−Mi(σ)
)
>

σ1 − σ1′

N(N − 1)
. (13)

Denote by i a player such that

Mi(σ
−1, σ1′)−Mi(σ) >

σ1 − σ1′

N(N − 1)
. (14)

Consider the following satisfaction matrix


u1 u2 u3 u4

x1 σ1′ σ1 − σ1′ ε 0
y1 σ1 0 0 0
xi σi σ1 − σ1′ 0 0

yi 0 0 0 Mi(σ
−1, σ1′) + σ1−σ1′

N − ε
xj σj σ1 − σ1′ 0 0

,
where L1 = {x1, y1}, Li = {xi, yi} and Lj = {xj} for every player j such that j /∈ {1, i}. Note
that all players but 1 and i are non-strategic, or alternatively every strategy they select has the same
satisfaction level w.r.t. users {u1, u2, u3, u4}. We have the following cycle:

• (π1(x1, xi), πi(x1, xi)) =
(
M1(σ−1, σ1′) + σ1−σ1′

N + ε,Mi(σ
−1, σ1′) + σ1−σ1′

N

)
.

• (π1(y1, xi), πi(y1, xi)) = (M1(σ),Mi(σ) + σ1−σ1′

N−1 ). Due to Equation (14), we have

Mi(σ
−1, σ1′)+

σ1 − σ1′

N
−Mi(σ)−σ

1 − σ1′

N − 1
>
σ1 − σ1′

N
−σ

1 − σ1′

N − 1
+
σ1 − σ1′

N(N − 1)
= 0.

• (π1(y1, yi), πi(y1, yi)) =
(
M1(σ−i, 0),Mi(σ

−1, σ1′) + σ1−σ1′

N − ε
)

. According to the
inductive step,

M1(σ−i, 0) =M1(σ−{1,i}, σ1′, 0) +
σ1 − σ1′

N − 1
.

• (π1(x1, yi), πi(x1, yi)) =
(
M1(σ−{1,i}, σ1′, 0) + σ1−σ1′

N−1 + ε,Mi(σ
−1, σ1′) + σ1−σ1′

N − ε
)

.

• (π1(x1, xi), πi(x1, xi)) =
(
M1(σ−1, σ1′) + σ1−σ1′

N + ε,Mi(σ
−1, σ1′) + σ1−σ1′

N

)
.

The reader can verify that in each step above the deviating player (e.g. player 1 from the first bullet to
the second, and player i from the second to the third) indeed makes a beneficial deviation. Hence we
have a cycle, and a PNE does not exist, which is a contradiction to satisfying S.

Case 2:M1(σ−1, σ1′) + σ1−σ1′

N −M1(σ) > ε > 0. Similarly to the previous case,
N∑
i=1

(
Mi(σ

−1, σ1′)−Mi(σ)
)

= 0

⇒
N∑
i=2

(
Mi(σ

−1, σ1′)−Mi(σ)
)

=M1(σ)−M1(σ−1, σ1′) <
σ1 − σ1′

N

⇒ min
i

(
Mi(σ

−1, σ1′)−Mi(σ)
)
<

σ1 − σ1′

N(N − 1)
. (15)
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Denote by i a player such that

Mi(σ
−1, σ1′)−Mi(σ) <

σ1 − σ1′

N(N − 1)
⇔Mi(σ)−Mi(σ

−1, σ1′) > − σ1 − σ1′

N(N − 1)
. (16)

Consider the following game:



u1 u2 u3 u4

x1 σ1 0 ε 0
y1 σ1′ σ1 − σ1′ 0 0
xi σi σ1 − σ1′ 0 0

yi 0 0 0 Mi(σ) + σ1−σ1′

N−1 − ε
xj σj σ1 − σ1′ 0 0

,
where L1 = {x1, y1}, Li = {xi, yi} and Lj = {xj} for every player j such that j /∈ {1, i}. Here
again all players but 1 and i are non-strategic, or alternatively every strategy they select has the same
satisfaction level w.r.t. users {u1, u2, u3, u4}. We have the following cycle:

• (π1(x1, xi), πi(x1, xi)) =
(
M1(σ) + ε,Mi(σ) + σ1−σ1′

N−1

)
.

