Geometric representations of linear codes

Pavel Rytíř

Department of Applied Mathematics
Charles University in Prague
Advisor: Martin Loebl

November 22, 2011
Discrete Math Seminar - Simon Fraser University
Linear code

Linear code C of length n and dimension d over field \mathbb{F}

- Linear subspace of dimension d of vector space \mathbb{F}^n
- $W_C(x) := \sum_{c \in C} x^{w(c)}$, $w(c)$ number of non-zero entries

Puncturing C along S

- $S \subseteq \{1, \ldots, n\}$, $C/S = \{(c_i | i \notin S)_{i=1}^n | c \in C\}$
- The puncturing C along S means deleting the entries indexed by S from C.
- $C/\{1\} = \{(c_2, c_3, \ldots, c_n) | (c_1, c_2, \ldots, c_n) \in C\}$
Motivation

Incidence matrix $A = (A_{ij})$ of graph G

\[
A_{ij} := \begin{cases}
1 & \text{if vertex } v_i \text{ belongs to edge } e_j, \\
0 & \text{otherwise.}
\end{cases}
\]

- The cycle space \mathcal{C} of a graph G is the kernel of A over $\mathbb{GF}(2)$.
- Graph G embedded as one dimensional simplicial complex in \mathbb{R}^3 may be considered as geometric representation of \mathcal{C}.
- **It is useful**: For graph G of fixed genus, there exists a polynomial algorithm for computation of $W_{\mathcal{C}}(x)$ by Galluccio and Loebl. This algorithm uses geometric properties of G namely embedding on closed Riemann surfaces.
2D simplicial complexes

- Are there geometric representation of linear codes that are not cycle spaces of graphs?
2D simplicial complexes

- Are there geometric representation of linear codes that are not cycle spaces of graphs?
- My representations will be two dimensional simplicial complexes.

2D simplicial complex Δ

- $\Delta = \{\text{vertices, edges, triangles}\}$
- Every face of a simplex from Δ belongs to Δ
- Intersection of every two simplices of Δ is a face of both
Geometric representations of linear codes

Background

2D simplicial complexes

Incidence matrix $A = (A_{ij})$ of Δ

$$A_{ij} := \begin{cases}
1 & \text{if edge } e_i \text{ belongs to triangle } t_j, \\
0 & \text{otherwise.}
\end{cases}$$

Cycle space $\ker \Delta$ of Δ over \mathbb{F}

$$\ker \Delta = \{ x | A_\Delta x = 0 \}$$
Linear code C is triangular representable if:

- There exists a triangular configuration Δ s. t. $C = \ker \Delta / S$ for some set S
- There is a bijection between C and $\ker \Delta$
Linear code C is triangular representable if:

- There exists a triangular configuration Δ s. t. $C = \ker \Delta / S$ for some set S
- There is a bijection between C and $\ker \Delta$

Do we need two dimensional simplicial complexes?

Lets try C is graphic representable if:

- There exists a graph G s. t. $C = \ker G / S$ for some set S
- The class of linear codes that are cycle spaces of graphs is closed under operation of puncturing.
- If C is not cycle space of a graph, there is no such graph G
Geometric representations of linear codes

My results

Theorem

Let C be a linear code over rationals or over $GF(p)$, where p is a prime. Then C is triangular representable.

Theorem

If C is over $GF(p)$, where p is a prime, then there exists a triangular representation Δ such that: if $\sum_{i=0}^{m} a_i x^i$ is the weight enumerator of $\ker \Delta$ then

$$W_C(x) = \sum_{i=0}^{m} a_i x^{i \mod e},$$

where $e = \frac{\text{(number of punctured coordinates)}}{\dim C}$.
My results

Theorem

Let \mathbb{F} be a field different from rationals and $GF(p)$, where p is a prime. Then there exists a linear code over \mathbb{F} that is not triangular representable.
My work immediately raises the following questions:

- Which binary codes can be represented by 2D simplicial complex embeddable into \mathbb{R}^3? (every 2D complex can be embedded into \mathbb{R}^5)

- Relation with permanents and determinants of 3D matrices (tensors).

- Application of the geometric representations to the Ising problem.
A trivial one dimensional code

The most trivial case is a code generated by a vector that contains only entries $a, -a$. $C = \text{span}(\{(a, a, -a, \ldots, a)\})$. This code is represented by the following complex:

This is a triangulation of a 2-dimensional sphere by triangles such that there is an assignment of $+$ and $-$ to triangles such that every edge is incident with $+$ and $-$ triangle. For every k there exists such triangulation with l triangles, $l > k$.
An example of triangular representation Δ of $C = \text{span}(\{(a, -a, a)\})$

- I assign to $+$ triangles value a and to $-$ triangles value $-a$.
- Equation given by the row of the incidence matrix indexed by any edge e has form $a - a = 0$.

