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Abstract—Intelligent transport systems, efficient electric grids,
and sensor networks for data collection and analysis are some
examples of the multiagent systems (MAS) that cooperate to
achieve common goals. Decision making is an integral part of
intelligent agents and MAS that will allow such systems to accom-
plish increasingly complex tasks. In this survey, we investigate
state-of-the-art work within the past five years on coopera-
tive MAS decision making models, including Markov decision
processes, game theory, swarm intelligence, and graph theo-
retic models. We survey algorithms that result in optimal and
suboptimal policies such as reinforcement learning, dynamic pro-
gramming, evolutionary computing, and neural networks. We
also discuss the application of these models to robotics, wireless
sensor networks, cognitive radio networks, intelligent transport
systems, and smart electric grids. In addition, we define key terms
in the area and discuss remaining challenges that include incor-
porating big data advancements to decision making, developing
autonomous, scalable and computationally efficient algorithms,
tackling more complex tasks, and developing standardized eval-
uation metrics. While recent surveys have been published on
this topic, we present a broader discussion of related models and
applications.

Note to Practitioners: Future smart cities will rely on cooper-
ative MAS that make decisions about what actions to perform
that will lead to the completion of their tasks. Decision making
models and algorithms have been developed and reported in the
literature to generate such sequences of actions. These models
are based on a wide variety of principles including human deci-
sion making and social animal behavior. In this paper, we survey
existing decision making models and algorithms that generate
optimal and suboptimal sequences of actions. We also discuss
some of the remaining challenges faced by the research com-
munity before more effective MAS deployment can be achieved
in this age of Internet of Things, robotics, and mobile devices.
These challenges include developing more scalable and efficient
algorithms, utilizing the abundant sensory data available, tack-
ling more complex tasks, and developing evaluation standards
for decision making.

Index Terms—Cooperation, decision making models, game the-
ory, Markov decision process (MDP), multiagent systems (MASs),
swarm intelligence.
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I. INTRODUCTION

THE NUMBER of devices connected to the Internet has
been increasing over the past few years and projected

to exceed 20 billion devices by 2020 [1], [2]. These devices
can communicate with each other to form multiagent systems
(MASs) that can cooperate to overcome individual limitations
and achieve complex tasks. This has led to the emergence of
cognitive computing systems which were defined by IBM as
systems that can interact with each other and humans to exploit
their strengths when accomplishing a task [3]. At the heart
of cognitive systems is the decision making, or planning and
control module which allows agents to generate a sequence of
actions that will lead to the accomplishment of their goals.

Multiple surveys on MAS decision making have been pub-
lished. While some briefly discussed a wide range of models
and applications, others focused on a specific model or appli-
cation. We present a more up-to-date discussion on cooperative
MAS decision making, covering a wide range of applications
and models. Fig. 1 depicts the scope of existing surveys in
terms of their relative breadth of covered models and appli-
cations, while highlighting the targeted scope of our survey.
Color coding distinguishes references’ publication date: sur-
veys published more than ten years ago are in red, 5–10 years
in green, and less than five years in blue.

The surveys closest to this paper, in the top right cor-
ner of Fig. 1, covered a wide range of MAS decision
making methods including game theory, reinforcement learn-
ing (RL), swarm intelligence, and evolutionary computing,
and discussed multiple applications including robot soccer,
prey-predator pursuit, air traffic control, and others [4], [5].
However, these surveys have become outdated and do not
cover some key advancements in the field such as the con-
tributions of deep learning. Some surveys covered a wide
range of models but focused on multiple problems in robotics.
Seven main research areas on multirobot systems (MRSs)
were discussed in [6], including robot architectures, mapping
and exploration, motion coordination, and object transport
and manipulation. Multiple unanswered research questions
were identified in [6] including complex task automation
using MRS. Cooperative control of multivehicle systems and
their applications in the military, transportation systems, and
mobile sensor networks were surveyed in [7] who con-
cluded that additional work in system integration, distributed
embedded system verification and decision making at higher
level abstractions was necessary before successful deploy-
ment of MRS. Yan et al. [8] surveyed multiple aspects of
robot coordination including decision making, planning, and
communication, and observed that more powerful coordination
schemes are necessary to automate complex tasks.
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Fig. 1. Scope of existing surveys on MAS decision making.

Surveys discussing one model and its applications
included recent work on decentralized partially observable
Markov decision process (Dec-POMDP) [9], swarm intelli-
gence in robotics [10]–[14], and multiagent RL [15], [16].
Multiobjective particle swarm optimization (PSO) vari-
ants [17], algorithms based on bees [18], metaheuristic algo-
rithms [19], and artificial bee colony variants and applica-
tions [20] have also been surveyed.

The following surveys discussed multiple models for
one application such as formation control and coordina-
tion [21], [22], task allocation [23], [24], intrusion detec-
tion [25]–[27], and smart electric grids [28]. Finally, certain
surveys focused on a single model applied to one application
such as multiagent RL for robotics [29], swarm intelligence for
robot path planning [30], PSO for clustering [31], and swarm
intelligence for data mining [32].

In this paper, we survey existing cooperative MAS decision
making models including Markov decision process (MDP)
and its variants, game theory, and swarm intelligence. Fig. 2
depicts a fuzzy comparison between the discussed mod-
els based on three criteria: 1) heterogeneity; 2) scalabil-
ity; and 3) communication bandwidth. While other models
exist, such as belief-desire-intention models based on the
human’s practical reasoning theory [33] and independent
choice logic which combined probabilistic information with
logic programming to represent knowledge [34], their MAS
extensions [35], [36] have not been widely adopted in the
recent work. Multiple methods that find optimal or subopti-
mal action sequences for the various decision making models
are surveyed. These include RL, dynamic programming (DP),
recurrent neural networks (RNNs), and evolutionary comput-
ing, to name a few. We present decision making applications
in robotics, wireless sensor networks (WSNs), traffic signal
control, and others. Finally, we discuss some of the remain-
ing challenges in cooperative MAS decision making such
as leveraging big data advancements, creating more scal-
able, distributed and computationally efficient algorithms that
can tackle more complex tasks, and developing evaluation
standards.

