
Charles University in Prague
Faculty of Mathematics and Physics

Computer Science Institute

Peter Zeman

Automorphism Groups of

Geometrically Represented Graphs

Supervisor

RNDr. Pavel Klavı́k

SVOČ 2015, Bratislava

2

Contents

1 Introduction 7

1.1 Automorphism Groups of Graphs . 7

1.2 Graph Isomorphism Problem . 8

1.3 Our Results . 9

1.3.1 Intersection Representations . 9

1.3.2 Groups Acting On Geometric Intersection Representations . . . 13

2 Preliminaries 15

2.1 Notation . 15

2.2 Group Products . 16

2.2.1 Direct Product . 17

2.2.2 Semidirect and Wreath Products 17

2.2.3 Automorphism Groups of Disconnected Graphs 20

2.3 Automorphism Groups of Trees . 20

3 Interval Graphs 23

3.1 PQ- and MPQ-trees . 23

3.1.1 PQ-trees . 24

3.1.2 MPQ-trees. 24

3.1.3 Automorphisms of MPQ-trees 25

3.2 Automorphism Groups of Interval Graphs 27

3.3 Direct Constructions . 28

3.4 Unit Interval Graphs . 29

3.5 Groups Acting On Interval Representations 30

4 Comparability Graphs 33

3

4.1 Modular Decomposition and Modular Tree 33

4.1.1 Modular Tree . 34

4.1.2 Automorphisms of Modular Trees 36

4.2 Automorphism Groups of Comparability Graphs 37

4.3 Automorphism Groups of Permutation Graphs 38

4.4 k-Dimensional Comparability Graphs 41

5 Circle Graphs 45

5.1 Split Decomposition and Split Tree . 45

5.1.1 Split Tree . 46

5.1.2 Automorphisms of Split Trees 47

5.2 Automorphism Groups of Circle Graphs 48

5.3 Groups Acting On Circle Representations 52

6 Conclusions 53

4

Abstract

In this thesis, we describe a technique to determine the automorphism group of a
geometrically represented graph, by understanding the induced action of the auto-
morphism group on the set of all geometric representations. Each automorphism of
a graph can be then interpreted either as an automorphism of a representation, or
as a morphism of a representation to another one. This is similar to known results
from map theory which relate the automorphism group of a map to the automorphism
group of a graph.

We apply this technique to interval graphs (intersection graphs of closed inter-
vals of the real line), permutation graphs (intersection graphs of linear functions),
and to circle graphs (intersection graphs of chords of a circle), which are important
intersection-defined classes. For those classes of graphs, the structure of all repre-
sentations can be captured using several structures from algorithmic graph theory,
in particular, PQ-trees can be used for interval graphs, modular trees for permuta-
tion graph, and split trees for circle graphs. Using group theoretic techniques, e.g.
group products, we use those structures to determine the automorphism groups of the
corresponding graph classes.

One of our main results is a complete characterization of the automorphism
groups of interval, permutation, and circle graphs. Moreover, for interval graphs, we
show that their automorphism groups are the same as of trees and, for a given interval
graph, we construct a tree with the same automorphism group which answers the
Hanlon’s question [Trans. Amer. Math. Soc 272(2), 1982].

Some classes of graphs can realize each finite group. Comparability graphs (tran-
sitively orientable graphs) are one of those classes, since they contain bipartite graphs.
They are related to intersection graphs, since they are exactly the complements of
function graphs (intersection graphs of continuous real-valued functions). The dimen-
sion of a poset is the least number of linear orders whose intersection gives the poset.
The dimension dim(X) of a comparability graph X is the dimension of any transitive
orientation of X , and by k-DIM we denote the class of comparability graphs X with
dim(X) ≤ k.

It is known that permutation graphs are equal to 2-DIM, and our characterization
of the automorphism groups of permutation graphs gives that 2-DIM is non-universal.
For k ≥ 4, we show that k-DIM is universal.

5

6

1 Introduction

The study of symmetries of geometrical objects is an ancient topic in mathematics
and its precise formulation led to group theory. Symmetries play an important role in
many distinct areas. In 1846, Galois used symmetries of the roots of a polynomial in
order to characterize polynomials which are solvable by radicals.

1.1 Automorphism Groups of Graphs

One possible way how to describe symmetries of a graphX is through its automorphism
group Aut(X). Every automorphism is a permutation of the vertices which preserves
adjacencies and non-adjacencies. Frucht [17] proved that every finite group is isomor-
phic to Aut(X) of some graph X . Moreover, it is well know that general mathematical
structures can be encoded by graphs [30] while preserving automorphism groups.

Most graphs are asymmetric, i.e., have only the trivial automorphism [24]. How-
ever, many results in combinatorics and graph theory rely on highly symmetrical
graphs. Automorphism groups are important for studying large objects, since they
allow one to simplify and understand those objects. This algebraic approach is impor-
tant for working with big objects.

Highly symmetrical large graphs with nice properties are often constructed al-
gebraically from small graphs. For instance, Hoffman-Singleton graph is a 7-regular
graph of diameter 2 with 50 vertices [31]. It has 252000 automorphisms and can be
constructed from 25 “copies” of a small multigraph with 2 vertices and 7 edges [38, 44].
Similar constructions are used in designing large computer networks [12, 49]. For in-
stance the well-studied degree-diameter problem asks, given integers d and k, to find a
maximal graph X with diameter d and degree k. Such graphs are desirable networks
having small degrees and short distances. Currently, the best constructions are highly
symmetrical graphs constructed using group theory [39].

De�nition 1.1. For a class C of graphs, we define

Aut(C) =
{

G : G is an abstract group, ∃X ∈ C such that G ∼= Aut(X)
}

.

In other words, Aut(C) contains all abstract groups that can be realized as an auto-
morphism group of some graph X ∈ C. A class C of graphs is called universal if every
finite group is contained in Aut(C), and non-universal otherwise.

7

Chapter 1. Introdu
tion

Probably, the first restricted class of graphs whose automorphism groups were
studied are trees (TREE). In 1869, Jordan [33] gave a characterization of the au-
tomorphism groups of trees in terms of group products. He showed that Aut(TREE)
contains precisely those groups that can be obtained from the trivial group by applying
the direct product and the wreath product with a symmetric group.

Theorem 1.2 (Jordan [33]). The class Aut(TREE) is defined inductively as follows:

(a) {1} ∈ Aut(TREE).
(b) If G1, G2 ∈ Aut(TREE), then G1 ×G2 ∈ Aut(TREE).
(c) If G ∈ Aut(TREE) and n ≥ 2, then G ≀ Sn ∈ Aut(TREE).

A group constructed by (b) (the direct product) acts independently on some
non-isomorphic subtrees. On the other hand, a group constructed by (c) (the wreath
product with a symmetric group) acts on a tree by permuting some of its isomorphic
subtrees.

1.2 Graph Isomorphism Problem

This famous problem asks, for two graphs X and Y , to determine whether they are
the same up to some relabeling. It obviously belongs to NP, and it is not known
to be polynomially-solvable or NP-complete. The graph isomorphism problem is a
prime candidate for an intermediate problem with the complexity between P and NP-
complete. It belongs to the low hierarchy of NP [43], which implies that it is unlikely
NP-complete. (Unless the polynomial-time hierarchy collapses to its second level.)

The graph isomorphism problem is closely related to the problem of computing
generators of the automorphism group of a graph. Two connected graphs X and Y
are isomorphic if and only if there exists an automorphism swapping them in X ∪̇ Y .
On the other hand, it is known that generators of Aut(X) can be computed by solving
O(n4) instances of graph isomorphism [37]. By GI, we denote the complexity class of
all problems which can be reduced to the graph isomorphism problem.

For many graph classes, graph isomorphism problem was shown to be solvable in
polynomial time. For instance, isomorphism of interval graphs and planar graphs [7],
circle graphs [32], and permutation graphs [6], can be reduced to isomorphism of trees
using structural results known for those classes.

If a class of graphs has very restricted automorphism groups, it seems that the
graph isomorphism problem should be relatively easy to solve. However, the complex-
ity of graph isomorphism testing of asymmetric graphs is unknown. There are also
very complicated polynomial-time algorithms solving isomorphism for some universal
classes of graphs: graphs of bounded degree [36], and graphs with excluded topological
subgraphs [27].

Moreover, there exist classes of graphs for which testing graph isomorphism is
GI-complete. One of them are bipartite graphs. This can be easily seen by a simple
construction. For an arbitrary graph X , we define X ′ to be the graph obtained from X

8

1.3. Our Results

by subdividing its edges. Note that X ′ is bipartite, and X ∼= Y if and only if X ′ ∼= Y ′.
A similar construction is known for chordal graphs [7] and other classes.