• (π1(y1, xi), πi(y1, xi)) =
(
M1(σ−1, σ1′) + σ1−σ1′

N ,Mi(σ
−1, σ1′) + σ1−σ1′

N

)
. Due to

Equation (16)

Mi(σ) +
σ1 − σ1′

N − 1
−Mi(σ

−1, σ1′)− σ1 − σ1′

N
> 0.

• (π1(y1, yi), πi(y1, yi)) =
(
M1(σ−{1,i}, σ1′, 0) + σ1−σ1′

N−1 ,Mi(σ) + σ1−σ1′

N−1 − ε
)

. Ac-
cording to the inductive step,

M1(σ{−1,i}, σ1′, 0) +
σ1′ − σ1

N − 1
=M1(σ−i, 0).

• (π1(x1, yi), πi(x1, yi)) =
(
M1(σ−i, 0) + ε,Mi(σ) + σ1−σ1′

N−1 − ε
)

.

• (π1(x1, xi), πi(x1, xi)) =
(
M1(σ) + ε,Mi(σ) + σ1−σ1′

N−1

)
.

Hence we have a cycle, which is a contradiction to satisfying S. This concludes the proof of this
lemma.

Corollary 4. For any σ,M1(σ) = SM1(σ) = σ1

N .

Corollary 4 follows by invoking Lemma 5 with σ1′ = 0 and relying on Null Player.

Lemma 6. Let 0 ≤ σ1′ ≤ σ1 ≤ · · · ≤ σ′k ≤ σk ≤ . . . σN ′ ≤ σN ≤ 1. IfM satisfies F,S and EF,
it holds for every player index k that

Mk(σ−k, σk′) +
σk − σk′
N − k + 1

=Mk(σ).

Proof. We prove the claim by induction over k and N , player index and number of players respec-
tively.

Base cases:

1. The assertion holds for k ∈ {1, 2} and N = 2 due to Lemma 4.

2. The assertion holds for k = 1 and N ≥ 1 Due to Corollary 4.
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Assume the assertion holds for (j,N) and (j,N − 1), for every j < k. Next, we show it holds for
(k,N), for k < N , while dealing with k = N afterwards.

Case 1: Assume by contradiction thatMk(σ−k, σk′) + σk−σk′
N−k+1 <Mk(σ). EF suggests that the

sum of probabilities remains σN , and due to the inductive step we haveMj(σ
−k, σk′) =Mj(σ)

for j < k. Hence

N∑
i=1

(
Mi(σ

−k, σk′)−Mi(σ)
)

= 0

⇒
N∑

i=k+1

(
Mi(σ

−k, σk′)−Mi(σ)
)

=Mk(σ)−Mk(σ−k, σk′) >
σk − σk′
N − k + 1

⇒ max
i

(
Mi(σ

−k, σk′)−Mi(σ)
)
>

σk − σk′
(N − k)(N − k + 1)

. (17)

Denote by i a player such that

Mi(σ
−k, σk′)−Mi(σ) >

σk − σk′
(N − k)(N − k + 1)

, (18)

and let ε = min{εk, εi} for εk, εi that satisfy

Mk(σ)−Mk(σ−k, σk′)− σk − σk′
N − k + 1

> εk > 0,

Mi(σ
−k, σk′)−Mi(σ)− σk − σk′

(N − k)(N − k + 1)
> εi > 0.