In what follows, we first define key terms in the field
of MAS in Section II. Then, we introduce various decision
making models in Sections III–VI and their applications in
Section VIII. Remaining challenges and insights on future

Fig. 2. Comparison of decision making model frameworks.

research directions are discussed in Section IX before con-
cluding in Section X.

II. MULTIAGENT SYSTEMS

In this section, we define and categorize MAS before dis-
cussing its constituting blocks: agents and local interactions.
Then, we focus on key terminology for decision making
problems, which is an element of intelligent agents.

A. Multiagent Systems

MAS are composed of multiple autonomous, interacting
agents that have common or conflicting goals and sensory
information [37]. MAS are generally decentralized, asyn-
chronous systems but can sometimes be centralized or hybrid.
Their evaluation criteria include domain specific performance
metrics and domain invariant criteria such as time and space
complexity, load balancing, fairness, resource utilization, com-
munication overhead, robustness, and scalability [38]. MAS
have been categorized based on multiple criteria such as diver-
sity of agents, communication capabilities, and interaction
types. Agent heterogeneity stems from diverse sensing and
actuating capabilities, computing resources, cognitive algo-
rithms, and morphology [39]. Considering agent interaction
complexity leads to three classes of MAS: 1) no direct
interaction; 2) simple interaction; and 3) complex conditional
interaction [40].

B. Agents

An intelligent agent is an autonomous entity capable of
performing actions on its environment and perceiving its envi-
ronment, aiming to accomplish a goal [41]. It can be a physical
entity such as robots with sensors and actuators or a virtual
entity such as software agents. An intelligent agent exhibits
the fundamental properties of perception, reasoning, learning,
decision making, problem solving, interaction, and communi-
cation [42]. It is evaluated based on its solution optimality,
generality, robustness, efficiency, autonomy, and ability to
learn and improve [42]. Agents are categorized based on many
different criteria. One categorization depends on the decision
making algorithm’s instigator and results in three types of
agents: 1) reactive; 2) deliberative; and 3) hybrid. Reactive
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agents react to environmental changes. Deliberative agents ini-
tiate actions without external triggers. Hybrid agents can react
to the environment or initiate actions based on their plan-
ning algorithm. Another categorization, proposed in [41], is
based on the agent’s underlying architecture and contains four
classes: 1) simple reflex agents; 2) model-based reflex agents;
3) goal-based agents; and 4) utility-based agents. Simple reflex
agents react to current sensory input only while model-based
reflex agents keep an internal state of the environment. Goal-
based agents perform actions that lead to accomplishing their
goals and utility-based agents maximize their utility.

C. Interactions

In addition to the complexity of interactions, MAS can
exhibit different types of interactions based on agent goals,
resources, and skills [43], [44]. Broadly speaking, interactions
can be positive or negative. In the former, agents aid each
other in accomplishing their goals, while in the latter, agents
actively impede other agents’ progress. Positive interaction can
be further divided to collective, cooperative, collaborative, and
coordinative. In collective interaction, agents are unaware of
other agents’ existence but share a common goal and each
agent contributes to its completion, as in robot formation
control and foraging. Cooperative interaction is similar to col-
lective interaction except that agents are aware of other agents’
existence. Examples include search and rescue, exploration,
and object displacement. In collaborative interaction, agents do
not have common goals but help each other accomplish their
individual goals. Finally, in coordinative interaction, agents
within an environment work together to minimize interference
and complete their individual goals; MRS path planning is one
example. Negative interaction can be either conflicting where
agents do not have enough resources to complete their goals
and fight for external resources or competitive where agents
have conflicting goals. In this paper, we focus on cooperative
MAS since it is an integral part of many smart city systems
but still has many open research questions before effective
deployment in real-world scenarios is possible. It is considered
by some one of the more challenging interactions due to the
need for high correlation and synchronization between agents
and time sensitivity of agents’ actions, especially in robotics.
However, some of the models discusses in this survey can
be applied to MAS with positive interactions such as swarm
intelligence in collective MAS, game theory in collaborative
MAS, and graph theory in coordinative MAS.

D. Decision Making

Decision making, or planning and control, enables an agent
to accomplish its goals by determining what action to perform.
The decision making problem can either be episodic or sequen-
tial [41]. The output of the former is a single action while
the latter produces a sequence of actions or policy. The deci-
sion making algorithm is evaluated based on policy optimality,
search completeness, time complexity, and space complexity.
A policy is optimal if it has the highest utility. A search algo-
rithm is complete if it guarantees to return an optimal policy
in finite time, when it exists. Time complexity quantifies the

amount of time needed to search for a solution while space
complexity quantifies the amount of computational memory
needed. In this paper, we focus on sequential decision prob-
lems which can be of two types: 1) finite or 2) infinite horizon.
Finite horizon implies that decisions need to be made for a
finite number of time steps while infinite horizon problems
last forever. When discussing decision making in the context
of MAS, learning can be either centralized or decentralized.
Reference [5] used the terms team learning and concurrent
learning. In the former, one learner learns policies for all
agents in the system while in the latter, each agent learns
its own policies in parallel to other agents. Credit assignment,
how to distribute rewards among cooperating agents, is one
problem that arises and should be appropriately handled to
achieve optimal performance. Communication, whether direct
or indirect, is another issue in cooperative decision making
that should be considered.

III. MARKOV DECISION PROCESSES

In this section, we present the MDP formulation, its exten-
sion to MAS and partially observable environments, and
conclude with some insights on this method.