1.3 Our Results

We study automorphism groups of geometrically represented graphs. A well-know class
of such graphs are planar graphs (PLANAR), i.e., graphs that can be embedded on R2,
or equivalently on the sphere. The main question is how the geometry influences the
automorphism groups. In the case of planar graphs, we have that 3-connected planar
graphs have unique embeddings on the sphere [47]. Their automorphism groups are
spherical groups. Automorphism groups of general planar graphs are more complicated
and they were described by Babai [1]; see [15, 16] for more details. We focus on
intersection representations.

1.3.1 Intersection Representations

An intersection representation R of a graph X is a collection
{

Rv : v ∈ V (X)
}

such
that uv ∈ E(X) if and only if Ru∩Rv 6= ∅. To get obtain interesting classes of graphs,
one typically restricts the sets Rv to particular geometrical objects; for more details
on some well-known classes of intersection graphs, see the classical books [25, 45].

In this thesis, prove various results concerning automorphism groups of some
well-know classes of intersection graphs and classes that are related to them. In par-
ticular, we study interval graphs, permutation graphs, comparability graphs and circle
graphs. We show that a well-understood structure of all intersection representations
can be used to determine the automorphism group. In the following, we give brief
overview of our results and reference the particular chapters for more details.

Interval Graphs. One of the most famous classes of geometric intersection graphs is
obtained by restricting the sets Rv to closed intervals of the real line. This representa-
tion is called an interval representation of a graph. A graph is an interval graph if it
has an interval representation, i.e., interval graphs are intersection graphs of intervals
of the real line; see Figure 1.1. We denote the class of interval graphs by INT.

Interval graphs are one of the oldest and most studied classes of intersection
graphs, first introduced by Hajós [28] in 1957. They have many useful theoretical prop-
erties and interesting mathematical characterizations. Many computational problems

1

23

4 5

6

7

8

9

10

12

1
2

3
4

34

5
6

5
6

7 8

7
8

9
10

9 10
3 12

1
2

10
9

5

64 11

7 8
3 4 7 8 11 12

6
5

2
1

10
9

Figure 1.1: On the left, an interval graph and one of its interval representations. On
the right, a circle graph and one of its circle representations.

9

Chapter 1. Introdu
tion

are polynomially solvable for interval graphs. These problems include graph isomor-
phism, maximum clique, k-coloring, maximum independent set, etc.

One of the reasons why interval graphs were studied quite extensively is that
they have real world applications, for example in biology. Benzer [3] showed a direct
relation between interval graphs and the arrangement of genes in the chromosome.
Mutations correspond to a damaged segment on a chromosome. Each mutation can
damage a different set of genes. At that time, the only information that could be
gathered was the set of deformities caused by a mutation. We can form a graph by
making each mutation into a vertex and adding an edge between two vertices if the
mutations share a common deformity. Benzer found that a graph formed in this way
from an experiment with mutations is an interval graph. This was considered a strong
evidence supporting the theory that genes are arranged in a simple linear fashion.
Interval graphs have also many other applications; see [40, 46].

An important subclass of interval graphs are unit interval graphs (UNIT INT),
which are graphs that have an interval representation with each interval of the length
one. Caterpillar graphs (CATERPILLAR) are trees with every leaf attached to a central
path. They form the intersection of trees and interval graphs.

Theorem 1.3. The following equalities hold:

(i) Aut(INT) = Aut(TREE),
(ii) Aut(connected UNIT INT) = Aut(CATERPILLAR),

Concerning (i), this equality is not well known. It was stated by Hanlon [29]
without a proof in the conclusion of his paper from 1982 on enumeration of interval
graphs. Our structural analysis is based on PQ-trees [4] which combinatorially describe
all interval representations of an interval graph. It explains this equality and further
solves an open problem of Hanlon: for a given interval graph, to construct a tree with
the same automorphism group. Without PQ-trees, this equality is surprising since
these classes are very different.

Using PQ-trees, Colbourn and Booth [7] give a linear-time algorithm to compute
permutation generators of the automorphism group of an interval graph. In compari-
son, our description allows to construct an algorithm which outputs the automorphism
group in the form of group products which reveals its structure.

Caterpillar graphs which form the intersection of trees and interval graphs have
very limited groups and we characterize them in Lemma 3.7. The result (ii) easily
follows from the known properties of unit interval graphs and our structural under-
standing of Aut(INT). The automorphism group of a disconnected unit interval graph
can be described using Theorem 2.3.

Comparability Graphs. A comparability graph is created from a poset by removing
the orientation of the edges. Alternatively, every comparability graph X can be tran-
sitively oriented: if x → y and y → z, then xz ∈ E(X) and x → z; see Figure 1.2a.
This class was first studied by Gallai [20] and we denote it by COMP.

An important parameter of a poset P is its Dushnik-Miller dimension [11]. It
is the least number of linear orderings L1, . . . , Lk such that P = L1 ∩ · · · ∩ Lk. (For

10

1.3. Our Results

1 2 3

4 5 6

(a) (b)

L1 L2 L3

2

3

4

1

5

6

1

3

5

2

4

6

1

2

6

3

4

5

Figure 1.2: (a) A comparability graph with one of its transitive orientations. (b) A
function representation of its complement constructed using three linear orders.

a finite poset P , its dimension is always finite since P is the intersection of all its
linear extensions.) Similarly, we define the dimension of a comparability graph X ,
denoted by dim(X), as the dimension of any transitive orientation of X . (It can be
shown that every transitive orientation has the same dimension.) By k-DIM, we denote
the subclass consisting of all comparability graphs X with dim(X) ≤ k. We get the
following infinite hierarchy of graph classes:

1-DIM (2-DIM (3-DIM (4-DIM (· · · (COMP.

Surprisingly, comparability graphs are related to intersection graphs, namely to
function and permutation graphs. Function graphs (FUN) are intersection graphs of
continuous real-valued function on the interval [0, 1]. Permutation graphs (PERM) are
function graphs which can be represented by linear functions [2]; see Figure 1.3.

Golumbic [26] proved that function graphs are the complements of comparability
graphs:

FUN = co-CO.

If two functions do not intersect, we can orient the non-edge from the bottom function
to the top one which gives a transitive orientation of the complement. On the other
hand, suppose that a comparability graph is of dimension k, so one of its transitive
orientations can be written as L1 ∩ · · · ∩ Lk. We place the vertices according to
these orderings on k vertical lines between [0, 1]. Then we represent each vertex x
by a piecewise linear function which intersects each of the k vertical lines at x; see
Figure 1.2b for an example. We get a function representation of the complement. The
second relation

PERM = COMP ∩ co-CO = 2-DIM

was shown by Even [14].

1 2
4

3
5 6

C6

1
2
3
4
5
6

4
2
6
1
5
3

FUN(a)

1

5

4

3

2

6

1
2
3
4
5
6

3
5
1
6
2
4

PERM(b)

Figure 1.3: (a) A function graph which is not a permutation graph and one of its
representations. (b) A permutation graph and one of its representations.

11

Chapter 1. Introdu
tion

Since 1-DIM consists of all complete graphs, Aut(1-DIM) = {Sn, n = 1, . . . }. We
describe the automorphism groups of 2-DIM = PERM precisely.

Theorem 1.4 (automorphism groups of permutation graphs). The groups in Aut(PERM)
are described inductively as follows:

(a) {1} ∈ Aut(PERM),

(b) If G1, G2 ∈ Aut(PERM), then G1 ×G2 ∈ Aut(PERM).

(c) If G ∈ Aut(PERM), then G ≀ Sn ∈ Aut(PERM).

(d) If G1, G2, G3 ∈ Aut(PERM), then (G4
1 ×G2

2 ×G2
3)⋊ Z2

2.

In (d), Z2 × Z2 acts on G4
1 as on the vertices of a rectangle, on G2

2 as on centers
of two opposite edges, and on G2

3 as on centers of the other two opposite edges.
Our characterization is similar to Jordan’s characterization [33] of the automorphism
groups of trees which consists of (a)–(c) (see Theorem 2.4). Therefore, we have that
Aut(TREE) (Aut(PERM).

We study the induced action of Aut(X) on the set of all transitive orientations.
In the case of permutation graphs, we study the action of Aut(X) on the pairs of
orientations of the graph and its complement, and show that it is semiregular. The
transitive orientations are efficiently captured by the modular decomposition which
we encode into the modular tree.

We are not aware of any algorithmic result for computing automorphism groups
of permutation graphs. From our description, a polynomial-time algorithm can be
constructed. Further, it gives Aut(X) in terms of group product which gives more
insight into the structure of Aut(X).

Comparability graphs are universal since they contain bipartite graphs; we can
orient all edges from one part to the other. Since the automorphism group is preserved
by complementation and FUN = co-CO, we have Aut(FUN) = Aut(COMP) and there-
fore function graphs are also universal. In Section 4.2, we explain the universality of
FUN and COMP in more detail using the induced action on the set of all transitive
orientations.

It is well-known that bipartite graphs have arbitrarily large dimensions: the
crown graph, which is Kn,n without a matching, has dimension n. We give a construc-
tion which encodes any graph X into a comparability graph Y with dim(Y) ≤ 4, while
preserving the automorphism group.

