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1 ε-Nash and correlated equilibria

Let G = (P,A, u) be a normal-form game of n players and let ε > 0. A strategy profile s =
(s1, . . . , sn) is an ε-Nash equilibrium if, for every player i ∈ P and for every strategy s′i ∈ Si, we
have ui(si; s−i) ≥ ui(s

′
i; s−i)− ε.

Let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and
∑

a∈A p(a) = 1.
The distribution p is a correlated equilibrium in G if∑

a−i∈A−i

ui(ai; a−i)p(ai; a−i) ≥
∑

a−i∈A−i

ui(a
′
i; a−i)p(ai; a−i)

for every player i ∈ P and all pure strategies ai, a
′
i ∈ Ai.

Exercise 1. Show that, in every normal-form game G = (P,A, u), every convex combination of
correlated equilibria is a correlated equilibrium.

Proof. Assume p and p′ are two correlated equilibria of G. We show that p′′ = tp+ (1− t)p′ is a
correlated equilibrium as well. First, observe that p′′ is a probability distribution. The rest follows
immediately, as the fact that p and p′ are correlated equilibria gives∑

a−i∈A−i

ui(ai; a−i)p
′′(ai; a−i) =

∑
a−i∈A−i

ui(ai; a−i)(t · p(ai; a−i) + (1− t) · p′(ai; a−i)) ≥∑
a−i∈A−i

ui(a
′
i; a−i)(t · p(ai; a−i) + (1− t) · p′(ai; a−i)) =

∑
a−i∈A−i

ui(a
′
i; a−i)p

′′(ai; a−i)

for every player i ∈ P and all pure strategies ai, a
′
i ∈ Ai.

Exercise 2. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 = {U,D}
and A2 = {L,R} with payoff function u depicted in Table 1.

L R

U (1,1) (0,0)

D (1 + ε
2 , 1) (500,500)

Table 1: A game from Exercise 2.

Show that there is an ε-Nash equilibrium s of G such that ui(s
′) > 10ui(s) for every i ∈ P and

every Nash equilibrium s′ of G. In other words, there might be games where some ε-Nash equilibria
are far away from any Nash equilibrium.

Solution. First, we determine all Nash equilibria of G. For i ∈ {1, 2}, let si by mixed strategy
for player i that chooses each action a from Ai with probability pa and let s = (s1, s2) be the
corresponding mixed-strategy profile. The expected payoff of player 1 is

u1(s) = 1pUpL + 0pUpR + (1 + ε/2)pDpL + 500pDpR

= pUpL + (1 + ε/2)(1− pU )pL + 500(1− pU )(1− pL)

= (500− ε/2)pUpL − (499− ε/2)pL − 500pU + 500

= pU ((500− ε/2)pL − 500)− (499− ε/2)pL + 500
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and, similarly, for player 2,

u2(s) = 1pUpL + 0pUpR + 1pDpL + 500pDpR

= pUpL + (1− pU )pL + 500(1− pU )(1− pL)

= 500pUpL − 499pL − 500pU + 500

= pL(500pU − 499)− 500pU + 500

For fixed pL, the function u1(s) is decreasing in pU and setting pU = 0 is a best response for player
1, achieving expected payoff 500− (499− ε/2)pL − ε

2 . Setting pL = 0 is a best response for player
2 if 500pU ≤ 499. Altogether, we get that there is a unique Nash equilibrium s′ = (D,R) (with
probability vector (pU , pL) = (0, 0)). Note that u1(s

′) = 500 = u2(s
′). Of course, this is also

ε-Nash equilibrium.
Now, we show that the strategy profile s = (U,L) is another ε-Nash equilibrium. We are then

finished, as u1(s) = 1u2(s). We need to show that for every player i ∈ P and for every strategy
s′i ∈ Si, we have ui(si; s−i) ≥ ui(s

′
i; s−i)− ε. That is,

u1(U ;L) ≥ u1(s
′
1;L)− ε and u2(L;U) ≥ u2(s

′
2;U)− ε.

Let s′ be a strategy where player 1 selects U with probability p and D otherwise and player 2
selects L with probability q and R otherwise. Then

u1(s
′
1;L) = p · 1 + (1− p)(1 + ε/2) = 1 +

ε

2
− ε

2
p

and
u2(s

′
2;U) = q · 1 + (1− q) · 0 = q.

Thus the inequalities are satisfied, as

1 = u1(U ;L) ≥ u1(s
′
1;L)− ε = 1− ε

2
− ε

2
p and 1 = u2(L;U) ≥ u2(s

′
2;U)− ε = q − ε,

and s is an ε-Nash equilibrium. Note that the first inequality is not satisfied for p < 1 without
subtracting ε, thus (U,L) is not a Nash equilibrium.

Exercise 3. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 = {U,D}
and A2 = {L,R} with payoff function u depicted in Table 2.

L R

U (6,6) (2,7)

D (7,2) (0,0)

Table 2: A game from Exercise 3.

( a) Compute all Nash equilibria of G and draw the convex hull of Nash equilibrium payoffs.

(b) Is there any correlated equilibrium of G (for some ditribution p) that yields payoffs outside
this convex hull?

