Large structured induced subgraphs with close homomorphism statistics

Jaroslav Nešetřil

Patrice Ossona de Mendez

Charles University Praha, Czech Republic CAMS, CNRS/EHESS Paris, France

ISMP 2012 — Berlin

э

Introduction

Motivation: counting statistics and limits

• Dense graphs:

$$t(F,G) = \frac{\hom(F,G)}{|G|^{|F|}}$$

• Very sparse graphs:

$$\operatorname{dens}(F,G) = \frac{\operatorname{hom}(F,G)}{|G|}$$

Motivation: counting statistics and limits

• Dense graphs:

$$t(F,G) = \frac{\hom(F,G)}{|G|^{|F|}}$$

• Very sparse graphs:

$$\operatorname{dens}(F,G) = \frac{\operatorname{hom}(F,G)}{|G|}$$

Problem

Given a graph *G*. Does there exist G[A] such that:

- For every small F, hom $(F, G[A]) \approx \text{hom}(F, G)$;
- *G*[*A*] has a very regular structure?

э

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

What can we expect?

What can we expect?

What can we expect?

What can we expect?

For start forests, we cannot expect more than

$$\hom(F, G[A]) \approx \frac{\hom(F, G)}{\log \hom(F, G)}$$

イロト イロト イヨト イヨト

Small Colored Forests

Blowing Colored Forests

- *Y* : Colored rooted forest
- μ : Mapping $V(Y) \rightarrow \mathbb{N}$

 (Y, μ)

 $Y * \mu$

イロト イロト イヨト イヨト

Colored Rooted Forests with Bounded Height

Theorem (Nešetřil, POM – 2012)

Let *Y* be a colored rooted forest of height *h* and let $p \in \mathbb{N}$. There exists \widehat{Y} and a blowing μ of \widehat{Y} such that $|\widehat{Y}| < F(h, p)$ and $\forall F, |F| \le p \implies \exists \mu_F$ with

$$F * \mu_F \hookrightarrow \widehat{Y} * \mu \hookrightarrow Y$$

and

$$\hom(F, \widehat{Y} * \mu) \ge \prod_{\nu \in V(F)} \mu_F(\nu) \ge \frac{\epsilon(p, h) \hom(F, Y)}{(1 + \log \hom(F, Y))^{p^h}}$$

ж

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Sketch of the Proof

Lemma (Approximating sum of products)

Let $a_{i,j} \in \mathbb{N}$ where $1 \leq j \leq p$. Assume

$$N = \sum_{i} \prod_{j=1}^{p} a_{i,j}$$

Then there exist $c_1, \ldots, c_p \in \mathbb{N}$ such that

$$\sum_{i} \prod_{j=1}^{p} \left\{ \begin{array}{cc} c_{j}, & \text{if } a_{i,j} \ge c_{j} \\ 0, & \text{otherwise} \end{array} \right\} \ge \frac{N}{(1 + \log N)^{p}}$$

Sketch of the Proof

Lemma (Common Refinement)

Assume

Then $\exists F, \mu: \mu'_1 \approx \mu_1/2|F_2|, \mu'_2 \approx \mu_2/2|F_1|$, such that $|F| \leq f(|F_1|, |F_2|)$ and

Moving to Broader Classes

ヘロト 人間 ト 人 ヨト 人 ヨトー

Low tree-depth decompositions

Tree-depth td(G)

The *tree-depth* of *G* is the minimum height of a rooted forest *F* such that $G \subseteq Clos(F)$.

Chromatic numbers $\chi_p(G)$

 $\chi_p(G)$ is the minimum of colors such that any subset I of $\leq p$ colors induce a subgraph G_I so that $td(G_I) \leq |I|$.

ж

・ロト (雪) (ヨ) (ヨ)

Low tree-depth decomposition

Lemma

Let *G* be a graph, let $p \in \mathbb{N}$, and let $q = p2^{p^2}$. Then there exists *G*[*A*] such that

- $\operatorname{td}(G[A]) \leq q;$
- for every *F* with $|F| \le p$ it holds

$$(\#F \subseteq G[A]) \ge \frac{1}{\chi_q(G)^p} (\#F \subseteq G).$$

Low tree-depth decomposition

Lemma

Let *G* be a graph, let $p \in \mathbb{N}$, and let $q = p2^{p^2}$. Then there exists *G*[*A*] such that

- $\operatorname{td}(G[A]) \leq q;$
- for every *F* with $|F| \le p$ it holds

$$(\#F \subseteq G[A]) \ge \frac{1}{\chi_q(G)^p} (\#F \subseteq G).$$

Color Encoding

Graphs with $td \le t \approx 2^t$ -colored forests with height $\le t$.