Theorem 1.5. For every k ≥ 4, the class k-DIM is universal and its graph isomorphism
is GI-complete.

Yannakakis [48] proved that recognizing 3-DIM is NP-complete by a reduction
from 3-coloring. For each graph X , a comparability graph Y with several vertices
representing each element of V (X)∪E(X) is constructed. It is shown that dim(Y) = 3
if and only if X is 3-colorable. Unfortunately, the automorphisms of X are lost in Y
since it depends on the labels of V (X) and E(X) and Y contains some additional edges
according to these labels. We describe a simple and completely different construction
which achieves only dimension 4, but preserves the automorphism group: for a given

12

1.3. Our Results

graph X , we create Y by replacing each edge with a path of length eight. However, it
is non-trivial to show that Y ∈ 4-DIM, and the constructed four linear orderings are
inspired by [48].

Cir
le Graphs. Circle Graphs (CIRCLE) are intersection graphs of chords of a circle;
see Figure 1.1 for an example. They were first considered by Even and Itai [13]
in the study of stack sorting techniques, in the early 1970s. Some problem hard
computational problems, such as 3-colorability [21], or maximum weighted clique and
independent set [22], are solvable in polynomial time on circle graphs. However, there
are also many problems that remain NP-complete when restricted to circle graphs.

Theorem 1.6 (automorphism groups of connected circle graphs). Let S be a class of
finite groups defined inductively as follows:

(a) {1} ∈ S.

(b) If G1, G2 ∈ S, then G1 ×G2 ∈ S.

(c) If G ∈ S, then G ≀ Sn ∈ S.

(d) If G1, G2, G3, G4 ∈ S, then (G4
1 ×G2

2 ×G2
3 ×G2

4)⋊ Z2 ∈ S.

Then the class Aut(connected CIRCLE) is defined by the following:

(e) If G ∈ S, then Gn ⋊ Zn ∈ Aut(connected CIRCLE), for n 6= 2.

(f) If G1, G2 ∈ S, then (Gn
1 ×G2n

2)⋊ Dn ∈ Aut(connected CIRCLE), for n ≥ 3.

The characterization of Aut(connected CIRCLE) is based on split trees which
describe all representations of circle graphs. Our approach is similar to the algorithm
for circle graph isomorphism [32]. For a disconnected circle graphX , its automorphism
group can be easily determined using Theorem 2.3.

Related Graph Classes. Theorems 1.3, 1.4, and 1.6 state that INT, UNIT INT, PERM,
and CIRCLE are non-universal. Figure 1.4 shows that some of their well-known super-
classes are already universal.

Claw-free graphs (CLAW-FREE) are graphs with no induced K1,3. Roberts [41]
proved that UNIT INT = CLAW-FREE ∩ INT. The complements of bipartite graphs
(co-BIP) are claw-free and universal.

Chordal graphs (CHOR) are intersection graphs of subtrees of trees. They contain
no induced cycles of length four or more and naturally generalize interval graphs.
Chordal graphs are universal [35].

Interval filament graphs (IFA) are intersection graphs of the following sets. For
every Ru, we choose an interval [a, b] and Ru is a continuous function [a, b]→ R such
that Ru(a) = Ru(b) = 0 and Ru(x) > 0 for x ∈ (a, b). They are universal since they
generalize circle, chordal, and function graphs.

1.3.2 Groups Acting On Geometric Intersection Representations

For the studied classes of graphs, we interpret our characterizations of their automor-
phism groups in terms of an action on the set of all equivalent intersection represen-

13

Chapter 1. Introdu
tion

CATERPILLAR

TREE INT

CHORCIRCLE FUN

IFA

UNIT INT

PERM

CLAW-FREE

co-BIP

PLANAR
co-4-DIM

Universal

Non-universal

Figure 1.4: The inclusions between the considered graph classes.

tation. We describe a general technique which allows us to geometrically understand
automorphism groups of some intersection-defined graph classes.

Our approach is inspired by some well-known results in map theory. A map M
is a 2-cell embedding of a graph; i.e, aside vertices and edges, it prescribes a rotation
scheme for the edges incident with each vertex. One defines Aut(M) as the subgroup
of Aut(X) which preserves/reflects the rotational schemes. Unlike Aut(X), we know
that Aut(M) is always small (since Aut(M) acts semiregularly on flags) and can
be efficiently determined. If the quotient Aut(X)/Aut(M) exists, then it describes
morphisms between different maps and can be very complicated.

A
tion Indu
ed On Geometri
 Interse
tion Representations. For a graphX , we denote
by Rep the set of all its (interval, permutation, circle, etc.) intersection representa-
tions. An automorphism π ∈ Aut(X) defines a morphism of R ∈ Rep to another
representation R′ such that R′

π(u) = Ru, i.e., the automorphism π swaps the labels of

the sets representing the vertices of X . We denote R′ by π(R). The group Aut(X)
acts on the set Rep.

The set Rep can be very large. Therefore, we define a suitable equivalence
relation ∼ and we work with Rep/∼. It is reasonable to assume that ∼ is a congruence
relation with respect to the action of Aut(X) on Rep, i.e., for every R ∼ R′ and
π ∈ Aut(X), we have π(R) ∼ π(R′). We consider the action of Aut(X) on Rep/∼.

The stabilizer of R ∈ Rep/∼, denoted by Aut(R), describes automorphisms
inside the representation R. For a nice class of intersection graphs, Aut(R) is very
simple. If it is a normal subgroup, then the quotient Aut(X)/Aut(R) describes all
morphisms which change a representation R into another representation belonging to
the same orbit as R. Our strategy is to understand these morphisms geometrically,
which requires an understanding of the structure of all geometric intersection repre-
sentation. For interval graphs, it is captured by PQ-trees, for permutation graphs by
modular trees, and for circle graphs by split trees.

14

2 Preliminaries

Frist, in Section 2.1 we introduce some basic notation. Then in Section 2.2, we ex-
plain some basic tools for constructing larger groups from smaller ones. We conclude
Section 2.2 by proving Theorem 2.3 which describes the automorphism groups of dis-
connected graph in terms of the automorpism groups of their connected components.
The idea of the proof of Theorem 2.3 reoccurs multiple times througout the whole
thsis. Finally, in Section 2.3, we describe the automorphism groups of trees.

2.1 Notation

This thesis makes links between different areas of mathematics, in particular group
theory and graph theory. In this seciton, we define the notation for some basic notions
from both fields, to avoid conflicts.

Graph Theory. We use X and Y to denote graphs. The set of the vertices of a graph
X is denoted by V (X), and the set of the edges by E(X). By xy we denote and edge
joining vertices x and y. The set of all maximal cliques of X is denoted by C(X). If
two vertices x and y belong to precisely the same maximal cliques, we say that x and
y are twin vertices. This defines an equivalence relation on V (X). The equivalence
classes of this relation are called twin classes.

Group Theory. We assume that the reader is familiar with the basic group theory.
For a comprehensive treatment of the basics of group theory, see for example [42, 10],
for a visual treatment of group theory see [5]. Abstract groups are usually denoted in
the text by G and H .

The automorphism group of a graphX is denoted by Aut(X). The group Aut(X)
acts on on the set of vertices V (X). The stabilizer of a vertex x is defined by

StabX(x) =
{

π ∈ Aut(X) : π(x) = x
}

,

and the orbit of a vertex x is defined by

OrbX(x) =
{

y ∈ V (X) : π(x) = y, π ∈ Aut(X)
}

.

Suppose now that Y is an induced subgraph of X . We define the stabilizer StabX(Y)
of Y to be the set-wise stabilizer of V (Y).

15

Chapter 2. Preliminaries

C8 D8

Figure 2.1: The cycle of lenght 8 with the action of D8 on its vertices.

We use the following notation for the standard groups:

• Sn is the symmetric group whose elements are n-element permutations,

• Dn is the dihedral group whose elements are symmetries of the regular n-gon,
including both rotations and reflections,

• Zn is the cyclic group whose elements are integers 0, . . . , n−1 and the operation
is addition modulo n.

Figures 2.1 and 2.2 show examples of graphs and their automorphism groups.

2.2 Group Products

In algebra, group products are used to decompose large groups into smaller ones.
Consider for example the well know puzzle called the Rubik’s Cube. The Rubik’s
Cube group is the set G of all cube moves on the Rubik’s Cube. The cardinality of
this group is

|G| = 43, 252, 003, 274, 489, 856, 000≈ 4.3 · 1019.

The Rubik’s Cube group is a huge object which seems to be very complicated. Using
group products, one can understand the structure of this group. It is isomorphic to

(Z7
3 × Z11

2)⋊
(

(A8 × A12)⋊ Z2

)

,

where An is the group of all even n-element permutations. One can combinatorially
interpret the terms of these products and gain a lot of insight into the structure of

X Aut(X) ∼= Z8

Figure 2.2: A graph X with its automorphism group Aut(X) isomorphic to the
group Z8.