Consider the following game



u1 u2 u3 u4

xk σk′ σk − σk′ ε 0
yk σk 0 0 0
xi σi σk − σk′ 0 0

yi 0 0 0 Mi(σ
−k, σk′) + σk−σk′

N−k+1 − ε
xr σr 0 0 0
xm σm σk − σk′ 0 0

,

where Lk = {xk, yk}, Li = {xi, yi}, Lr = {xr} for 1 ≤ r < k and Lm = {xm} for k < m ≤ N .
Note that all players but k and i are non-strategic, or alternatively every strategy they select has the
same satisfaction level w.r.t. users {u1, u2, u3, u4}. We have the following cycle:

• (πk(xk, xi), πi(xk, xi)) =
(
Mk(σ−k, σk′) + σk−σk′

N−k+1 + ε,Mi(σ
−k, σk′) + σk−σk′

N−k+1

)
.

• (πk(yk, xi), πi(yk, xi)) =
(
Mk(σ),Mi(σ) + σk−σk′

N−k

)
. Due to Equation (18), we have

Mi(σ
−k, σk′) +

σk − σk′
N − k + 1

−Mi(σ)− σk − σk′
N − k

>
σk − σk′
N − k + 1

− σk − σk′
N − k +

σk − σk′
(N − k)(N − k + 1)

= 0.

• (πk(yk, yi), πi(yk, yi)) =
(
Mk(σ−i, 0),Mi(σ

−k, σk′) + σk−σk′
N−k+1 − ε

)
. According to the

inductive step,

Mk(σ−i, 0) =Mk(σ−{k,i}, σk′, 0) +
σk − σk′
N − k .

• (πk(xk, yi), πi(xk, yi)) =
(
Mk(σ−{k,i}, σk′, 0) + σk−σk′

N−k + ε,Mi(σ
−k, σk′) + σk−σk′

N − ε
)

.
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• (πk(xk, xi), πi(xk, xi)) =
(
Mk(σ−k, σk′) + σk−σk′

N−k+1 + ε,Mi(σ
−k, σk′) + σk−σk′

N−k+1

)
.

Hence we have a cycle, which is a contradiction to satisfying S.

Case 2:Mk(σ−k, σk′) + σk−σk′
N−k+1 >Mk(σ). Due to EF,

N∑
i=1

(
Mi(σ

−k, σk′)−Mi(σ)
)

= 0

⇒
N∑

i=k+1

(
Mi(σ

−k, σk′)−Mi(σ)
)

=Mk(σ)−Mk(σ−k, σk′) <
σk − σk′
N − k + 1

⇒ min
i

(
Mi(σ

−k, σk′)−Mi(σ)
)
<

σk − σk′
(N − k)(N − k + 1)

. (19)

Denote by i a player such that

Mi(σ
−k, σk′)−Mi(σ) <

σk − σk′
(N − k)(N − k + 1)

(20)

⇒Mi(σ)−Mi(σ
−k, σk′) +

σk − σk′
(N − k)(N − k + 1)

> 0, (21)

and let ε = min{εk, εi} for εk, εi that satisfy

Mk(σ−k, σk′) +
σk − σk′
N − k + 1

−Mk(σ) > εk > 0,

Mi(σ)−Mi(σ
−k, σk′) +

σk − σk′
(N − k)(N − k + 1)

> εi > 0.

Consider the following game:



u1 u2 u3 u4

xk σk 0 ε 0
yk σk′ σk − σk′ 0 0
xi σi σk − σk′ 0 0

yi 0 0 0 Mi(σ) + σk−σk′
N−k − ε

xr σr 0 0 0
xm σm σk − σk′ 0 0

,

where again Lk = {xk, yk}, Li = {xi, yi}, Lr = {xr} for 1 ≤ r < k and Lm = {xm} for
k < m ≤ N . We have the following cycle:

• (πk(xk, xi), πi(xk, xi)) =
(
Mk(σ) + ε,Mi(σ) + σk−σk′

N−k

)
.

• (πk(yk, xi), πi(yk, xi)) =
(
Mk(σ−k, σk′) + σk−σk′

N−k+1 ,Mi(σ
−k, σk′) + σk−σk′

N−k+1

)
. Due to

Equation (20)

Mi(σ) +
σk − σk′
N − k −Mi(σ

−k, σk′)− σk − σk′
N − k + 1

> 0.

