9th October 2023

1 Lemke–Howson algorithm

Polyhedron of best responses of the player 1 in a matrix game $G = (\{1, 2\}, A, u)$ with payoff matrices M and N is the polyhedron

$$\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} \colon x \ge \mathbf{0}, \mathbf{1}^\top x = 1, N^\top x \le \mathbf{1}v \}.$$

Player 2 has the following polyhedron

$$\overline{Q} = \{(y, u) \in \mathbb{R}^n \times \mathbb{R} \colon y \ge \mathbf{0}, \mathbf{1}^\top y = 1, My \le \mathbf{1}u\}.$$

Point (x, v) of a polyhedron \overline{P} has a *label* $i \in A_1 \cup A_2$, if either $i \in A_1$ and $x_i = 0$ or $i \in A_2$ and $(N^{\top})_i x = v$. A point (y, u) of the polyhedron \overline{Q} has a label $i \in A_1 \cup A_2$, if either $i \in A_1$ and $(M)_i y = u$ or $i \in A_2$ and $y_i = 0$.

For nonnegative matrices M and N^{\top} , which do not have a null column is a normalized polytope of best responses of player 1 the following polytope

$$P = \{ x \in \mathbb{R}^m \colon x \ge \mathbf{0}, N^\top x \le \mathbf{1} \}.$$

Player 2 has the following polytope

$$Q = \{ y \in \mathbb{R}^n \colon y \ge \mathbf{0}, My \le \mathbf{1} \}.$$

Labels in P a Q are defined analogically as in \overline{P} a \overline{Q} .

Nash equilibria of not degenerated game correspond to pairs of vertices from $P \times Q \setminus \{(\mathbf{0}, \mathbf{0})\}$, which have all the labels.

Exercise 1. Draw a polyhedron of best responses and normalized polytope of best responses in the game of chicken. Then in the given polyhedra find all pairs of vertices corresponding to Nash equilibria.

	Turn (3)	Go straight (4)
Turn (1)	(10, 10)	(9, 11)
Go straight (2)	(11, 9)	(0,0)

Table	1:	Game	of	chic	ken.

Exercise 2. Use Lemke-Howson algorith and compute all the Nash equilibria in the following game of two players:

$$M = \begin{pmatrix} 0 & 6\\ 2 & 5\\ 3 & 3 \end{pmatrix} \quad a \quad N = \begin{pmatrix} 1 & 0\\ 0 & 2\\ 4 & 3 \end{pmatrix}.$$

Begin with the label 2.

A configuration graph has vertices composed of pairs of (x, y) vertices from $P \times Q$, which are *k*-almost fully labeled, in other words each label $A_1 \cup A_2 \setminus \{k\}$ is a label either of point x or point y. Vertices (x, y) and (x', y') are an edge, if either x = x' and yy' is edge in Q or if xx' is an edge P and y = y'.

Exercise 3. Prove that Lemke–Howson algorithm can not end in vertices of a form $(x, \mathbf{0})$ or $(\mathbf{0}, y)$ in the configuration graph.

^{*}Info about tutorial http://kam.mff.cuni.cz/~ryzak/