Algorithmic game theory – 3rd tutorial exercises^{*}

26th October 2023

1 Matrix games

Matrix game is normal form game of 2 players.

Matrix game is not degenerated if each player has at most k best responses to any other strategy with domain of quantity of k. Zero-sum game of 2 players is a matrix game where $u_1(a) = -u_2(a)$ for any action a. Matrix game $G = (\{1, 2\}, A, u)$ with actions $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ have payoff matrices M and N, where $(M)_{i,j} = u_1(i,j)$ a $(N)_{i,j} = u_2(i,j)$ for all $i \in A_1$ and $j \in A_2$. In the lecture the following algorithm for computing the Nash equilibria of not degenerated games was introduced.

Algorithm 1.1: SUPPORT ENUMERATION(G)

 $\begin{array}{l} Input: \text{Not degenerated matrix game } G. \\ Output: \text{All NE of the game } G. \\ \textbf{for all } k \in \min\{m,n\} \text{ and pair of domains } (I,J) \text{ of quantity } k \\ \begin{cases} \text{solve the system of equalities } (N^{\top})_j x = v, (M)_i y = u, \sum_{i \in I} x_i = 1, \\ \sum_{j \in J} y_j = 1 \text{ for each } i \in I, j \in J \\ \text{ when } x, y \geq \textbf{0} \text{ and } u = \max\{(M)_i y \colon i \in A_1\}, v = \max\{(N^{\top})_j x \colon j \in A_2\}, \\ \text{ then give } (x,y) \text{ as a NE} \\ \end{array}$

Exercise 1. Use Support enumeration algorithm from the lecture to find Nash equilibrium in the Game of chicken.

	Turn (1)	Go straight (2)
Turn (1)	(0,0)	(-1,1)
Go straight (2)	(1,-1)	(-10,-10)

Table 1	1:	Game	of	chicken
---------	----	------	----	---------

Exercise 2. Is the following game degenerated? Find all the NE in this game. What is specific for NE in this example?

	Cooperate (1)	Detonate (2)
Cooperate (1)	(0,0)	(0,1)
Detonate (2)	(1,0)	(0,0)

|--|

Exercise 3. Decide which of these payoff matrices correspond to degenerated games.

(a)
$$M = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix} a N = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 1 & 1 \end{pmatrix}.$$

^{*}Tutorial information http://kam.mff.cuni.cz/~ryzak/

(b)
$$M = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix} a N = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}.$$

Exercise 4. Prove that the following linear programs from the proof of Minimax theorem are dual to each other.

(a) For matrix $M \in \mathbb{R}^{m \times n}$,

	Program P	Program D
Variable	y_1, \ldots, y_n	x_0
Objective function	$\min x^\top M y$	$\max x_0$
Constraints	$\sum_{j=1}^{n} y_j = 1,$	$1x_0 \le M^\top x.$
	$y_1,\ldots,y_n\geq 0.$	

(b) For matrix $M \in \mathbb{R}^{m \times n}$,

	Program P'	Program D'
Variable	y_0, y_1, \ldots, y_n	x_0, x_1, \ldots, x_m
Objective	$\min y_0$	$\max x_0$
Constraints	$1y_0 - My \ge 0,$	$1x_0 - M^\top x \le 0,$
	$\sum_{j=1}^{n} y_j = 1,$	$\sum_{i=1}^{m} x_i = 1,$
	$y_1,\ldots,y_n\geq 0.$	$x_1,\ldots,x_m \ge 0.$

You can use recipe table.

Exercise 5. Prove that if (s_1, s_2) and (s'_1, s'_2) are mixed NE of a zero-sum game then also the strategy profiles (s_1, s'_2) and (s'_1, s_2) are mixed NE of the game.

	Primal	Dual
Variables	$\mathbf{x} = (x_1, \dots, x_m)$	$\mathbf{y} = (y_1, \dots, y_n)$
Matrices	$A \in \mathbb{R}^{n \times m}$	$A^{\top} \in \mathbb{R}^{m \times n}$
Right hand side	$\mathbf{b} \in \mathbb{R}^n$	$\mathbf{c} \in \mathbb{R}^m$
Objective function	$\max \mathbf{c}^{\top} \mathbf{x}$	$\min \mathbf{b}^\top \mathbf{y}$
Constraints	<i>i</i> -th constraint has \leq	$y_i \ge 0$
	2	$y_i \le 0$
	=	$y_i \in \mathbb{R}$
	$x_j \ge 0$	<i>j</i> -th constraint has \geq
	$x_j \le 0$	<
	$x_j \in \mathbb{R}$	=