• (πk(yk, yi), πi(yk, yi)) =
(
Mk(σ−{k,i}, σk′, 0) + σk−σk′

N−k ,Mi(σ) + σk−σk′
N−k − ε

)
. Ac-

cording to the inductive step,

Mk(σ{−k,i}, σk′, 0) +
σk′ − σk
N − k =Mk(σ−i, 0).

• (πk(xk, yi), πi(xk, yi)) =
(
Mk(σ−i, 0) + ε,Mi(σ) + σk−σk′

N−k − ε
)

.
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• (πk(xk, xi), πi(xk, xi)) =
(
Mk(σ) + ε,Mi(σ) + σk−σk′

N−k

)
.

Hence we obtained a cycle, which is a contradiction to satisfying S. The only missing ingredient is
the case of k = N . Due to Lemma 5 it holds thatM1(σ) = SM1(σ); thus, due to Symmetry we
have

M2(σ) =M2(σ−2, σ1) +
σ2 − σ1

N − 1
= SM2(σ−2, σ1) +

σ2 − σ1

N − 1
= SM2(σ).

Using this technique we obtainMk(σ) = SMk(σ) for every player k < N . Finally, due to EF,

MN (σ) = σN −
N−1∑
k=1

Mk(σ) = σN −
N−1∑
k=1

SMk(σ)⇒MN (σ) = SMN (σ). (22)

Since the Shapley mediator satisfies the assertion, we have

MN (σ) =MN (σ−N , σN ′) +
σN − σN ′

1

as well. This concludes the proof of the lemma.

Proof of Theorem 4. The proof of Theorem 4 Follows directly from Lemma 6.

A.7 Proof of Theorem 5

Proof. Recall that under the Shapley mediator it holds that

V (X) =

n∑
i=1

N∑
j=1

P (SM(X, ui) = j) =

n∑
i=1

σi(X).

The following analysis holds for every σi as defined in the model. For ease of notation, we handle the
functions σi and V as set functions. Namely, for L ⊆ L let

σi(L) = max
l∈L

σi(l),

and

V (L) =

n∑
i=1

σi(L) =

n∑
i=1

max
l∈L

σi(l).

In addition, recall that a strategy profile X is often referred to as the set of items selected by the
players. Next, we lower-bound the payoff of a player as a function of the social welfare.

Lemma 7. For every strategy profileX it holds that

πj(X) ≥ V (Xj)

N
+
N − 1

N
(V (X)− V (X−j)) .

Proof. For a user ui, exactly one of the following holds:

• If σi(X−j) ≥ σi(Xj), then P (SM(X, ui) = j) ≥ 1
N σi(Xj) holds, with equality when

player j offers the least satisfying item to ui.

• If σi(X−j) < σi(Xj), player j gets the full difference between the terms: σi(Xj) −
σi(X−j), as well as at least 1

N times σi(X−j).
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These cases are disjoint; thus,

πj(X) =

n∑
i=1

P (SM(X, ui) = j)

=
∑

i:σi(X−j)
≥σi(Xj)

P (SM(X, ui) = j) +
∑

i:σi(X−j)
<σi(Xj)

P (SM(X, ui) = j)

≥
∑

i:σi(X−j)
≥σi(Xj)

σi(Xj)

N
+

∑
i:σi(X−j)
<σi(Xj)

(
σi(Xj)− σi(X−j) +

σi(X−j)

N

)

=
1

N

n∑
i=1

σi(Xj) +
N − 1

N

∑
i:σi(X−j)
<σi(Xj)

(σi(Xj)− σi(X−j)).