A. Markov Decision Process

An MDP, a discrete time stochastic control process, is char-
acterized by fully observable states and outcomes that are
influenced by decision makers. It satisfies the Markov prop-
erty which states that decisions made at the current time step
rely on a finite number of previous time steps. It can also be
viewed as a fully observable stochastic game with a single
player. In some texts, it is referred to as a dynamic program,
stochastic dynamic program, sequential decision process, and
stochastic control problem. An MDP is defined by the tuple
(S, A, P, R, γ ). S represents the set of states, s, of the envi-
ronment. A represents the set of actions, a, an agent can
perform. In some states, certain actions are not permissible,
i.e., only a subset of the actions can be performed, denoted by
As. P represents the transition probability. Pa(si, sj) denotes
the probability that the environment will transition to state sj

from state si when an agent performs action a. R represents
the reward. Ra(si, sj) denotes the received reward when per-
forming action a and the environment goes from state si to
state sj. γ represents a discount factor, γ ∈ [0, 1), that gives
more weight to present reward than future reward. MDP was
found to be P-complete [9]. Constrained MDP impose addi-
tional constraints on MDP, resulting in more than one cost
for every action and the final policy depends on the initial
state of the process [45]. Time-dependent MDP [46] extends
MDP to continuous time state spaces where value iteration is
performed on a piece-wise linear value function.

A solution to an MDP is a policy that should be performed
by an agent to maximize its total reward, measured using a
value function V . A policy function maps states to actions:
π : s → a or a = π(s). Action selection methods deter-
mine what action to select next, based on the estimated value
functions of the action set, while considering the exploration-
exploitation trade-off. A greedy method picks the action with
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the highest value, ε-greedy selects the best action with a prob-
ability of 1 − ε. Boltzmann exploration assigns probabilities
of selecting actions using an exponential function of the value
function.

Many algorithms have been proposed to find optimal and
suboptimal policies for MDP. DP [47], temporal difference
learning [48]–[50], policy search [51], and linear program-
ming [52], [53] require models of the state transition and
reward functions. If these models are unknown or too complex,
approximate methods are adopted and include model-free RL
approaches like Q-learning [54] and SARSA [55], evolutionary
computing [56], [57], RNN [58]–[63], and deep RL [64], [65].
Distributed optimization methods have been adopted to solve
MDP problems. First, the alternating direction method of
multipliers decomposes the MDP into subproblems. Then,
a distributed Newton method [66] or linear programming
algorithm [67] find the optimal policy.

MDP extensions have been proposed for MAS. Multiagent
MDP (M-MDP) extends MDP to MAS by assuming a joint
action space with a team reward model and fully observ-
able environment. A central learner learns a vector of actions
that should be performed by the agents and the reward is
common to all agents [37]. The worst-case complexity of
finite horizon M-MDP is P-complete [68] which is solvable
in polynomial time by a Turing machine, an abstract model
of computing devices. As the number of agents increases, the
joint state and action spaces’ dimensionalities increase expo-
nentially. To ease the computational burden, independence is
assumed to make objective functions factorable. Solving the
problem iteratively also reduces the computational complexity.
Distributed implementations of the central learner have been
developed for factorable objective functions [69]. On the other
hand, decentralized MDP (dec-MDP) assumes an independent
action space with local reward and jointly fully observable
environments [37]. In other words, individual agents view a
partially observable environment but the aggregate observa-
tions of all agents in the MAS make the environment fully
observable. Finite horizon dec-MDP was proven to be worst
case NEXP-complete (solvable in exponential time using a
nondeterministic Turning machine), when three or more agents
are considered [70]. Since actions and rewards are local,
this approach falls under the concurrent learning class of
MAS learning. Assuming agent observations and transitions
are independent, the model is known as TI dec-MDP and its
complexity is NP-complete, meaning a solution can be found
in polynomial time by a nondeterministic Turing machine.
This model can be further simplified by assuming indepen-
dent rewards to obtain a P-complete complexity in the worst
case.

B. Partially Observable MDP

Partially observable MDP (POMDP) is a generalization of
MDP to partially observable environments and is defined by
(S, A, P,�, O, R, γ ), where � represents the set of obser-
vations, O is the observation function, and the remain-
ing terms are as defined for MDP. POMDP was found
to be PSPACE-complete [9]. Many algorithms have been

proposed in the literature to provide exact and approxi-
mate solutions for the POMDP and its variants, including
value iteration [71], [72], expectation maximization [73], [74],
nonlinear optimization [75], quadratically constrained linear
programming [76], Monte Carlo methods [77], [78], and
DP [79], [80] when state and transition models are known.
When they are not known, heuristic search algorithms [81],
genetic algorithms [82], RNN [83]–[86], and model-free RL
methods were applied. Liu et al. [87] learned the number of
states to represent in a nonparametric scheme and used RL to
find policies for POMDP. Unsupervised learning was adopted
to learn an observation space transformation to a latent rep-
resentation space where policies are learned, in [88]. Forward
simulation was used to estimate policy utilities [89].

Dec-POMDP generalizes POMDP to MAS where rewards
are common and based on joint actions but observations are
individualistic [9]. The goal is to maximize the reward of the
entire system as agents collaborate to achieve a common task.
Communication among agents can be explicit (Dec-POMDP-
COM) or implicit (Dec-POMDP). This model is NEXP-
complete [70]. Approximate solutions have been proposed
based on bounded policy iteration [90], Q-value function
methods [91], multiagent A∗ [81], genetic algorithms [82],
DP [92]–[94], and a Bayesian learning, stick-breaking policy
algorithm [95]. A set of approximate inferences and heuris-
tics including bootstrapping were used to find approximate
solutions to Dec-POMDP in [96].

The multiagent team decision problem [97], equivalent to
Dec-POMDP when agents have perfect recall [98], extends
economic team theory to robotics. It includes models for
implicit and explicit communication and is proven to be
NEXP-complete. Multiagent POMDP extends M-MDP to
partially observable environments, and is PSAPCE-complete
which means the algorithm’s memory requirements are poly-
nomial function of the input size. Like M-MDP, it is a team
learning approach that has a central learner, and employed
Bayesian RL framework to learn policies [99].

