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Motivation: counting statistics and limits

F1

��
F2

// G

F3

??

• Dense graphs:

t(F, G) =
hom(F, G)

|G||F |

• Very sparse graphs:

dens(F, G) =
hom(F, G)
|G|

Problem

Given a graph G. Does there exist G[A] such that:

• For every small F , hom(F, G[A])≈ hom(F, G);
• G[A] has a very regular structure?
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What can we expect?
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What can we expect?

For start forests, we cannot expect more than

hom(F, G[A])≈ hom(F, G)
log hom(F, G)
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Small Colored Forests
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Blowing Colored Forests

Y : Colored rooted forest

µ : Mapping V (Y )→ N

2

3 2

1 4

(Y,µ) Y ∗µ
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Colored Rooted Forests with Bounded Height

Theorem (Nešeťril, POM — 2012)

Let Y be a colored rooted forest of height h and let p ∈ N. There
exists bY and a blowing µ of bY such that |bY |< F(h, p) and
∀F, |F | ≤ p =⇒ ∃µF with

F ∗µF ,→ bY ∗µ ,→ Y

and

hom(F, bY ∗µ)≥
∏

v∈V (F)

µF (v)≥
ε(p, h) hom(F, Y )

(1+ log hom(F, Y ))ph
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Sketch of the Proof

Lemma (Approximating sum of products)

Let ai, j ∈ N where 1≤ j ≤ p. Assume

N =
∑

i

p
∏

j=1

ai, j .

Then there exist c1, . . . , cp ∈ N such that

∑

i

p
∏

j=1

¨

c j , if ai, j ≥ c j

0, otherwise

«

≥ N

(1+ log N)p
.
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Sketch of the Proof

Lemma (Common Refinement)

Assume
F1 ∗µ1 � q

##
F2 ∗µ2

� � // Y

Then ∃F,µ : µ′1 ≈ µ1/2|F2|, µ′2 ≈ µ2/2|F1|, such that
|F | ≤ f (|F1|, |F2|) and

F1 ∗µ′1 � r
$$

F2 ∗µ′2 �
� // F ∗µ � � // Y
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Moving to Broader Classes
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Low tree-depth decompositions

Tree-depth td(G)

The tree-depth of G is the minimum height of a rooted forest F
such that G ⊆ Clos(F).

Chromatic numbers χp(G)

χp(G) is the minimum of colors such that any subset I of ≤ p
colors induce a subgraph GI so that td(GI)≤ |I |.
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Low tree-depth decomposition

Lemma

Let G be a graph, let p ∈ N, and let q = p2p2
.

Then there exists G[A] such that

• td(G[A])≤ q;

• for every F with |F | ≤ p it holds

(#F ⊆ G[A])≥ 1

χq(G)p
(#F ⊆ G).

Color Encoding

Graphs with td≤ t ≈ 2t -colored forests with height ≤ t.
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Low tree-depth decompositions

Let C be an infinite class of graphs.

Theorem (Nešeťril, POM — 2006)

∀p, χp(G) = O(1) in C ⇐⇒ C has bounded expansion.

Theorem (Nešeťril, POM — 2010)

∀p, logχp(G) = o(log |G|) in C ⇐⇒ C is nowhere dense.
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Bounded Expansion Classes

Definition

A class C has bounded expansion if there exists f : N→ N such
that for integer k it holds:
No G ∈ C contains a ≤ k-subdivision of a graph with average
degree > f (k).

Examples

Bounded degree, planar, classes excluding a topological minor, etc.
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Nowhere Dense Classes

Definition

A class C is nowhere dense if there exists f : N→ N such that for
integer k it holds:
No G ∈ C contains a ≤ k-subdivision of K f (k).

Examples

Classes with bounded expansion, classes such that
∆(G)< girth(G), etc.
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Class Taxonomy

Bounded height forests

��

Planar

��
Bounded tree-depth

--

Bounded genus

��

Bounded degree

vv

Excluded minor

��
Excluded topological minor

��
Bounded expansion

��
Nowhere dense
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Class Taxonomy

Bounded
expansion

bounded
degree

minor
closed

ultra sparse

Nowhere dense Somewhere dense

Ω(n1+ε)
edges

Ω(n2)
edges
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Consequence

Theorem (Nešeťril, POM — 2012)

Let C be a class with bounded expansion and let p ∈ N. Then
every graph G ∈ C has an induced subgraph G[A] such that:

• td(G[A])≤ p2p2
,

• G[A] is a “blowing” of a graph of order ≤ fC (p);
• for every graph F of order at most p

hom(F, G[A])≥ hom(F, G)
polylog hom(F, G)

.
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Consequence

Theorem (Nešeťril, POM — 2012)

Let C be a nowhere dense class and let p ∈ N. Then for every
ε > 0 there exists N = N(C , p,ε) such that every graph G ∈ C of
order at least N has an induced subgraph G[A] with the
properties:

• td(G[A])≤ p2p2
,

• G[A] is a “blowing” of a graph of order ≤ fC (p);
• for every graph F of order at most p

log hom(F, G[A])≥ (1− ε) log hom(F, G).
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Problems
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Worst Case vs Random Case

For star forest, we cannot expect more than

|G[A]| ≈ |G|
log |G|
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Worst Case vs Random Case

But for a random star forest, we can achieve

|G[A]| ≈ 6(log 2)2

π2 |G|> |G|
4

.
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Random Case

Problem 1

Let C be a monotone class with bounded expansion and let p ∈ N.
Does there exists ε= ε(C , p) such that a random graph G ∈ C has
(with high probability) an induced subgraph G[A] such that:

• td(G[A])≤ p2p2
,

• G[A] is a “blowing” of a graph of order ≤ fC (p);
• for every graph F of order at most p

hom(F, G[A])≥ ε hom(F, G)?
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Homomorphism density

Problem 2

Let C be a monotone class with bounded expansion, let p ∈ N, and
let ε > 0. Does there exists N = N(C , p,ε) such that every graph
G ∈ C of order > N has an induced subgraph G[A] such that:

• td(G[A])≤ fC (p,ε),
• G[A] is a “blowing” of a graph of order ≤ gC (p,ε);
• for every graph F of order at most p

�

�

�

�

hom(F, G[A])

|A|α(F) − hom(F, G)

|G|α(F)
�

�

�

�

< ε?
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Thank you for your
attention.
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