AGT 6th tutorial*

30 November 2023

1 Regret minimization and CCE

For a game G = (P, A, C) in a normal game for n players the probability distribution p(a) on the set A is a correlated equilibrium in G, if $\sum_{a_{-i} \in A_{-i}} C_i(a_i; a_{-i})p(a_i; a_{-i}) \leq \sum_{a_{-i} \in A_{-i}} C_i(a'_i; a_{-i})p(a_i; a_{-i})$ for all players $i \in P$ and all $a_i, a'_i \in A_i$. Probability distribution p(a) on the set A is a coarse correlated equilibrium in G, if $\sum_{a \in A} C_i(a)p(a) \leq \sum_{a \in A} C_i(a'_i; a_{-i})p(a)$ for all players $i \in P$ and all $a'_i \in A_i$.

Exercise 1. Formally prove that every correlated equilibrium is a coarse correlated equilibrium.

Exercise 2. Compute all CCE from the prisoners dilemma.

	Т	\mathbf{S}
Т	(2,2)	(0,3)
\mathbf{S}	(3,0)	(1,1)

Table 1: Game from exercise 2

There are N available actions $X = \{1, ..., N\}$ and at each time step t the online algorithm A selects a probability distribution $p^t = (p_1^t, ..., p_N^t)$ over X. After the distribution p^t is chosen at time step t, the adversary chooses a loss vector $\ell^t = (\ell_1^t, ..., \ell_N^t) \in [-1, 1]^N$, where the number ℓ_i^t is the loss of action i in time t. The algorithm A then experiences loss $\ell_A^t = \sum_{i=1}^N p_i^t \ell_i^t$. After T steps, the loss of action i is $L_i^T = \sum_{t=1}^T \ell_i^t$ and the loss of A is $L_A^T = \sum_{t=1}^T \ell_A^t$. The external regret of A is $R_A^T = \max_{i \in X} \{L_A^T - L_i^T\}$.

Exercise 3 (*). Prove the following statements about lower bounds for external regret.

- (a) Let N a T be natural numbers such that N is power of 2 and $T < \log_2 N$, then there exists choice of random vectors of losses from $\{0,1\}$ such that every online algorithm A satisfy $\mathbb{E}[L_A^T] \ge T/2$ and $L_{min}^T = 0$
- (b) For N = 2, there exists a choice of random vectors of losses from $\{0,1\}$ such that every online algorithm A satisfy $\mathbb{E}[L_A^T L_{min}^T] \ge \Omega(\sqrt{T})$.

^{*}Informace o cvičení naleznete na http://kam.mff.cuni.cz/~ryzak/