Networked distributed POMDP (ND-POMDP) assumes
local interaction among agents to reduce the computational
cost of finding policies [100]. ND-POMDP is a factored
Dec-POMDP model where observations and transitions are
independent and rewards are divided among neighboring
agents. Its worst case computational complexity is NEXP-
complete. Algorithms used to find policies for this model
include multiagent RL [101], DP [102], and distributed con-
strained optimization [100]. Interactive POMDP (I-POMDP),
a concurrent learning approach, generalizes POMDP to MAS
by modeling other agents in the system while maintaining a
belief of the system state [103]. Finitely nested I-POMDP is
PSPACE-complete [98] and approximate solutions have been
proposed based on particle filters [104], value iteration [105],
and Monte Carlo sampling methods [106].

C. Some Insights

MDP and its variants have been widely adopted in many
complex MAS decision making problems, despite the very
restrictive Markovian assumption. Even though these models
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do not scale well, they are able to handle agent heterogene-
ity. Recently, deep learning approaches have been adopted to
solve various MDP models and provided a roadmap to solve
non-Markovian models as well. In addition, deep learning has
allowed the extension of MDPs from the discrete space to the
continuous space, which is more suitable for robotic MAS.

IV. GAME THEORY

Game theory develops models of interaction between ratio-
nal decision makers under different circumstances [107]. It has
been applied in many fields from economics and psychology to
artificial intelligence. In this section, we focus on two types of
games that have been commonly applied to cooperative MAS
in artificial intelligence: 1) stochastic games and 2) Bayesian
games.

A. Partially Observable Stochastic Games

Stochastic or Markov games [108] are sequential proba-
bilistic games. They can also be viewed as a generalization
of repeated games where a game from a collection of nor-
mal form games can be played at a given step [37]. Payoffs
depend on both actions and the state of the game at the current
stage. Players’ actions and the game’s current state cause the
game to transition to other states. Stochastic games are repre-
sented using the tuple (Q, N, A, P, r), where Q denotes the set
of games that can be played, N denotes the set of players or
agents participating in the game, A = A1 × · · · × AN denotes
the actions of the players, P denotes the transition probability
function, and r denotes the reward or payoff. They belong to
the complexity class NP ∩ co − NP [109] and can be solved
using DP [108], Q-learning [110], and linear programming
under certain conditions [37].

To solve a game, a strategy profile or solution concept must
be obtained; it is a strategy for each player. A strategy, equiv-
alent to a policy in MDP [41], is a rule used by agents to
select an action. An equilibrium strategy is defined as the best
response of an agent to another agent’s strategy, i.e., the agent
cannot improve its expected utility by changing its strategy. It
does not always exist in stochastic games but may exist under
restricted conditions. For example, stochastic games with a
finite number of players, actions and states always have a
Nash equilibrium, defined as the strategy profile which maxi-
mizes each player’s utility knowing the strategy of others in the
game [111]. Evolutionary stable strategy is a refinement of the
Nash equilibrium which requires a strategy to be stable to any
perturbations that may occur to the games as they evolve [112]
and was extended to stochastic games [113]. Stochastic games
have been shown to have an evolutionary stable strategy under
certain conditions [114].

Partially observable stochastic games (POSGs) extend
stochastic games to partially observable environments where
the payoffs are not known to the players. They are represented
by the tuple (Q, N, O, A, P, r, b0), where O denotes the set
of observations and b0 denotes the initial state distribution.
POSG have been used to model learning sequential decision
making in cooperative MAS [115]. Finding a Nash equilibrium
for POSG belongs to the NP-hard computational complexity

class [116], meaning they are computationally at least as diffi-
cult as NP problems which are solvable by a nondeterministic
Turing machine in polynomial time. POSG subclasses include
MDP, POMDP, and their MAS extensions.

Many exact and approximate solutions have been proposed
for POSG. An iterative method to eliminate dominant strate-
gies was proposed in [116]. Hansen et al. [93] combined a
generalized version of the DP used for POMDP and elimi-
nated dominated strategies to find a solution to POSG. When
agents use the same payoffs, this approach can converge to an
optimal solution. The proposed method was tested on multi
access broadcast channel control and compared to a policy
tree building brute force algorithm. POSG have also been
used to model cooperative MAS decision making in partially
observable Markovian environments [115], [117]. However,
this model’s solution is intractable as the number of agents
increases. Therefore, an approximate solution was computed
based on Bayesian games to achieve decentralized control in
robot teams with limited communication. The algorithm was
validated on the two-robot tag problem, two-agent lady, and
tiger problem and multiple access broadcast channel problems.

B. Bayesian Games

Bayesian games are games with incomplete information.
Generally, these uncertainties can be modeled as uncertain-
ties in agents’ payoffs [37]. They are defined by (N, G, P, I),
where N represents the set of agents, G represents the set of
games the agents might be playing, P represents the common
prior distribution over all the games, and I = (I1, . . . , IN)

represents the partitions of G, for each agent. Examples of
Bayesian games include signaling games, bargaining, auctions,
and market competitions. Strategic policies can be obtained by
converting incomplete games to imperfect information ones.
Solving for the Bayesian Nash equilibrium, the Nash equilib-
rium in Bayesian games, includes best response, RL or other
learning rules, linear programming [118], and Monte Carlo
methods [119]. Bayesian Nash equilibrium, which consists of
a strategy profile and a player’s belief about other players’
types, always exists.

C. Some Insights

While game theoretic approaches had been mainly used
in competitive MAS, some models have gained popularity in
cooperative MAS due to the agents’ capabilities of modeling
other agents in the game. This property can be useful in robotic
systems where robots are unable to communicate with others.
However, this restricts the number of agents in the system due
to increasing computational costs. Game theory’s systematic
mathematical approach has been an attractive quality for many
applications but combining it with some heuristic approaches
such as deep learning might lead to improved performance in
robotic applications and others.

V. SWARM INTELLIGENCE

Swarm intelligence describes the behavior of decentral-
ized cooperative agents, whether natural or artificial, working
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toward a common global goal [120]. Self-organized and dis-
tributed behavior of locally aware and locally interacting
agents are pillars of swarm intelligence [121]. Systems mod-
eled in this fashion generally consist of many autonomous but
homogeneous agents implementing simple rules with agent
interactions restricted to local neighborhoods.