16

2.2. Group Produ
ts

the Rubik’s Cube. This can be used, for instance, to design algorithms solving the
Rubik’s Cube, or to understand the smallest number of moves necessary to solve it in
any position. (Which is only 20.)

In this section, we explain two basic group theoretic methods for constructing
larger groups from smaller ones, in particular direct product and semidirect product.
We show how these group products can be used to construct automorphism groups of
graphs. At the end of this section, we prove a formula (Theorem 2.3) for constructing
the automorphism group of a disconnected graph from the automorphism groups of
its connected components.

2.2.1 Direct Product

Let G and H be groups with operations ·G and ·H , respectively. Their direct product
G × H is a group having as elements all pairs (g, h) where g ∈ G and h ∈ H . The
operation is defined componentwise:

(g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2).

When there is no confusion we simply write (g1 · g2, h1 · h2) or (g1g2, h1h2). Figure 2.3
shows an example. The direct product of n groups is defined similarly, and we use Gn

as a shorthand for the product G×G× · · · ×G with n terms.

Both G and H are normal subgroups of G×H . On the other hand, the semidirect
product, discussed in Section 2.2.2, constructs from two groups G andH a larger group
for which only G is ensured to be a normal subgroup.

The direct product can be used to construct automorphism groups of graphs that
are disconnected and their connected components are pairwise non-isomorphic. In this
case, the automorphism group of a graph X is the direct product of the automorphism
groups of its connected components X1, . . . , Xk:

Aut(X) = Aut(X1)× · · · × Aut(Xk).

The reason is that each automorphism acts independently on each component.

2.2.2 Semidirect and Wreath Products

However, if we want to construct the automorphism group of a disconnected graph
which has some isomorphic connected components, the direct product is not sufficient.
The problem is that the automorphisms which permute the isomorphic components
are not included in the direct product.

Figure 2.3: The group Z3
2 contains two copies of Z2

2, with the corresponding elements
connected according to the group Z2.

17

Chapter 2. Preliminaries

X Y

Figure 2.4: Two graphs X and Y . We have Aut(X) ∼= S3 × Z2, but we need the
semidirect product to describe Aut(Y).

We start with a simple example of two graphs, shown in Figure 2.4. The au-
tomorphism group of the graph X is isomorphic to S3 × Z2, but the automorphism
group of the graph Y is not Z2 × Z2. The direct product does not include the auto-
morphisms which swap the components. Moreover, Aut(Y) is not even isomorphic to
Z3
2 because, for example, swapping the components and swapping the vertices of the

left component does not commute.

Semidire
t Produ
t (External). As already stated, both G and H are normal sub-
groups of G×H . The semidirect product generalizes the direct product since it only
requires G to be a normal subgroup. This is one of the motivations for studying
semidirect products since they allow to decompose a bigger number of groups.

The direct product G × H contains identical copies of G, with corresponding
elements connected according to H , as shown in Figure 2.3. In the semidirect product
of the groups G and H , the group H also determines how some copies of G are
connected. However, these copies of G do not need to be all identical.

First, we explain a special case: the semidirect product of the group G with its
automorphism group Aut(G), denoted by

G⋊ Aut(G).

The elements are all pairs (g, f) such that g ∈ G and f ∈ Aut(G). The operation is
defined in the following way:

(g1, f1) · (g2, f2) = (g1 · f1(g2), f1 · f2).

Note that G ⋊ Aut(G) defined like this forms a group. Its identity element is (1, 1)
and the element (g, f) has the inverse (f−1(g−1), f−1).

We can think of it as all possible isomorphic copies of G are connected according
to Aut(G). The element (g1, f1) is in the isomorphic copy G1 of G which we get by
applying the automorphism f1 on G. Multiplying (g1, f1) by (g2, 1) corresponds to a
movement inside G1. Multiplying (g1, f1) by (1, f2) corresponds to a movement from
G1 to the same elements of another isomorphic copy of G.

In general, the semidirect product is defined for any two groups G and H , and a
homomorphism ϕ : H → Aut(G), denoted by

G⋊ϕ H.

It is the set of all pairs (g, h) such that g ∈ G and h ∈ H . The operation is defined
similarly to the operation of G⋊ Aut(G):

(g1, h1) · (g2, h2) = (g1 · ϕ(h1)(g2), h1 · h2).

18

2.2. Group Produ
ts

1

2

3

4

Y Aut(Y)

1
2

3
4

2
1

3
4

1
2

4
3

2
1

4
3

3
4

1
2

3
4

2
1

4
3

1
2

4
3

2
1

Figure 2.5: The structure of Aut(Y), generated by three involutions acting on Y on
the left. It follows that Aut(Y) is isomorphic to Z2

2 ⋊Z2 = Z2 ≀ Z2.

Again, it is quite straightforward to check that G⋊ϕ H is a group. We can think that
the homomorphism ϕ assigns an isomorphic copy of G to each element of the group
H . The isomorphic copies of G are then connected according to the group H . We
write G⋊H when there is no danger of confusion.

Semidire
t Produ
t (Internal). The semidirect product be also defined internally.
In the previous definition, we were given two groups and a homomorphism and we
constructed a new group. Now we are given a group G, a normal subgroup N of G,
and a subgroup H of G such that N ∩H = {1}. Then we say that G is the semidirect
product of N and H , i.e., G = N ⋊H .

The two definitions of semidirect product are equivalent, i.e., if G = N ⋊ H ,
we can find a homomorphism ϕ : H → Aut(N) such that G = N ⋊ϕ H . The second
definition can be more useful when one wants to prove that G = N ⋊ H , given the
groups N and H .

Example 2.1. The dihedral group D8 is equal to Z8⋊Z2. Figure 2.1 on the right shows
D8. The elements of each of the two isomorphic copies of Z8 are connected according
to the pattern of Z2.

Example 2.2. Let Y be the graph from Figure 2.4. The group Aut(Y) is isomorphic
to Z2

2 ⋊Z2. Figure 2.5 shows a Aut(Y). The elements of the two isomorphic copies of
Z2
2 are connected according to the pattern of Z2.

Wreath Produ
t. The group G ≀ Sn is called the wreath product of G with Sn.
1 It is

a shorthand for the semidirect product Gn ⋊ϕ Sn, where the homomorphism ϕ : Sn →
Aut(Gn) is defined by

ϕ(π) = (g1, . . . , gn) 7→ (gπ(1), . . . , gπ(n)).

The reason for defining the wreath product is that it occurs quite often in group theory.
It also plays an important role in describing the automorphism groups of graphs, as
we now illustrate.

1For the purposes of this paper, it is sufficient to define G ≀ Sn. In general, the wreath product is
defined for every pair of groups G and H [42].

19

Chapter 2. Preliminaries

2.2.3 Automorphism Groups of Disconnected Graphs

We prove Theorem 2.3. It shows how to construct the automorphism group of a
disconnected graph from the automorphism groups of its connected components, using
group products. The idea of the proof is essential for many further results.

Theorem 2.3. If X1, . . . , Xn are pairwise non-isomorphic connected graphs and X is
the disjoint union of ki copies of Xi, for i = 1, . . . , n, then

Aut(X) = Aut(X1) ≀ Sk1 × · · · × Aut(Xn) ≀ Skn .

Proof. Since the action of Aut(X) is independent on non-isomorphic components, it is
clearly the direct product of factors, each corresponding to the automorphism group
of one isomorphism class of components. It remains to show that if X consists of k
isomorphic components of a connected graph Y , then Aut(X) ∼= Aut(Y) ≀ Sk.

We isomorphically label the vertices of each component. Then each automor-
phism π ∈ Aut(X) is a composition σ · τ of two automorphisms: σ maps each compo-
nent to itself, and τ permutes the components as in π while preserving the labeling.
Therefore, the automorphisms σ can be bijectively identified with the elements of
Aut(Y)k and the automorphisms τ with the elements of Sk.

Let π, π′ ∈ Aut(X). Consider the composition π · π′ = σ · τ · σ′ · τ ′. We want
to swap τ with σ′ and rewrite the automorphism π · π′ as a composition σ · σ̂ · τ̂ · τ ′.
Clearly, connected the components are permuted in π ·π′ exactly as in τ · τ ′, so τ̂ = τ .
On the other hand, σ̂ is not necessarily equal σ′. Let σ′ be identified with the vector
(σ′

1, . . . , σ
′

k) ∈ Aut(Y)k. Since σ′ is applied after τ , it acts on the components permuted
according to τ ; see Figure 2.6. Therefore σ̂ is constructed from σ by permuting the
coordinates of its vector by τ :

σ̂ = (σ′

τ(1), . . . , σ
′

τ(k)).

This is precisely the definition of the wreath product, so Aut(X) ∼= Aut(Y) ≀ Sk.