Solution. (a) For i ∈ {1, 2}, let si by mixed strategy for player i that chooses each action a from
Ai with probability pa and let s = (s1, s2) be the corresponding mixed-strategy profile. The
expected payoff of player 1 is

u1(s) = 6pUpL + 2pUpR + 7pDpL + 0pDpR

= 6pUpL + 2pU (1− pL) + 7(1− pU )pL

= 2pU + 7pL − 3pUpL = pU (2− 3pL) + 7pL

and, similarly, for player 2,
u2(s) = pL(2− 3pU ) + 7pU .
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For fixed pL < 2/3, the function u1(s) is increasing in pU and thus setting pU = 1 is a best
response for player 1 with expected payoff 2+4pL. If pL > 2/3 is fixed, the function u1(s) is
decreasing in pU and setting pU = 0 is a best response for player 1, achieving expected payoff
7pL. If PL = 2/3, then an arbitrary pU gives expected payoff 7pL = 14/3. Analogously,
setting pL = 1 is a best response for player 2 if pU < 2/3, pL = 0 if pU > 2/3 and arbitrary
pl if pU = 2/3. Altogether, we get the Nash equilibria with probability vectors (1, 0), (0, 1),
and (2/3, 2/3) with expected payoffs (2, 7), (7, 2), and (14/3, 14/3), respectively. The convex
hull of Nash equilibrium payoffs is depicted in Figure 1.

(0, 0)

2

14/3
5

77

14/32 5 7

Figure 1: A convex hull of Nash equilibrium payoffs from Exercise 3, depicted by the grey polygon.
The correlated equilibrium payoff achieving value (5, 5) is denoted by empty circle. Note that it
lies outside the convex hull of Nash equilibrium payoffs.

(b) We consider the probability distribution p that selects each of the following three strategy
profiles (U,R), (U,L), and (D,L) independently at random with probability 1/3. First,
we show that p is a correlated equilibrium. If player 1 is told to play D it must be that
the outcome arising from the above probability distribution in the correlated equilibrium is
L, since (D,R) does not receive a positive probability. In this setting, player 1’s expected
payoff from selecting D is 7, while that from unilaterally deviating towards U is only 6.
Hence, player 1 does not have incentives to deviate from D. Similarly, if player 1 is told to
play U , then he does not know whether the realization of the above probability distribution
is outcome (U,L) or (U,R). His expected payoff from agreeing to select U is

1
3

1
3 + 1

3

· 6 +
1
3

1
3 + 1

3

· 2 = 4.

Note that the first ratio identifies the probability of outcome (U,L), conditional on U oc-
curring. Similarly, the second term identifies the conditional probability of outcome (U,R),
given that U occurs. If, instead, player 1 deviates to D, his expected utility becomes

1
3

1
3 + 1

3

· 7 +
1
3

1
3 + 1

3

· 0 =
7

2
< 4.

Therefore, player 1 does not have strict incentives to deviate in this setting either. By
symmetry, player 2 does not have incentives to deviate from the correlated equilibrium and
thus we have a correlated equilibrium.

Then the expected payoff of player 1 at this correlated equilibrium s is

u1(s) =
1

3
(1 · 7 + 0 · 0) + 2

3

(
1

2
· 6 + 1

2
· 2
)

= 5.
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The first term is when player 1 plays D (with probability 1/3) and player 2 plays L or R with
probabilities 1 and 0, respectively. The second term is when player 1 plays U (with probability
1/3 + 1/3 = 2/3) and player 2 plays L or R, each with probability (1/3)/(1/3 + 1/3) = 1/2.
Analogously, the expected payoff of player 1 at this correlated equilibrium is u2(s) = 5. As
seen in Figure 1 this payoff lies outside the convex hull of Nash equilibrium payoffs of G.

Exercise 4. Spoč́ıtejte všechna korelovaná ekvilibria ve hře Vězňovo dilema.

T S

T (-2,-2) (0,-3)

S (-3,0) (-1,-1)

Table 3: Game from example 4

Proof. We show that the only correlated equilibrium is the Nash equilibrium (T, T ). We write out
all the inequalities form the definition of correlated equilibrium p (omitting cases ai = a′i that are
trivially satisfied) and obtain

u1(S, S)p(S, S) + u1(S, T )p(S, T ) ≥ u1(T, S)p(S, S) + u1(T, T )p(S, T )
u1(T, S)p(T, S) + u1(T, T )p(T, T ) ≥ u1(S, S)p(T, S) + u1(S, T )p(T, T )
u2(S, S)p(S, S) + u2(T, S)p(T, S) ≥ u2(S, T )p(S, S) + u2(T, T )p(T, S)
u2(S, T )p(S, T ) + u2(T, T )p(T, T ) ≥ u2(S, S)p(S, T ) + u2(T, S)p(T, T ).

Plugging in the payoffs, we get

−p(S, S)− 3p(S, T ) ≥ −2p(S, T )

−2p(T, T ) ≥ −p(T, S)− 3p(T, T )

−p(S, S)− 3p(T, S) ≥ −2p(T, S)

−2p(T, T ) ≥ −p(S, T )− 3p(T, T ).

This can be rewritten as

0 ≥ p(S, T ) + p(S, S)

p(T, T ) + p(T, S) ≥ 0

0 ≥ p(T, S) + p(S, S)

p(T, T ) + p(S, T ) ≥ 0

from which we see p(T, T ) = 1 and p(T, S) = p(S, T ) = p(S, S) = 0. So there is unique CE
(T, T ).
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