A. Biologically Inspired Algorithms

Swarm intelligence was inspired by many social insects and
animals including ants, bees, wasps, termites, bats, fish, and
birds. In some ways, swarm intelligence is similar to RL; both
are iterative algorithms that use a reinforcement signal to learn
a solution [121]. However, the reinforcement signal modifies
the behavior of the agent differently in both algorithms.

Many algorithms have been inspired by bee colony behavior.
Bee colony optimization [122] is based on direct communica-
tion among agents performing a series of moves for a certain
duration based on the strength or fitness of the solution, also
known as “waggle dancing.” This recruits other agents to the
most fit solution. Navigation is based on path integration where
agents continuously update a vector indicating the position of
the start location. Ant colony optimization (ACO), inspired
by ant colony behavior, is a class of algorithms that rely on
indirect communication [123]. Navigation is based on deposit-
ing pheromones along the trail. A more fit solution results
in stronger pheromones on the trail that lead to recruiting
more agents. PSO is inspired by flocks of bird and schools of
fish [124]. Agents navigate the environment searching for bet-
ter solutions using principles from birds’ movements. A pigeon
inspired optimization algorithm relied on the magnetic field,
sun and landmarks to achieve path planning [125]. Distributed
implementations of ACO [126], [127], and PSO [128] have
been developed to speedup convergence.

B. Some Insights

While such systems exhibit desirable properties like robust-
ness, flexibility, scalability, low complexity, inherent paral-
lelism, and fault tolerance [11], [129], they have important
limitations. Most swarm systems consist of identical agents,
leading to their limitations according to [129]. The agents must
be homogeneous or can be divided into a small number of
homogeneous clusters following simple rules to make deci-
sions. However, there are many applications, such as search
and rescue operations, that require heterogeneous, complex
agents working toward a common goal.

VI. GRAPH THEORY

Decision making in MAS have been modeled as graphs
with nodes representing agents and edges representing interac-
tions and information flow among agents [130]. In this section,
we focus on one popular approach called influence diagrams
(IDs), briefly discussing the model and some of its strengths
and weaknesses.

A. Influence Diagrams

IDs are referred to as decision networks in [41] and are
a graph theoretic approach that provide a framework for

decision making by adding actions and utilities to Bayesian
networks [131]. Chance nodes (ellipses) represent random
variables. Decision nodes (rectangles) represent choices avail-
able to the agent and utility nodes (diamonds) compute the
utility of these choices. The action with the highest utility
is chosen. IDs can be converted to decision trees by travers-
ing the diagram from top to bottom, creating a node in the
decision tree when a decision node is encountered and adding
edges with values equal to probabilities of parent nodes; leaves
portray the utility of a path. IDs require the optimization of
all parent nodes of a decision variable [34]. Dynamic IDs
(DIDs) extend IDs to sequential decision making problems
by combining DP with IDs [132] and have been viewed as
computationally equivalent to POMDP [133]. They exploit the
separability of the value function to generate computationally
efficient solutions.

Multiagent IDs (MAIDs) generalized IDs to MAS by gen-
erating decision rules that depend on decision rules made
by other agents [134]. This is graphically represented by
connecting decision nodes that depend on each other; a
directed relevance graph is thus produced. MAIDs repre-
sent games with imperfect information graphically and are an
alternative to the normal and extensive forms of game rep-
resentation [133]. They can be converted either to extensive
form games or to IDs and then solved.

A network of IDs (NIDs) is built on top of MAIDs to
account for uncertainties in other agents’ decision making
and hierarchy of beliefs [135]. This formalism can repre-
sent irrational behavior and distinguishes between different
agent models in the systems, i.e., it does not treat all other
agents identically. Acyclic NIDs can be solved using a bot-
tom up approach by converting each block to a MAID and
solving it. Duplicates are included to account for beliefs
about others’ strategies. Cyclic NIDs are converted to acyclic
NIDs and solved. However, both MAID and NID are applica-
ble to episodic decision making only. Interactive DIDs were
proposed in [133] as an MAS extension of DIDs and can be
viewed as computational counterparts of I-POMDP. Models of
other agents are clustered to reduce computational complexity
but lead to approximate solutions.

B. Some Insights

Graph theory models the interaction of agents, allowing
them to exchange information and make decision accord-
ingly. However, the computational complexity of this approach
increases exponentially in densely connected graphs with
many nodes (agents). The main benefits of graph theory
in MAS come from combining it with other approaches
such as MDPs and control theory (discussed next) to extend
these approaches to MAS. Furthermore, exploiting special
structures such as sparsely connected dense subgraphs are a
common approach to reduce computational cost and improve
performance.

VII. CONTROL THEORY

Control theory is an established field that aims to control
physical systems by designing controllers using modify the
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input to achieve the desirable output. Its subfields include
nonlinear, adaptive, optimal, robust, and stochastic control, to
name a few, and produce controllers with various properties to
overcome limitations imposed by the real-world environment
they operate in. However, as automation problems became
more complex, researchers extended control theory to MAS by
developing distributed controllers. We present a brief overview
of this broad field next.

A. Distributed Cooperative Control

Distributed controllers are designed by combining con-
cepts from control and graph theory. Specifically, interactions
among agents are modeled using graph theory and the con-
trol problem is decomposed among the agents to obtain a
distributed controller. The amount of communication among
agents is dependent on the design of the distributed controller
and can vary based on the nature and complexity of the task
(whether it is easy decomposable), the optimality of the control
algorithm and other factors. Since many controllers are based
on optimization algorithms, distributed optimization is an inte-
gral part of distributed control [136]. Unlike other approaches,
distributed cooperative controllers designed using control and
graph theory can be mathematical validated to prove opti-
mality, stability, robustness, and convergence, to name a few
properties.