2.3 Automorphism Groups of Trees

In this section, we prove Jordans’s characterization of Aut(TREE). It says that every
group in Aut(TREE) can be build inductively from the trivial group, using the direct
product and the wreath product with a symmetric group.

1

2

3

4

5

6

Y1 Y2 Y3

σ σ σ

2

1

3

4

5

6

Y1 Y2 Y3

τ τ

τ

σ

5

6

2

1

3

4

Y3 Y1 Y2

σ′ σ′ σ′

σ · τ

Figure 2.6: A graph X with its the components Y1, Y2, and Y3. The automorphism
σ′ acts on the components permuted by π = σ · τ .

20

2.3. Automorphism Groups of Trees

Theorem 2.4 (Jordan [33]). The class Aut(TREE) is defined inductively as follows:

(a) {1} ∈ Aut(TREE).
(b) If G1, G2 ∈ Aut(TREE), then G1 ×G2 ∈ Aut(TREE).
(c) If G ∈ T and n ≥ 2, then G ≀ Sn ∈ Aut(TREE).

Proof. Every tree has a center, which is either a vertex, or an edge. If the center is an
edge, then we can subdivide this edge while preserving the automorphism group. The
center of a tree is fixed by every automorphism, and similarly the distance from the
center is preserved. Therefore, it is sufficient to prove this theorem for rooted trees.

Clearly, {1} ∈ Aut(TREE). It remains to show that the class Aut(TREE) is
closed under (b) and (c).

• Let G1, G2 ∈ Aut(TREE), and let T1 and T2 be rooted trees such that Aut(T1) ∼=
G1 and Aut(T2) ∼= G2. We construct a rooted tree T by attaching the roots of
T1 and T2 to a new root. If T1

∼= T2, then we further subdivide one of the newly
created edges. Clearly, we get Aut(T) ∼= G1 ×G2.

• Let G ∈ Aut(TREE), and let T ′ be a rooted tree such that Aut(T ′) ∼= G. We
construct T by attaching n copies of T ′ to the same root. It can be easily
proven that Aut(T) ∼= G ≀ Sn. (One would proceed similarly as in the proof of
Theorem 2.3).

Finally, we show that if T is a rooted tree, then Aut(T) ∈ Aut(TREE). If T con-
tains only one vertex, then Aut(T) ∼= {1} and it belongs to Aut(TREE). Otherwise, we
delete the root and get a forest of rooted trees T1, . . . , Tn. By induction, we have that
the automorphism group of each Ti belongs to Aut(TREE). It follows from Theorem 2.3
that we can construct Aut(T) using (b)–(c). Therefore Aut(T) ∈ Aut(TREE).

21

Chapter 2. Preliminaries

22

3 Interval Graphs

In this chapter, we prove Theorem 1.3(i) (Section 3.2). We introduce PQ-trees which
combinatorially describe all interval representations of a given interval graph. We use
modified PQ-trees of Korte and Möhring [34], which capture some additional infor-
mation about the vertices (Section 3.1). In Section 3.2, we derive a characterization
of Aut(INT) using MPQ-trees, and prove it to be equivalent to the Jordan’s char-
acterization of Aut(TREE). In Section 3.3, we solve Hanlon’s open problem [29] by
constructing for a given interval graph a tree with the same automorphism group, and
we also show the converse construction. Finally, in Section 3.4 we use the results of
Section 3.1 and 3.2 to prove Theorem 1.3(ii).

3.1 PQ- and MPQ-trees

In 1965, Fulkerson and Gross proved the following fundamental characterization of
interval graphs by orderings of maximal cliques.

Lemma 3.1 (Fulkerson and Gross [18]). A graph X is an interval graph if and only if
there exists an ordering � of C(X) such that for every x ∈ V (X) the maximal cliques
containing x appear consecutively in this ordering.

Sketch of a proof. Let
{

Ix : x ∈ V (X)
}

be an interval representation of X and let
C1, . . . , Ck be the maximal cliques. By Helly’s Theorem, the intersection

⋂

x∈Ci
Ix is

non-empty, and therefore it contains a point ci. The ordering of c1, . . . , ck from left to
right gives the required ordering.

For the other implication, given an ordering of the maximal cliques C1, . . . , Ck,
we place points c1, . . . , ck in this ordering on the real line. To each vertex x, we assign
the minimal interval Ix such that ci ∈ Ix for all x ∈ Ci. We obtain a valid interval
representation

{

Ix : x ∈ V (X)
}

of X .

An ordering � of the maximal cliques satisfying the statement of Lemma 3.1 is
called a consecutive ordering.

23

Chapter 3. Interval Graphs

3.1.1 PQ-trees

Booth and Lueker [4] invented a data structure called PQ-tree which encodes all con-
secutive orderings of an interval graph. They use this structure for recognizing interval
graphs in linear time which was a long standing open problem. PQ-trees give a lot
of insight into the structure of all interval representations, and have applications to
many problems. We use them to capture the automorphism groups of interval graphs.

PQ-tree. A rooted tree T is a PQ-tree representing an interval graph X if and only if
it satisfies the following:

• It has two types of inner nodes: P-nodes and Q-nodes. For every inner node, its
children are ordered from left to right. Each P-node has at least two children
and each Q-node at least three.

• The leaves of T correspond one-to-one to C(X). The frontier of T is the order
� of the leaves from left to right.

• Two PQ-trees are equivalent if one can be obtained from the other by a sequence
of two equivalence transformations : (i) an arbitrary permutation of the ordering
of the children of a P-node, and (ii) the reversal of the order of the children of
a Q-node. The consecutive orderings of C(X) are exactly the frontiers of the
PQ-trees equivalent with T .

Booth and Lueker [4] give a constructive proof of existence and uniqueness (up to
equivalence transformations) of PQ-trees. Figure 3.1 shows an example of a PQ-tree
representing an interval graph.

For a PQ-tree T , we consider all sequences of equivalent transformations. Two
such sequences are equivalent if they transform T the same. Each sequence consists of
several transformations of the inner nodes, and it is easy to see that these transforma-
tions are independent. If a sequence transforms one inner node several times, it can
be replaced by a single transformation of this node. Let Σ(T) be the quotient of all
sequences of equivalent transformations of T by this equivalence. We represent each
class by a sequence which transforms each node at most once.

Observe that Σ(T) forms a group with the concatenation as the group operation.
This group is isomorphic to a direct product of symmetric groups. The order of Σ(T)
is equal to the number of equivalent PQ-trees of T . Let T ′ = σ(T) for some σ ∈ Σ(T).
Then Σ(T ′) ∼= Σ(T) since σ′ ∈ Σ(T ′) corresponds to σσ′σ−1 ∈ Σ(T).

3.1.2 MPQ-trees.

A modified PQ-tree is created from a PQ-tree by some adding information about
the vertices. They were described by Korte and Möhring [34] to simplify linear-time
recognition of interval graphs. It is not widely known but the equivalent idea was used
earlier by Coulborn and Booth [7] to design a linear-time algorithm for computing
generators of the automorphism group an interval graph.

MPQ-tree. We construct the MPQ-tree M form a PQ-tree T representing an interval
graph X by assigning subsets of V (X), called sections, to the nodes of T ; for an

24

3.1. PQ- and MPQ-trees

C1

3

C2

4

C3

7

C4

8

C5

11

C6

12

6
5

2
1

10
9

C1 C2 C5 C6

C3 C4

1, 2 1, 2, 5, 6 5, 6 5, 6, 9, 10 9, 10

∅
{3} {4} {11} {12}

{7} {8}

Figure 3.1: An ordering of the maximal cliques, and the corresponding PQ-tree and
MPQ-tree. The P-nodes are denoted by circles, the Q-nodes by rectangles. There are
four different consecutive orderings.

example see Figure 3.1. The leaves and the P-nodes have each assigned exactly one
section while the Q-nodes have one section per child. We assign these sections as
follows:

• For a leaf L, the section sec(L) contains those vertices that are only in the
maximal clique represented by L, and no other maximal clique.

• For a P-node P , the section sec(P) contains those vertices that are in all maximal
cliques of the subtree of P , and no other maximal clique.

• For a Q-node Q and its children T1, . . . , Tn, the section seci(Q) contains those
vertices that are in the maximal cliques represented by the leaves of the subtree
of Ti and also some other Tj, but not in any other maximal clique outside the
subtree of Q. We put sec(Q) = sec1(Q) ∪ · · · ∪ secn(Q).

Korte and Möhring [34] proved existence of MPQ-trees and many other properties,
for instance each vertex appears in sections of exactly one node and in the case of a
Q-node in consecutive sections. Two vertices are in the same sections if and only if
they belong to precisely the same maximal cliques, i.e., if and only if they are twin
vertices. Figure 3.1 shows an example.

3.1.3 Automorphisms of MPQ-trees

For every graph X , its automorphism group Aut(X) induces an action on C(X) since
every automorphism permutes the maximal cliques. For an interval graph X and
π ∈ Aut(X), a consecutive ordering � is transformed to another consecutive ordering,
denoted by π(�).