э

Low tree-depth decompositions

Let ${\mathscr C}$ be an infinite class of graphs.

Theorem (Nešetřil, POM – 2006)

 $\forall p, \chi_p(G) = O(1)$ in $\mathscr{C} \iff \mathscr{C}$ has bounded expansion.

Low tree-depth decompositions

Let ${\mathscr C}$ be an infinite class of graphs.

Theorem (Nešetřil, POM – 2006)

 $\forall p, \chi_p(G) = O(1) \text{ in } \mathscr{C} \iff \mathscr{C} \text{ has bounded expansion.}$

Theorem (Nešetřil, POM – 2010)

 $\forall p, \log \chi_p(G) = o(\log |G|)$ in $\mathscr{C} \iff \mathscr{C}$ is nowhere dense.

↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ₽ ▶ ↓ □ ₽ ▶ ↓ □ ₽

Bounded Expansion Classes

Definition

A class \mathscr{C} has bounded expansion if there exists $f : \mathbb{N} \to \mathbb{N}$ such that for integer k it holds: No $G \in \mathscr{C}$ contains a $\leq k$ -subdivision of a graph with average degree > f(k).

Examples

Bounded degree, planar, classes excluding a topological minor, etc.

Nowhere Dense Classes

Definition

A class \mathscr{C} is nowhere dense if there exists $f : \mathbb{N} \to \mathbb{N}$ such that for integer k it holds: No $G \in \mathscr{C}$ contains a $\leq k$ -subdivision of $K_{f(k)}$.

Examples

Classes with bounded expansion, classes such that $\Delta(G) < girth(G)$, etc.

Class Taxonomy

Class Taxonomy

Consequence

Theorem (Nešetřil, POM – 2012)

Let \mathscr{C} be a class with bounded expansion and let $p \in \mathbb{N}$. Then every graph $G \in \mathscr{C}$ has an induced subgraph G[A] such that:

- $\operatorname{td}(G[A]) \leq p2^{p^2}$,
- G[A] is a "blowing" of a graph of order $\leq f_{\mathscr{C}}(p)$;
- for every graph *F* of order at most *p*

$$\hom(F, G[A]) \ge \frac{\hom(F, G)}{\operatorname{polylog}\,\hom(F, G)}$$

э

・ ロ ト ・ 雪 ト ・ 目 ト ・

Consequence

Theorem (Nešetřil, POM — 2012)

Let \mathscr{C} be a nowhere dense class and let $p \in \mathbb{N}$. Then for every $\epsilon > 0$ there exists $N = N(\mathscr{C}, p, \epsilon)$ such that every graph $G \in \mathscr{C}$ of order at least N has an induced subgraph G[A] with the properties:

- $\operatorname{td}(G[A]) \le p2^{p^2}$,
- G[A] is a "blowing" of a graph of order $\leq f_{\mathscr{C}}(p)$;
- for every graph *F* of order at most *p*

 $\log \hom(F, G[A]) \ge (1 - \epsilon) \log \hom(F, G).$

Problems

Worst Case vs Random Case

For star forest, we cannot expect more than

$$|G[A]| \approx \frac{|G|}{\log |G|}$$

э

(日)

Worst Case vs Random Case

But for a random star forest, we can achieve

$$|G[A]| \approx \frac{6(\log 2)^2}{\pi^2} |G| > \frac{|G|}{4}.$$

э

(日)

Random Case

Problem 1

Let \mathscr{C} be a monotone class with bounded expansion and let $p \in \mathbb{N}$. Does there exists $\epsilon = \epsilon(\mathscr{C}, p)$ such that a random graph $G \in \mathscr{C}$ has (with high probability) an induced subgraph G[A] such that:

- $\operatorname{td}(G[A]) \leq p2^{p^2}$,
- G[A] is a "blowing" of a graph of order $\leq f_{\mathscr{C}}(p)$;
- for every graph *F* of order at most *p*

 $\hom(F, G[A]) \ge \epsilon \hom(F, G)?$

Homomorphism density

Problem 2

Let \mathscr{C} be a monotone class with bounded expansion, let $p \in \mathbb{N}$, and let $\epsilon > 0$. Does there exists $N = N(\mathscr{C}, p, \epsilon)$ such that every graph $G \in \mathscr{C}$ of order > N has an induced subgraph G[A] such that:

- $\operatorname{td}(G[A]) \leq f_{\mathscr{C}}(p,\epsilon),$
- G[A] is a "blowing" of a graph of order $\leq g_{\mathscr{C}}(p, \epsilon)$;
- for every graph *F* of order at most *p*

$$\frac{\hom(F,G[A])}{|A|^{\alpha(F)}} - \frac{\hom(F,G)}{|G|^{\alpha(F)}} < \epsilon?$$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Thank you for your attention.