Distributed controllers have been applied to various con-
trol problems. For example, a Lyapunov-based voltage and
frequency controller was designed for micro-grid systems that
only requires local communication among neighbors [137] and
a secondary voltage distributed controller based on input–
output feedback linearization that requires sparse commu-
nication [138]. A Lyapunov-based distributed lead-follower
control system was developed that scaled to large MAS
when the interaction topology is an undirected graph [139].
Distributed consensus tracking was achieved by designing:
distributed adaptive controllers in weakly connected, directed
graphs [140], a distributed optimal control algorithm [141],
and nonlinear distributed impulsive control (control signals
are given as impulses instead of continuously) with delayed
impulses in undirected graphs [142]. Stochastic sampling
in leader-follower consensus problems has been shown to
improve scalability of MAS [143]. Distributed impulsive
control has also been applied to heterogeneous MAS synchro-
nization problems [144]. Yang et al. [145] proposed distributed
output regularization using adaptive control in MAS with
a switching topology. Other applications include formation
control [146] and navigation [147] in MRS.

B. Some Insights

While control theory adopts systematic mathematical
approaches to develop controllers, some systems are simply
too complex and intractable for such methods. For example,
most algorithms assume linear systems. Therefore, data-driven
methods such as those in distributed artificial intelligence are
necessary to automate certain complex tasks in real-world
environments. Nevertheless, distributed cooperative controllers
are necessary in some applications where sufficient data is

not available or mathematically proven optimal controllers are
crucial like in aviation or military domains.

VIII. APPLICATIONS

MAS decision making models have been applied to many
problems in various fields from robotics to WSNs. Next, we
mention some of the problems that have been solved using the
aforementioned decision making models.

A. Robotics

Cooperative MRS have been applied to many problems
that require various degrees of coordination. Loose coordina-
tion examples include formation control and foraging, while
tight coordination examples include object transport and robot
soccer. Environment uncertainty, robot actuating and sensing
diversity, system scalability, real-time processing, and lim-
ited computational resources are a few challenges that should
be addressed when designing decision making algorithms.
Decisions related to robot actions, information sharing, and
coalition formation, are essential to the successful deployment
of robots in real world environments. POSG has been applied
to multiple problems in robotics [148], [149]. MDPs [150] and
POMDP [151]–[155] have been used for robotics coordination
including robot soccer [156]. Graphical models for consen-
sus [157], formation [158], [159], and rendezvous [158] have
also been investigated. Finally, swarm intelligence has been
applied to underwater environments [160], 3-D space [129],
and robot path planning problems [30], [125]. It has been
applied to dynamic task allocation [161], distributed local-
ization problems [162], foraging tasks [163]–[165], collision
free navigation [166], [167], and communication free flock-
ing with minimal memory requirements [168]. Swarm-bots,
wheeled robots that can physically connect to each other
and form larger entities, accomplished coordinated motion,
self-assembly, cooperative transport, goal search, and path for-
mation [169], [170]. The thermotactic behavior of honeybees
inspired the decision making of a swarm of microbots with
limited communication capabilities in spatial behavior prob-
lems [171]. Swarmanoids, a heterogeneous system composed
of three types of complementary swarm robots, performed
complex tasks like object retrieval in 3-D space [129].

B. Repeated Coalition Formation

Forming groups of agents that change based on environ-
mental conditions is critical to the successful deployment
of MAS in real-world environments. Repeated coalition for-
mation under uncertainty deals with forming time varying
coalitions where agents do not have complete information
about other agents’ capabilities. Adopting traditional coalition
formation methods such as auctioning and search algorithms
cannot handle uncertainty since they assume complete knowl-
edge of agent capabilities. Therefore, this problem has been
modeled as a sequential decision making problem by many
researchers and solved using some of the decision making
models discussed in this paper, which can handle information
uncertainty. This allows the dynamic formation of robot teams
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where uncertainty is high and can lead to the automation of
complex tasks that was previously unfeasible.

While searching for a solution that strikes a balance between
redundancy for fault tolerance and agent’s skill complementar-
ity is challenging enough, attempting to do so with incomplete
and noisy information about agents’ skills further compli-
cates matters. Dynamically reforming coalitions also poses
its own challenges by requiring the algorithm to determine
the lifetime of a coalition. However, repeated coalition forma-
tion with uncertainty allows MAS to cope with the stochastic
environments and complex tasks.

Matthews et al. [172] assumed the problem was fully
observable and adopted MDP to model a football team for-
mation problem. Agent transitions between coalitions were
modeled as an MDP, the Shapley value and marginal con-
tributions were used to prune the search space and the best
coalition structure was found using Markov probability distri-
butions [173]. A POMDP model was also adopted to allow
agents to learn other agents’ capabilities by interacting with
each other [174]. IDs solved the problem of coalition forma-
tion for complex real-world missions by selecting a subset
of coalition formation algorithms suitable for the problem at
hand [175]. Swarm intelligence was used to search for the best
coalitions to form [176]. Coalition games were generalized
to problems with incomplete information through Bayesian
games [177], [178].

C. Intelligent Transport Networks

With the increased awareness on sustainable living, trans-
portation systems are challenged to endorse cutting edge
technology and provide better services, while keeping an
eye on safety and greener emissions. Intelligent transport
networks are formed of autonomous or semi-autonomous com-
municating vehicles and road infrastructure such as traffic
signals and road sensors. Decisions such as when to close
a road or change a traffic light color to reduce traffic con-
gestion, give directions to emergency response vehicles to
avoid congested roads, improve road safety based on weather
conditions, and others, are critical to make transportation
smarter. To run efficiently, decisions need to be made in real-
time on devices with limited computational resources. POSG
modeled directional routing and scheduling of packet deliv-
ery in vehicular ad hoc networks [179]. POMDP was used
to perform automated driving in urban traffic while deal-
ing with sensor uncertainties [180]. Multiagent RL has been
used for routing algorithms [181]–[183], adaptive broadcast-
ing [184], adaptive data collection [185], and traffic signal
control [186]–[193]. Intelligent transportation systems have
utilized swarm intelligence to control traffic light schedul-
ing [194], model complex transportation systems [195], and
develop routing protocols for vehicles [196], [197] and for
information dissemination [198]–[202].