$C = \ker \Delta/\{ \text{non-green triangles} \}$

$\text{dim } C = \text{dim } \ker \Delta = 1$
An example of triangular representation Δ of $C = \text{span}((a, -a, a))$

- Let p be the field characteristic. The weight enumerator of $\ker \Delta$ equals $W\Delta(x) = 1 + (p - 1)x^k$, k is the number of triangles of Δ.

\[
W_C(x) = 1 + (p - 1)x^{(k \mod (k - 3))} = 1 + (p - 1)x^3
\]
Representation Δ of a code C over prime field generated by a vector of form $(a_1, a_2, -a_1, -a_2, \ldots)$

- Here I need that the field is a prime field. I use that the additive group of every prime field is cyclic.
- C is generated by a vector that contains only four different elements $a_1, a_2, -a_1, -a_2$. $a_1 = n_1 \times g$ and $a_2 = n_2 \times g$ for some generator g of the cyclic group.
- Such a code can be represented by two triangular spheres interconnected by tunnels.
Triangular tunnel
Representation Δ of $\mathcal{C} = \text{span}(\{(a_1, a_2, -a_1, -a_2, \ldots)\})$

\[a_1 = n_1 \times g, \quad a_2 = n_2 \times g, \quad g \text{ generator of the additive group} \]
Representation Δ of $C = \text{span}(\{(a_1, a_2, -a_1, -a_2, \ldots)\})$

- The equation indexed by the edges different from the middle empty triangle are $a_1 - a_1 = 0$ or $a_1 - a_1 = 0$.
- The equation indexed by the edges of the middle empty triangle are

 $$n_2 \times a_1 - n_1 \times a_2 = n_2 \times (n_1 \times g) - n_1 \times (n_2 \times g) = 0.$$

- So the generating vector belongs to $\ker \Delta$.
Representation Δ of $C = \text{span}(\{(a_1, a_2, -a_1, -a_2, \ldots)\})$

- The equations $a_1 = x$ and $a_2 = x$ have obviously unique solutions a_1 and a_2, respectively.
- The equation $n_2 \times a_1 = n_1 \times x$ has unique solution a_2, since the additive group has a prime or an infinite order.
- Therefore $\dim \ker \Delta = \dim C = 1$.
Representation Δ of a code \mathcal{C} over primefield generated by a vector of form $(a_1, a_2, \ldots, a_k, -a_1, \ldots)$

- This code can be represented by k triangular spheres interconnected by tunnels analogously as in the previous case.
- I supposed that all $a_i \neq 0$. If the generator of the code contains zeros, I add to the representation one isolated triangle for each zero entry.
- I can represent all one dimensional codes over primefields.
Let C be a code over a primefield and let $B = \{b_1, \ldots, b_d\}$ be a basis of C.

For every b_i, I construct a representation Δ_{b_i} that represents the code $\text{span}(\{b_i\})$, as in the previous steps.

Let $B^n = \{B^n_1, \ldots, B^n_n\}$ be the triangles of Δ_{b_i} that correspond to the entries of b_i.

$\text{span}(\{b_i\}) = \ker \Delta_{b_i} / (\text{non-}B^n\text{ triangles})$.

I deform every Δ_{b_i} so that the triangles B^n are in this position.
More dimensional codes

The representation of \mathcal{C} with respect to B is $\Delta_B^C = \bigcup_{i=1}^{d} \Delta_{b_i}$.

The solutions of equations indexed by edges of B^n triangles are all linear combinations of solutions of each part Δ_{b_i}, $i = 1, \ldots, d$.

Theorem

- $\ker \Delta_B^C / (\text{non-}B^n \text{ triangles}) = \mathcal{C}$
- $\dim \ker \Delta_B^C = \dim \mathcal{C}$
I can make the representation such that $|\Delta b_i| - w(b_i) = e$ for all $i = 1, \ldots, d$ and e is greater than the length of C. Such representation is called balanced.
Balanced representation exists

I can apply the following subdivisions, the first increase the number of triangles by 6 and the second by 4.
Let C be a code and Δ^C_B be its balanced representation with respect to a basis B.

Let $c = \sum_{b \in B} \alpha_b b$. Define a mapping $f : C \mapsto \ker \Delta^C_B$ as $f(c) := \sum_{b \in B} \alpha_b \Delta_b$.

Combination degree of c is the number of non-zero α_b's ($\deg(c)$).

Let $b \in B$, then $w(f(b)) = w(b) + e$.

Let $c \in C$, then $w(f(c)) = w(c) + \deg(c)e$.

$w(f(c)) \mod e = (w(c) + \deg(c)e) \mod e = w(c)$.

Note that, $w(c) < e$ for every c.
Weight enumerator, balanced representations

if $\sum_{i=0}^{m} a_i x^i$ is the weight enumerator of Δ_C^B then

$$W_C(x) = \sum_{i=0}^{m} a_i x^{(i \mod e)},$$

where $e = (\text{number of non-}\, B^n \, \text{triangles})/\, \text{dim} \, C$
My results

Theorem

Let \mathbb{F} be a field different from rationals and $GF(p)$, where p is a prime. Then there exists a linear code over \mathbb{F} that is not triangular representable.
Let $GF(4) = \{0, 1, x, 1 + x\}$.

The linear code over $GF(4)$ generated by vector $(1, x)$ is not triangular representable.

By an algebraic argument there is no $0, 1$ matrix with the dimension of kernel equals one and having a vector of form $(1, x, *, *, \ldots, *)$ in the kernel.
Thank you for your attention