Suppose that an MPQ-tree M representing X has the frontier �. For every
automorphism π ∈ Aut(X), there exists the unique MPQ-tree M ′ with the frontier
π(�) which is equivalent to M . We define a mapping

Φ : Aut(X)→ Σ(M)

such that Φ(π) is the sequence of equivalent transformations which transforms M to
M ′. It is easy to observe that Φ is a group homomorphism.

By the fundamental homomorphism theorem, we know that

Im(Φ) ∼= Aut(X)/Ker(Φ).

25

Chapter 3. Interval Graphs

M1

2 3

{4} {5} {6, 7} {8, 9}

σ
σ(M)1

2 3

{4} {5} {8, 9} {6, 7}

Figure 3.2: The sequence σ, which transposes the children of the P-node with the sec-
tion {3}, is an automorphism since σ(M) ∼= M . On the other hand, the transposition
of the children of the root P-node is not an automorphism.

The kernel Ker(Φ) consists of all automorphisms which fix the maximal cliques, i.e.,
automorphisms that permute the vertices only inside each twin class. It follows that
Ker(Φ) is isomorphic to a direct product of symmetric groups. The group Im(Φ)
almost describes Aut(X).

Two MPQ-trees M and M ′ are isomorphic if the underlying PQ-trees are equal
and if there exists a permutation π of V (X) which maps each section of M to the
corresponding section ofM ′. In other words, M andM ′ are the same when ignoring the
labels of the vertices in the sections. A sequence σ ∈ Σ(M) is called an automorphism
of M if σ(M) ∼= M ; see Figure 3.2. The automorphisms of M are closed under
composition, so they form the automorphism group Aut(M) ≤ Σ(M).

Lemma 3.2. For an MPQ-tree M , we have

Aut(M) = Im(Φ).

Proof. Suppose that π ∈ Aut(X). The sequence σ = Φ(π) transforms M into σ(M).
It follows that σ(M) ∼= M since σ(M) can be obtained from M by permuting the
vertices in the sections by π. So σ ∈ Aut(M) and Im(Φ) ≤ Aut(M).

On the other hand, suppose σ ∈ Aut(M). We know that σ(M) ∼= M and let
π be a permutation of V (X) from the definition of the isomorphism. Two vertices of
V (X) are adjacent if and only if they belong to the sections of M on a common path
from the root. This property is preserved in σ(M), so π ∈ Aut(X). Each maximal
clique is the union of all sections on the path from the root to the leaf representing
this clique. Therefore the maximal cliques are permuted by σ the same as by π. Thus
Φ(π) = σ and Aut(M) ≤ Im(Φ).

Lemma 3.3. For an MPQ-tree M representing an interval graph X, we have

Aut(X) ∼= Ker(Φ)⋊Aut(M).

Proof. Let σ ∈ Aut(M). In the proof of Lemma 3.2, we show that every permutation
π from the definition of σ(M) ∼= M is an automorphism of X mapped by Φ to σ.
Now, we want to choose these permutations consistently for all elements of Aut(M)
as follows. Suppose that id = σ1, σ2, . . . , σn are the elements of Aut(M). We want
to find id = π1, π2, . . . , πn such that Φ(πi) = σi and if σiσj = σk, then πiπj = πk. In
other words, H = {π1, . . . , πn} is a subgroup and Φ ↾H is an isomorphism between H
and Aut(M) = Im(Φ).

Suppose that π, π′ ∈ Aut(X) such that Φ(π) = Φ(π′). Then π and π′ permute
the maximal cliques the same and they can only act differently on twin vertices, i.e.,

26

3.2. Automorphism Groups of Interval Graphs

ππ′−1 ∈ Ker(Φ). Suppose that C is a twin class, then π(C) = π′(C) but they can
map the vertices of C differently. To define π1, . . . , πn, we need to define them on the
vertices of the twin classes consistently. To do so, we arbitrarily order the vertices in
each twin class. For each πi, we know how it permutes the twin classes, suppose a
twin class C is mapped to a twin class πi(C). Then we define πi on the vertices of C
in such a way that the orderings are preserved.

It is easy to see that the above definition of H is correct. Clearly, we have

Ker(Φ) ∩H = {id}.

Therefore, we get Aut(X) as the internal semidirect product Ker(Φ)⋊H ∼= Ker(Φ)⋊
Aut(M). Our approach is similar to the proof of Theorem 2.3, and the external
semidirect product can be constructed in the same way.

3.2 Automorphism Groups of Interval Graphs

In this section, we give a characterization of Aut(INT) and prove Theorem 1.3(i). Let
X be an interval graph, represented by an MPQ-tree M . By Lemma 3.3, we know that
Aut(X) can be constructed from Aut(M) and Ker(Φ). We build Aut(X) recursively
using M , similarly as in Jordan’s Theorem 2.4:

Lemma 3.4. The groups in Aut(INT) are described inductively as follows:

(a) {1} ∈ Aut(INT).
(b) If G1, G2 ∈ Aut(INT), then G1 ×G2 ∈ Aut(INT).
(c) If G ∈ Aut(INT) and n ≥ 2, then G ≀ Sn ∈ Aut(INT).
(d) If G1, G2, G3 ∈ Aut(INT) and G1

∼= G3, then (G1 ×G2 ×G3)⋊ Z2 ∈ Aut(INT)

Proof. Clearly {1} ∈ Aut(INT). We show that Aut(INT) is closed under (b), (c)
and (d); see Figure 3.3. For (b), we attach interval graphs X1 and X2 such that
Aut(Xi) ∼= Gi to an asymmetric interval graph. For (c), let G ∈ Aut(INT) and n ≥ 2.
There exists a connected interval graph Y such that Aut(Y) ∼= G. We construct X as
the disjoint union of n copies of Y . By Theorem 2.3, we get Aut(X) ∼= G ≀ Sn. For
(d), we construct an interval graph X by attaching X1, X2 and X3 to a path, where
Aut(Xi) = Gi and X1

∼= X3.

For the converse, let M be an MPQ-tree representing an interval graph X . Let
M1, . . . ,Mk be the subtrees of the root of M and let Xi be the interval graphs induced
by the vertices in the sections ofMi. We want to build Aut(X) from the automorphism
groups of X1, . . . , Xk using (b)–(d). By Lemma 3.3,

Aut(Xi) ∼= Ker(Φi)⋊Aut(Mi)

X1 X2(b)
Y Y . . . Y

{ n
(c) X1 X2 X3(d)

Figure 3.3: The constructions in the proof of Lemma 3.4.

27

Chapter 3. Interval Graphs

which can be by the induction hypothesis constructed using operations (a)–(d).

Suppose that the root of M is a P-node P . Each sequence σ ∈ Aut(M) cor-
responds to an interior sequences in Aut(Mi) and some reordering σ′ of the subtrees
M1, . . . ,Mk. If σ

′(Mi) = Mj , then necessarily Xi
∼= Xj . On each isomorphism class of

X1, . . . , Xk, the permutations σ′ behave to Aut(Xi) like the permutations τ to Aut(Y)
in the proof of Theorem 2.3. Therefore the point-wise stabilizer of sec(P) in Aut(X) is
constructed from Aut(X1), . . . ,Aut(Xk) as in Theorem 2.3. Since every automorphim
preserves sec(P), the group Aut(X) is obtained by the direct product of the above
group with the symmetric group of order |sec(P)|. Thus the operations (b)–(c) are
sufficient.1

For a Q-node Q in the root, we construct the automorphism group similarly. We
call Q symmetric if it is transformed by some sequence in Aut(M), and asymmetric
otherwise. Let M1, . . . ,Mk be the children of Q from left to right. If Q is asymmetric,
then Aut(M) is the direct product Aut(X1), . . . ,Aut(Xk) together with the symmetric
groups for all twin classes of sec(Q). If Q is symmetric, we apply the operation (d)
where G1 corresponds to the direct product of the left part of the children and sections,
G2 to the middle part and G3 to the right part. The semidirect product with Z2 adds
the action of reversing Q.

In the context of interval representations, the operation (b) applies to non-
isomorphic independent parts of the representation, (c) to isomorphic parts which
can be arbitrary permuted, and (d) to parts which can only be reflected vertically.

Proof of Theorem 1.3(i). To establish Aut(INT) = Aut(TREE), we use Lemma 3.4.
We show that (d) can be expressed using (b) and (c). Assuming G1

∼= G3, we get

(G1 ×G2 ×G3)⋊ϕ Z2
∼= (G1 ×G3)⋊ϕ Z2 ×G2

∼= G1 ≀ Z2 ×G2.

3.3 Direct Constructions

In this section, we give an alternative proof of Theorem 1.3(i) by direct constructions.
The proof of Lemma 3.5 answers the open problem of Hanlon [29]. Lemma 3.6 gives
the converse construction.