D. Wireless Sensor Networks

WSN are a collection of autonomous computing and sensing
devices with limited computational resources. Their pres-
ence is ever increasing with the decreasing cost and size of

hardware and emergence of Internet of Things. Integrating
decision making in these networks allows us to implement
functionality beyond simple information retrieval, making the
integration of WSN with other smart city MAS, such as
autonomous vehicles, electric grids, and transport networks,
feasible. The application of MDP was surveyed to model var-
ious problems in WSN including intrusion detection, sensor
coverage, object detection, data exchange, topology formu-
lation, and other problems [203]. POMDP have been used
for performance optimization [204], data and memory access
control [205], and sleep scheduling [206]. IDs were used for
lighting control in WSN and provided robustness to sensor
uncertainties [207]. Swarm intelligence has been used for
routing in WSN [208]–[214], clustering [215], cluster head
selection [216], for security protocols [215], [217], and node
positioning and localization [218], [219].

E. Intrusion Detection

An essential component of network security is detect-
ing threats before they can compromise the network. Since
networks are inherently decentralized, detecting threats can be
modeled as an MAS decision-making problem where agents
cooperatively determine whether a threat is present. Intrusion
detection systems monitor activities in network infrastruc-
tures such as WSN and mobile ad hoc networks to identify
malicious behavior. It involves detecting malicious pack-
ets, tracking their sources and optimizing performance of
networks. These systems are considered MAS because each
node on the network contributes to keeping the network secure,
by making decisions related to the maliciousness of packets.
Intrusion detection is a difficult problem because running the
decision making algorithms should not use up a significant
portion of the network nodes’ limited computational resources
while identifying threats as early as possible on a wide variety
of network technologies.

Many models have been adopted in intrusion detection
systems, as surveyed in [220]. MDP identified the network’s
most vulnerable nodes based on attackers’ previous behav-
iors [221], [222]. Bayesian games modeled attacker/defender
games [223]. Multiagent RL were used to implement dis-
tributed intrusion detection systems [224]. Swarm intelli-
gence is a popular approach to intrusion detection, evi-
denced by the recently published surveys [25]–[27]. PSO
has been widely applied in combination with support vector
machines [225]–[227] and linear programming [228]. ACO
was used in IP traceback problems [229].

F. Other Applications

Cooperative MAS has been applied to many other fields.
Noteworthy applications, briefly discussed next, are cognitive
radios, smart electric grids, resource allocation, and distributed
optimization. Traditional radio paradigms suffer from spec-
trum scarcity and usage inefficiency. Cognitive radios have
been presented as one possible solution. A cognitive radio is
a smart radio that efficiently utilizes the available spectrum.
MDP and RL were used to model and solve spectrum sensing
and management problem [230]–[234]. Jamming in networks
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were modeled using stochastic games [235] and spectrum shar-
ing was modeled using game theory [236]. Decision making
models to cognitive radios reduces the wasted, already scarce,
spectrum resources and improves their efficiency in switching
frequencies.

Smart electric grids will be the primary method of power
distribution in smart cities where efficient scheduling, gener-
ation and distribution of power are essential. However, the
unpredictability of demand and supply as well as plant diver-
sity and plant failures are some of the challenges faced in
this field. POSG [237], POMDP [238], [239], multiagent
RL [240], [241], and swarm intelligence [28], [242]–[244]
have been adopted to model and solve power distribution,
scheduling, power flow, and load forecasting problems.

Resource allocation aims to distribute heterogeneous
resources in a fair and efficient manner to maximize resource
utilization. Resource allocation has many applications in
resource constrained domains where many agents are bat-
tling to gain access to these scarce resources such as robotics
and cloud computing. Decision making models adopted
for this problem solve this problem more efficiently than
other approaches such as search or constrained optimization
methods. Adopted models include POMDP, used to min-
imize network bandwidth congestion and fairly allocate
resource [245], Bayesian games [246] and stochastic games
with multiagent RL used for job, and resource scheduling in
grid computing [247].

Distributed optimization, a useful tool in many fields
including robotics, electric grids, and large-scale optimization
problems, consists of optimizing an objective function in a dis-
tributed fashion. MAS decision making leveraged consensus
and communication rules to model distributed optimization;
each agent optimized part of the objective function before
combining their results [248]. For example, game the-
ory has formulated distributed optimization problems as
games [249], [250]. In [251], potential games and coop-
erative control provided a theoretical framework to formu-
late distributed optimization problems. Also, swarm intel-
ligence including PSO [252], [253] and an algorithm that
mimics bacterial foraging [254] have been used to solve
multiobjective optimization problems. Graph theory includ-
ing time-varying directed graphs [255] and weight-balanced
directed graphs [256] have modeled information exchange in
a distributed optimization framework.

IX. CHALLENGES

Although MAS decision making has seen significant
improvements in the past decade, it is still plagued with many
issues. To reap all the benefits of the Internet of Things boom
and improve smart cities and smart living, decision making
systems need to address some of the remaining challenges.

A. Scalability

Decision making algorithms should be scalable, especially
in heterogeneous MAS, to accomplish more complex tasks.
The scalability of current models greatly relies on agent
homogeneity and the level of interaction. Swarm intelligence

can scale to large MAS since agents are homogeneous and
interaction is minimal and restricted to the agent’s neighbor-
hood. MDP variants and game theoretic models do not scale
well since the complexity of the algorithm increases exponen-
tially due to the model formulation that results in exponentially
large state spaces. Using the graph theoretic formulation for
large MAS results in densely connected graphs which are
computationally expensive.

B. Computational Complexity

Decision making algorithms should be computationally effi-
cient due to the need for real-time decision making in some
applications or the lack of enough computational resources
of agents. Robots generally have limited on board computa-
tional resources due to size and weight constraints and might
not be able to offload their computations to the cloud due to
bandwidth scarcity, poor or unreliable connectivity, and mini-
mum latency requirements. Agent interactions MAS increases
the computational cost per agent as the number of agents
increases, especially in methods that extend single agent mod-
els to MAS if careful consideration of interaction cost is
not performed. Tightly coordinated tasks also increase the
computational burden due to the large amount of commu-
nication and data exchange among agents. Decision making
algorithms should be designed with all these constraints in
mind to successfully complete complex tasks.