Notice that if σi(X−j) < σi(Xj) it holds that σi(X) − σi(X−j) = σi(Xj) − σi(X−j), and if
σi(X−j) ≥ σi(Xj) then σi(X)− σi(X−j) = 0. As a result,

=
1

N

n∑
i=1

σi(Xj) +
N − 1

N

∑
i:σi(X−j)
<σi(Xj)

σi(X)− σi(X−j)

≥ 1

N

n∑
i=1

σi(Xj) +
N − 1

N

n∑
i=1

σi(X)− σi(X−j)

=
V (Xj)

N
+
N − 1

N
(V (X)− V (X−j)) ,

which concludes the proof of this lemma.

One more necessary definition is the following:

Definition 2 (Submodular function). We say that f : 2Ω → R is submodular if for any X,Y ∈ Ω
such that X ⊆ Y and every x ∈ Ω \ Y it holds that -

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

Note that by definition of σi it is a monotonically increasing set function. In addition,

Lemma 8. σi is submodular.

Proof. For arbitrary i, j,X and l ∈ L, we need to show that

σi(X−j ∪ {l})− σi(X−j) ≥ σi(X ∪ {l})− σi(X). (23)

If σi({l}) ≤ σi(X), then by monotonicity the right-hand side of Equation (23) equals zero while the
left-hand side is non-negative. Alternatively, if σi({l}) > σi(X) then σi(X∪{l}) = σi(X−j∪{l}).
Moreover, σi(X) ≥ σi(X−j); hence,

σi(X−j ∪ {l})− σi(X−j) = σi(X ∪ {l})− σi(X−j) ≥ σi(X ∪ {l})− σi(X).

By summing Equation (23) over all users, we get:

Corollary 5. The social welfare function V is submodular.

We are now ready to prove the theorem: denote the optimal solution as X∗ and an arbitrary PNE
profileX . SinceX is in equilibrium it follows that πj(X) ≥ πj(X∗j ,X−j). Therefore -

V (X) =

N∑
j=1

πj(X) ≥
N∑
j=1

πj(X
∗
j ,X−j). (24)
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Due to Lemma 7 we have:

πj(X
∗
j ,X−j) ≥

V (X∗j )

N
+
N − 1

N

(
V (X∗j ,X−j)− V (X−j)

)
. (25)

Summing Equation (25) over all players:
N∑
j=1

πj(X
∗
j ,X−j) ≥

N∑
j=1

V (X∗j )

N
+
N − 1

N

N∑
j=1

(
V (X∗j ,X−j)− V (X−j)

)
. (26)

Observe that due to submodularity, for every j it holds that

V (X∗j ,X−j)− V (X−j) ≥ V (X∗1 , . . . , X
∗
j−1, X

∗
j ,X)− V (X∗1 , . . . , X

∗
j−1,X).

Thus:
N∑
j=1

(
V (X∗j ,X−j)− V (X−j)

)
≥

N∑
j=1

(
V (X∗1 , . . . , X

∗
j−1, X

∗
j ,X)− V (X∗1 , . . . , X

∗
j−1,X)

)
= V (X∗,X)− V (X)

≥ V (X∗)− V (X). (27)

By substituting Equation (27) into Equation (26) we get:

V (X) ≥
N∑
j=1

V (X∗j )

N
+
N − 1

N
(V (X∗)− V (X))

≥ V (X∗)

N
+
N − 1

N
(V (X∗)− V (X))

= V (X∗)− N − 1

N
V (X). (28)

Finally, by Equations (24) and (28) we have V (X) ≥ V (X∗)− N−1
N V (X), and

PoA ,
V (X∗)

V (X)
≤ 2N − 1

N
.

After upper-bounding the PoA, our objective is to show a game instance which achieves this bound.
Consider a symmetric N -player game with N users, and items L = Lj = {l1, . . . , lN , l∗}. In
addition:

∀i ∈ {1, . . . , N} : σi(x) =


1 x = li
a x = l∗

0 otherwise
The optimal social welfare is obtained when each player selects a unique item (e.g. player j selects
lj). In that case, the Shapley mediator will display an item to every user with probability 1; hence the
social welfare is N . Observe that the strategy profileX = (l∗, l∗, . . . , l∗) is in equilibrium: consider
the payoff of player j underX , and a possible unilateral deviation to li:

πj(X) =

N∑
i=1

P (SM(X, ui) = j) = N
a

N
= a, πj(li,X−j) =

a

N
+ (1− a).