Lemma 3.5. For X ∈ INT, there exists T ∈ TREE such that Aut(X) ∼= Aut(T).

Proof. Consider an MPQ-tree M representing X . We know that Aut(X) ∼= Ker(Φ)⋊
Aut(M). We inductively encode the structure of M into T .

Suppose a P-node P is the root of M . Then its subtrees can be encoded by trees
and we just attach them to a common root. If sec(P) is non-empty, we attach a star
with |sec(P)| leaves to the root (and we subdivide the edge of this star several times

1Alternatively, we can show that each Xi is connected and X is the disjoint union of X1, . . . , Xk

together with |sec(P)| vertices attached to everything. So Theorem 2.3 directly applies.

28

3.4. Unit Interval Graphs

T1

T4 T5

T2 T3 sec(P)

(a)
T1

sec1(Q)
T2

sec2(Q)
sec3(Q) T3

(b) (c)
T1 T2 T3

Figure 3.4: For an interval graph X, a construction of a tree T with Aut(T) ∼=
Aut(X): (a) The root is a P-node. (b) The root is an asymmetric Q-node. (c) The
root is a symmetric Q-node.

to make it non-isomorphic to every other subtree of the root); see Figure 3.4a. We get
Aut(T) ∼= Aut(X).

Let a Q-node Q be in the root. If Q is asymmetric, we attach the trees cor-
responding to the subtrees of Q and stars corresponding to the vertices of the twin
classes in the sections of Q to a path, and possibly modify by subdivisions to make it
asymmetric; see Figure 3.4b. Finally, if Q is symmetric, then

Aut(X) ∼= (G1 ×G2 ×G3)⋊ Z2

and we just attach trees T1, T2 and T3 such that Aut(Ti) ∼= Gi to a path as in
Figure 3.4c. In both cases, Aut(T) ∼= Aut(X).

Lemma 3.6. For T ∈ TREE, there exists X ∈ INT such that Aut(T) ∼= Aut(X).

Proof. For a rooted tree T , we construct an interval graph X such that Aut(T) ∼=
Aut(X) as follows. The intervals are nested according to T as shown in Figure 3.5.
Each interval is contained exactly in the intervals of its ancestors. If T contains a
vertex with only one child, then Aut(T) < Aut(X). This can be fixed by adding
suitable asymmetric interval graphs, as in Figure 3.5.

3.4 Unit Interval Graphs

We apply the characterization of Aut(INT) derived in Lemma 3.4 to show that
the automorphism groups of connected unit interval graphs are the same as the auto-
morphism groups of caterpillars (which form the intersection of INT and TREE).

T X X

Figure 3.5: First, we place the intervals according to the structure of the tree. We
get Aut(X) ∼= S3 × S2 × S3, but Aut(T) ∼= S2 × S3. We fix this by adding copies of an
asymmetric interval graph with the trivial automorphism group.

29

Chapter 3. Interval Graphs

First, we describe Aut(CATERPILLAR). Let T be a caterpillar graph. We obtain
the central path P be removing all leaves. We call T symmetric if some automor-
phism of T non-trivally swaps P , and it is asymmetric otherwise. Lemma 3.7 gives a
characterization of Aut(CATERPILLAR).

Lemma 3.7. Let T be a caterpillar graph with the central path P .

(i) If T is asymmetric, then Aut(T) is a direct product of symmetric groups.

(ii) If T is symmetric, then

Aut(T) ∼= (G1 ×G2 ×G3)⋊ϕ Z2,

where G2 is isomorphic to Sk, G1
∼= G3 are direct products of symmetric groups,

and ϕ(1) = (g1, g2, g3) 7→ (g3, g2, g1).

Proof. The root of an MPQ-tree M representing T is a Q-node Q (or a P-node with
at most two children, which is trivial). All twin classes are trivial, since T is a tree.
Each child of the root is either a P-node, or a leaf. All children of a P-node are leaves.
Observe that T is symmetric if and only if Q is symmetric. We can determine Aut(X)
as in the proof of Lemma 3.4.

Proof of Theorem 1.3(ii). According to Corneil [8], an MPQ-tree M representing a
connected unit interval graph contains only one Q-node with all children as leaves. It is
possible that the sections of this Q-node are nontrivial. This equality of automorphism
groups follows from Lemma 3.7 and the proof of Lemma 3.4.

3.5 Groups Acting On Interval Representations

For an interval graphX , the setRep consists of all assignments of closed intervals which
define X . It is natural to consider two interval representations equivalent if one can
be transformed into the other by continuous shifting of the endpoints of the intervals
while preserving the correctness of the representation. Then each representation of
Rep/∼ corresponds to a different consecutive ordering of the maximal cliques; see
Figure 3.6 and 3.7.

C1 C2 C3

C2 C1 C3

C1 C3 C2

C2 C3 C1

C3 C1 C2

C3 C2 C1

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Aut(R5)

Aut(R6)

π π π

Figure 3.6: An interval graph with six non-equivalent representation. The action of
Aut(X) has three isomorphic orbits.

30

3.5. Groups A
ting On Interval Representations

C1C2C3C4C5C6

C6C5C3C4C2C1

C6C5C4C3C2C1

C1C2C4C3C5C6

πQ

πP πQ

πP

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Figure 3.7: An interval graph with four non-equivalent representations. The action
of Aut(X) is transitive. An MPQ-tree M of X is depicted in Fig. 3.1. Since there are
three twin classes of size two, we have Aut(R) ∼= Z3

2. The group Aut(M) is generated
by two sequences: πQ corresponding to flipping the Q-node, and πP corresponding to
permuting the P-node. We have Aut(M) ∼= Z2

2 and Aut(X) ∼= Z3
2 ⋊ Z2

2.

We interpret our results from the previous sections in terms of the action of
Aut(X) on Rep. In Lemma 3.3, we proved that Aut(X) ∼= Ker(Φ) ⋊ Aut(M) where
M is an MPQ-tree. If an automorphism belongs to Aut(R), then it fixes the ordering
of the maximal cliques and it can only permute twin vertices. Therefore Aut(R) =
Ker(Φ) since each equivalence class of twin vertices consists of equal intervals, so they
can be arbitrarily permuted without changing the representation. Every stabilizer
Aut(R) is the same and every orbit of the action of Aut(X) is isomorphic, as in
Figure 3.6.

Different orderings of the maximal cliques correspond to different reorderings of
M . The defined Aut(M) ∼= Aut(X)/Aut(R) describes morphisms of representations
belonging to one orbit of the action of Aut(X), so these representations are the same
up to the labeling of the intervals; see Figure 3.7.

31

Chapter 3. Interval Graphs

32

4 Comparability Graphs

In this chapter, we prove Theorem 1.4 (Section 4.3) and Theorem 1.5 (Section 4.4).
In Section 4.1, we introduce the modular tree representing a graph which we use in
Section 4.2 and 4.3 to describe Aut(COMP) and Aut(PERM).

4.1 Modular Decomposition and Modular Tree

In this section, we introduce the modular decomposition of a graph X and show that
it can be encoded by a modular tree. We further show that the automorphism group
of this modular tree is isomorphic to Aut(X).

Modules. A module M of a graph X is a set of vertices such that each x ∈ V (X)\M is
either adjacent to all vertices in M , or to none of them. Modules generalize connected
components, but unlike connected components, one module can be a proper subset of
another one. Therefore, modules lead to a recursive decomposition of a graph, instead
of just a partition. See Figure 4.1a for examples. A module M is called trivial if
M = V (X) or |M | = 1, and non-trivial otherwise.

If M and M ′ are two disjoint modules, then either the edges between M and M ′

form the complete bipartite graph, or there are no edges at all; see Figure 4.1a. In the
former case, M and M ′ are called adjacent, otherwise they are non-adjacent.

Quotient Graphs. Let P = {M1, . . . ,Mk} be a modular partition of V (X), i.e., each
Mi is a module of X , Mi ∩Mj = ∅ for every i 6= j, and M1 ∪ · · · ∪Mk = V (X). We
define the quotient graph X/P with the vertices m1, . . . , mk (which correspond to the
modules M1, . . . ,Mk) where mimj ∈ E(X/P) if and only if Mi and Mj are adjacent.

M1

M2

M3

M4 M5
M6

(a) (b)

m1 m2 m4 m5 m6

m3

Figure 4.1: (a) A graph X with a modular partition P formed by its inclusion
maximal non-trivial modules. (b) The quotient graph X/P is prime.

33

Chapter 4. Comparability Graphs

In other words, the quotient graph is obtained by contracting each module Mi into a
single vertex mi; see Figure 4.1b.

Modular De
omposition. We decompose a graph X by finding some modular parti-
tion P = {M1, . . . ,Mk}, computing X/P and recursively decomposing X/P and each
X [Mi]. The recursive process stops on prime graphs (w.r.t. modular decomposition)
which are graphs containing only trivial modules. There might be many such decom-
positions, depending on the choice of P in each step. In 1960s, Gallai [20] described
the modular decomposition in which some special modular partitions are chosen. This
modular decomposition encodes all possible decompositions.