C. Dynamic Environments

The environment’s dynamic and unpredictable nature makes
it difficult to foresee, design and test an agent that can han-
dle all these situations. Therefore, decision making algorithms
should generalize well to situations that have not been learned
or tested. They should be able to adapt to the dynamic environ-
ment and various uncertainties it might encounter and should
be robust to noisy and incomplete information generated by
sensors, and nondeterministic actions. POMDP, IDs, POSG,
and Bayesian games are better suited to handle uncertain-
ties than MDP and its variants that assume fully observable
environments, because they account for partially observable
environments, incomplete and imperfect information in their
algorithms. Agent failures are also a source of uncertainty in
MAS that hinder the completion of tasks. Unlike other mod-
els, swarm intelligence models are better suited to handle agent
failures due to the homogeneous nature of agents and minimal
interaction necessary. However, this is still an issue that needs
to be considered whenever MAS are designed.

D. System Heterogeneity

Heterogeneous MAS can deal with environment diversity
and complex tasks. However, this heterogeneity makes coop-
erative decision making more complex: agents need to model
other agents when capability uncertainty exists, agent capabil-
ities should be compatible, and agents should have a common
language to communicate and interact, in addition to other
issues. Swarm intelligence simplifies modeling by assuming
all agents are homogeneous. Graph theoretic models, POSG
and its subclasses can handle heterogeneous MAS if the state
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and observation spaces are designed appropriately. I-POMDP
and I-DID inherently model other agents, making them better
than other graph and game theoretic models in dealing with
MAS heterogeneity.

E. Big Data

Recent advancements in processing big data has led to
significant improvements in research areas like object recog-
nition, speech recognition and natural language processing.
The next step is to use this information to make bet-
ter decisions in MAS and handle more complex tasks.
Decision making has yet to maximize its benefits from
big data. Algorithms that model and generate representa-
tions of such data like convolutional neural networks (deep
learning) produce computationally expensive models that are
not suitable for computationally limited agents or decision
making algorithms whose computational cost grows expo-
nentially with the dimensionality of the data. Yet, allow-
ing agents to access these models through the cloud has
its own complications with respect to cloud accessibility,
bandwidth constraints, representation compatibility, privacy,
and security.

F. Evaluation Standards

Evaluation standards are necessary in MAS decision making
to compare proposed algorithms and assess the state-of-the-art.
General metrics include solution optimality, algorithm com-
pleteness, and algorithm time and space complexity. However,
additional evaluation metrics of MAS decision making are nec-
essary to enable better comparisons. Some work has developed
evaluation metrics and workflows to quantify the performance
of MAS. Braubach et al. [257] developed abstract metrics that
would be specialized for MAS applications, and include func-
tion (e.g., restrictions), usability (e.g., simplicity), operating
ability (e.g., performance), and pragmatic metrics (e.g., instal-
lation). Lass et al. [258] distinguished between two metric
categories: 1) effectiveness (e.g., success, failure, and 90%
accuracy) and 2) performance (e.g., resource consumption and
time complexity), that could be applied to four MAS lev-
els (agent, framework, platform, and host). They presented a
framework to select appropriate metrics for a given applica-
tion and performed a case study on a distributed constrained
optimization problem. Di Bitonto et al. [259] developed a hier-
archical metric system where both interagent (communication
and cooperation) and intra-agent metrics measured environ-
ment complexity, agent rationality, autonomy, reactivity, and
adaptability. This system was tested on a knowledge manage-
ment problem for the automotive industry with two agents
only. Marir et al. [260] proposed an evaluation platform that
included metrics like average of communication load and val-
idated the platform on an auctioning problem. Nevertheless,
standards to evaluate and compare the performance of MAS
on real-world environments are still underdeveloped. Existing
metrics have been tested on a hand-full of narrow-scoped
scenarios that did not necessarily include robot agents.

G. Other Challenges

Task complexity poses a challenge for decision making
algorithms because they do not have the capability of recogniz-
ing what tasks can be decomposed into simpler tasks that they
can complete. Adding this capability to decision making algo-
rithms in MAS in addition to dynamically recognizing what
tasks require tight coordination and what tasks can be accom-
plished with minimal interaction among agents will increase
the scope of automated tasks. Learning algorithms for deci-
sion making and perceiving agents should be autonomous.
Reducing the number of manually tunable hyper parame-
ters that require human intervention will allow algorithms to
generalize better to unknown environments.

X. CONCLUSION

This survey discusses decision making models and algo-
rithms to find policies for cooperative MAS for different appli-
cations. MDP and game theoretic models, swarm intelligence,
and IDs were covered, for which optimal and suboptimal poli-
cies were obtained using RL, DP, direct policy search, Monte
Carlo methods, linear, quadratic and mixed integer program-
ming, evolutionary computing, and RNN. MAS applications
noted include smart electric grids, WSN, intelligent trans-
portation systems, and robot teams performing search and
rescue, object transport, and exploration and mapping. While
state-of-the-art methods within the past five years are sig-
nificantly better than their predecessors, research advances
in this field are promising but still needs to answer many
questions. Decision making algorithms should leverage big
data advancements and the Internet of Things to obtain bet-
ter policies, algorithms should be scalable as more complex
tasks require larger MAS, and distributed algorithms should be
adopted to ease the computational burden and run on compu-
tationally limited devices. Furthermore, evaluation standards
or benchmarks need to be developed to enable comparison of
algorithms and to facilitate their verification and validation.
These improvements would take us a step closer to effective
deployment of various MAS in smart cities.

Even though this survey focused on positively interacting
MAS, MAS with negative interactions is has many real-world
applications. Competitive MAS in robotics, intelligent trans-
portation systems, smart electric grids, among others is an
active area of research. Decision making models based on the-
ories in economics, game theory, and psychology have been
developed. MAS with conflicting interactions is also a promi-
nent area of research especially in robotics and intelligent
transportation systems where mobile vehicles use the same
infrastructure and must co-exist with minimal interference
to complete conflicting goals. Research areas such as con-
flict management, conflict resolution, and deceptive behavior
modeling have emerged to address these issues.
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