For a = N
2N−1 we get πj(X) = πj(li,X−j); thereforeX is an equilibrium profile. Overall,

PoA =
N

aN
=

1

a
=

2N − 1

N
.

This concludes the proof of Theorem 5.

A.8 Proof of Proposition 2

Proof. Consider a game with one user and one player with one strategy L1 = {l}, such that σ1(l) = ε
for some ε > 0. It holds that USM(l) = ε2, while UTOP(l) = ε. Therefore, UPoASM ≥ 1

ε , which can
be arbitrarily large.
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A.9 Proof of Proposition 3

Proof. Let δ > ε > 0 be arbitrarily small, and consider the satisfaction matrix

[ u1 u2

l1 1 0
l2 δ δ
l3 ε ε

]
.

Let L1 = {l1, l2} and L2 = {l3}. Under TOP, the only PNE is (l2, l3) with UTOP(l2, l3) = 2δ, but
UTOP(l1, l3) = 1 + ε; therefore, UPoATOP = 1+ε

2δ , which can be arbitrarily large.

A.10 Proof of Lemma 1

Proof. Fix an arbitrary user ui and a strategy profileX , and denote

j∗ ∈ min

{
j : σji (X) >

σNi (X)

2

}
.

Observe that
N∑
j=1

(σi(Xj)P (SM(X, ui) = j)) + P (SM(X, ui) = ∅)

=

N∑
j=1

σji (X)

(
j∑

m=1

σmi (X)− σm−1
i (X)

N −m+ 1

)
+ 1− σNi (X)

≥
N∑

j=j∗

σji (X)

(
j∑

m=1

σmi (X)− σm−1
i (X)

N −m+ 1

)
+ 1− σNi (X)

≥
N∑

j=j∗

σj
∗

i (X)

(
j∑

m=1

σmi (X)− σm−1
i (X)

N −m+ 1

)
+ 1− σNi (X)

≥ σNi (X)

2

N∑
j=j∗

j∑
m=1

σmi (X)− σm−1
i (X)

N −m+ 1
+ 1− σNi (X)

≥ σNi (X)

2

(
σNi (X)− σj

∗−1
i (X)

)
+ 1− σNi (X)

≥ σNi (X)

2

(
σNi (X)− σNi (X)

2

)
+ 1− σNi (X)

=
σNi (X)

2

σNi (X)

2
+ 1− σNi (X). (29)

The minimum value obtained by the function y = x2

4 − x+ 1 in the segment x ∈ [0, 1] is 1
4 . Notice

that Equation (29) holds for all users concurrently; hence

USM(X) =

n∑
i=1

N∑
j=1

(σi(Xj)P (SM(X, ui) = j)) +

n∑
i=1

P (SM(X, ui) = ∅) ≥ n

4
.

Ultimately,

UPoASM =
maxM′,X∈ΠNj=1Lj UM

′(X)

minX∈EM UM(X)
≤ n

n
4

= 4.

B On user utility

As mentioned in Section 6, numerical calculations show that the upper bound on UPoASM is far
from tight. We present here the methods employed to obtain the tighter (numerical) bound.
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Recall that under the Shapley mediator,

USM(X) =

n∑
i=1

N∑
j=1

(P (SM(X, ui) = j)σi(Xj)) +

n∑
i=1

P (SM(X, ui) = φ)

=

n∑
i=1

N∑
j=1

σji (X)

(
j∑

m=1

σmi (X)− σm−1
i (X)

N −m+ 1

)
+

n∑
i=1

(
1− σNi (X)

)
.

Due to linearity, user utility cannot be less than n times the minimum utility one user can get. Hence,
we focus on a game with one user. In addition, despite USM being a function of the strategy profile, it
is more convenient to present it as a function of the satisfaction levels σ =

(
σ1, . . . , σN

)
without the

need to state the strategy profile; this can be done due to User-Independence. We have

USM(σ) =

N∑
j=1

σj
j∑

m=1

σm − σm−1

N − j + 1
+ (1− σN ). (30)

Note that
j∑

m=1

σm − σm−1

N −m+ 1
=

j∑
m=1

σm

N −m+ 1
−

j∑
m=1

σm−1

N −m+ 1

=

j∑
m=1

σm

N −m+ 1
−

j−1∑
m=1

σm

N −m

=
σj

N − j + 1
−

j−1∑
m=1

σm

(N −m)(N −m+ 1)
.

Hence USM(σ) can be presented as

USM(σ) =

N∑
j=1

σj

(
σj

N − j + 1
−

j−1∑
m=1

σm

(N −m)(N −m+ 1)

)
+ (1− σN )

⇒ USM(σ) =

N∑
j=1

σjσj

N − j + 1
−

N∑
j=1

σj
j−1∑
m=1

σm

(N −m)(N −m+ 1)
+ (1− σN ).

Therefore,

dUSM

dσj
(σ) =

{
2σj

N−j+1 −
∑j−1
m=1

σm

(N−m)(N−m+1) −
∑N
m=j+1

σm

(N−j)(N−j+1) j < N

2σN −∑N−1
m=1

σm

(N−m)(N−m+1) − 1 j = N
.

Thus, by taking the partial derivatives to zero, one can find the argmin point (more precisely, the
argmin vector) of USM. We solved this system of linear equations numerically for various values of
N . The results are presented in Figure 1. Note that USM(σ) > 0.568 for up to 50,000 players. Going
back to games with an arbitrary number of users, we have USM(X) > 0.568n for every strategy
profileX . As a result, we conclude numerically that UPoASM ≤ n

0.568n = 1.761.

C Personalized offers

The model defined in Section 2 enables each player j to choose a single item out of Lj . In this
section, we extend our model to a more general case, where players may select several items and
offer each user the one item which satisfies him the most.

For reader convenience, we repeat the part of the model being reconsidered:

• The set of items (e.g. possible ad formats/messages to select from) available to player j is
denoted by Lj , which we assume to be finite. A strategy of player j is an item from Lj .
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Figure 1: Numerical calculation of the minimum value U can attain as a function of the number of
players.

Consider the case where each player j is limited to choose up to kj items from Lj , where kj is fixed.
Formally, the strategy space of each player j is {L : |L| ≤ kj , L ⊂ Lj}, and we keep on using Xj

to represent her strategy. In addition, users are now targeted personally – for each user ui, player j
offers the product with the highest satisfaction level, namely σi(Xj) = maxl∈Xj σi(l).

We again define the characteristic function of the cooperative game as vi(C;X) = σi(XC). The
coalition payoff is ui’s highest satisfaction with items offered by the coalition members. Hence, the
Shapley value of each player remains the same, and the proof of Theorem 3 holds as is. In addition,
Theorem 5 and Lemma 1 did not make use of this assumption, and hence hold as well.

As for Theorem 2, a few modifications are required. The strategy of selecting a set L ∈ L is
modeled as choosing all resources associated with intervals that are subsets of [0, σi(L)], where
σi(L) = maxl∈L σi(l). Namely,

A(L) =
{
rim : σi(L) ≥ εm,m ∈ [B], i ∈ [n]

}
.

Thus, there is an induced one-to-one function from the power set of items to the power set of resources,
A : 2L → 2R. Mapping between items and resources, we define the set of possible strategies of
player j:

Sj = {A(L) : L : |L| ≤ kj , L ⊂ Lj} .
Using these modifications, the proof of Theorem 2 given in Subsection A.3 now holds.
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