The key is the following observation. Let M be a module of X and let M ′ ⊆M .
Then M ′ is a module of X if and only if it is a module of X [M]. We construct the
modular decomposition MD of a graph X in the following way:

• A graph X is called degenerate (w.r.t. modular decomposition) if it is Kn or
Kn. If X is a prime or a degenerate graph, then we add X to MD and stop. We
stop on degenerate graphs to make the modular decomposition unique; there are
many modular partitions for them but not very interesting.

• Let X and X be connected graphs. Gallai [20] shows that the inclusion maximal
non-trivial modules of X form a modular partition P of V (X), and the quotient
graphX/P is a prime graph; see Figure 4.1. We addX/P toMD and recursively
decompose X [M] for each M ∈ P.

• If X is disconnected and X is connected, then every union of several connected
components is a module. All other modules are subsets of a single connected
component. Therefore the connected components form a modular partition P
of V (X), and the quotient graph X/P is an independent set. We add X/P to
MD and recursively decompose X [M] for each M ∈ P.

• If X is disconnected and X is connected, then the modular decomposition is
defined in the same way on the connected components of X . They form a
modular partition P and the quotient graph X/P is a complete graph. We add
X/P to MD and recursively decompose X [M] for each M ∈ P.

Gallai [20] shows that the modular decomposition of a graph is unique. It is easy to
see that it captures all modules of X .

4.1.1 Modular Tree

Let MD be the modular decomposition of X . We encode it by the modular tree T
which is a graph with two types of vertices (normal and marker vertices) and two
types of edges (normal and directed tree edges). The tree edges connect the prime
and degenerate graphs obtained in MD into a tree. Further every modular tree has
an induced subgraph called root node.

If X is a prime or a degenerate graph, we define T = X and its root node is
equal T . Otherwise, let P = {M1, . . . ,Mk} be the modular partition of X used in MD

34

4.1. Modular De
omposition and Modular Tree

(a) (b)

Figure 4.2: (a) The graph X from Figure 4.1 with the modular partition P of X
is depicted, the subsequent modular partitions are depicted by dashed lines. (b) The
modular tree T of X, the marker vertices are white, the tree edges are dashed.

and let T1, . . . , Tk be the corresponding modular trees for X [M1], . . . , X [Mk] according
MD. The modular tree T is constructed by taking disjoint union of T1, . . . , Tk and the
quotient X/P with the marker vertices m1, . . . , mk. To every graph Ti, we add a new
marker vertex m′

i such that m′

i is adjacent exactly to the vertices of the root node of
Ti. We further add a tree edge from mi to m′

i. For an example, see Figure 4.2.

Since the modular decomposition of X is unique, also the modular tree of X
is unique. The graphs obtained in MD are called nodes of T , or alternatively root
nodes of some modular tree in the construction of T . For a node N , its subtree is
the modular tree which has N as the root node. Every node either has all vertices
as marker vertices, or contains no marker vertices. In the former case, it is called an
inner node, otherwise a leaf node.

The next lemma explains that T encodes adjacencies in X .

Lemma 4.1. We have xy ∈ E(X) if and only if there exists an alternating path
xm1m2 . . . mky in the modular tree T such that each mi is a marker vertex and precisely
the edges m2i−1m2i are tree edges.

Proof. Suppose that xy ∈ E(X). If xy ∈ E(T), then we are done. We assume that
xy /∈ E(T). The modular decomposition was constructed by a sequence of quotient
operations. At some step of the construction we get the last graph X0 such that xy ∈
E(X0). Let P be the modular partition of X0 chosen by the modular decomposition.
As in the construction of the modular tree, we denote the marker vertices obtained
from the contraction of the modules by m1, . . . , mk, and the marker vertices attached
to those by tree edges by m′

1, . . . , m
′

k.

We consider the next step of the modular decomposition. Suppose that x ∈ Mi

and y ∈Mj . We have that x ∈ V (X0[Mi]) and y ∈ V (X0[Mj]). From the construction
of T , it follows that xm′

i and ym′

j are normal edges and since xy ∈ E(X0), we also
have that mimj ∈ E(X0/P). The vertices xm′

imimjm
′

jy form an alternating path.

Now, we recursively construct an alternating path in T . From the construction
of T , we have that the vertices x and m′

i are connected by a normal edge. Since the
vertices x and m′

i are adjacent in the graph X0[Mi] ∪m′

i, there exists an alternating
path Pi connecting x and m′

i in the subtree of T representing X0[Mi] ∪m′

i. Similarly,
we have an alternating path Pj connecting y and m′

j in some subtree of T representing
X0[Mj] ∪m′

j . The vertices xPim
′

imimjm
′

jPjy form a correct alternating path in T .

35

Chapter 4. Comparability Graphs

The converse implication can be easily derived by reversing the process described
above.

4.1.2 Automorphisms of Modular Trees

An automorphism of the modular tree T has to preserve the types of vertices and
edges, i.e., map tree edges to tree edges, marker vertices to marker vertices, and fix
the root. We denote the automorphism group of T by Aut(T).

Lemma 4.2. If T is the modular tree representing a graph X, then

Aut(X) ∼= Aut(T).

Proof. First, we show that each automorphism σ ∈ Aut(T) induces a unique automor-
phism ofX . We define α = σ ↾A. By Lemma 4.1 two vertices x, y ∈ V (X) are adjacent
if and only if there exists and alternating path in T connecting them. Since σ is an
automorphism, we also have an alternating path between σ(x) and σ(y). Therefore,
xy ∈ E(X) ⇐⇒ α(x)α(y) ∈ E(X).

To obtain the converse implication, we prove that α ∈ Aut(X) induces a unique
automorphism σ ∈ Aut(T). We define σ(x) = α(x) for a non-marker vertex x. On
the marker vertices, we define σ recursively as follows. Let P = {M1, . . . ,Mk} be a
modular partition of X from the construction of the modular decomposition. It is easy
to see that the group Aut(X) induces a action on the partition P . If α(Mi) = Mj , then
clearly X [Mi] and X [Mj] are isomorphic. We define σ(mi) = mj and σ(m′

i) = m′

j , and
finish the rest recursively. Since σ is an automorphism at each step of the construction,
it follows that σ ∈ Aut(T).

Re
ursive Constru
tion. We can build Aut(T) recursively. Suppose that we know
automorphism groups Aut(T1), . . . ,Aut(Tk) of all subtrees T1, . . . , Tk of T . Let R be
the root node of T . We further color the marker vertices in R by the colors coding
isomorphism classes of the subtrees T1, . . . , Tk. Let Aut(R) be the color preserving
automorphism group of R.

Lemma 4.3. We have

Aut(T) ∼=
(

Aut(T1)× · · · × Aut(Tk)
)

⋊Aut(R).

Proof. We proceed similarly as in the proof of Theorem 2.3. We isomorphically la-
bel the vertices of the isomorphic subtrees Ti. Each automorphism π ∈ Aut(T) is
a composition of two automorphisms σ · τ where σ maps each subtree Ti to itself,
and τ permutes the subtrees as in π while preserving the labeling. Therefore, the
automorphisms σ can be bijectively identified with the elements of the direct product
Aut(T1)× · · · ×Aut(Tk) and the automorphisms τ with some element of Aut(R).

Let π, π′ ∈ Aut(T). Consider the composition σ · τ · σ′ · τ ′, we want to swap τ
with σ′ and rewrite this as a composition σ · σ̂ · τ̂ ·τ . Clearly the subtrees are permuted
in π · π′ exactly as in τ · τ ′, so τ̂ = τ . On the other hand, σ̂ is not necessarily equal σ′.
Let σ′ be identified with the vector

(σ′

1, . . . , σ
′

k) ∈ Aut(T1)× · · · × Aut(Tk).

36

4.2. Automorphism Groups of Comparability Graphs

Since σ′ is applied after τ , it acts on the subtrees permuted according to τ . Thus, σ̂
is constructed from σ by permuting the coordinates of its vector by τ :

σ̂ = (σ′

τ(1), . . . , σ
′

τ(k)).

This is precisely the definition of the semidirect product.

With no further assumptions on X , if R is a prime graph, then Aut(R) can be
isomorphic to an arbitrary group. If R is a degenerate graph, then Aut(R) is a direct
product of symmetric groups.

We note that this procedure does not lead to a polynomial-time algorithm for
computing Aut(T). The reason is that the automorphism groups of prime graphs can
be very complicated. To color the marker vertices, we have to be able to solve graph
isomorphism of subtrees Ti, and then we have to find the subgroup of Aut(R) which
preserves the colors.

4.2 Automorphism Groups of Comparability Graphs

In this section, we give a structural understanding of the automorphism groups of
comparability graphs, in terms of actions on sets of transitive orientations.

Stru
ture of Transitive Orientations. Let → be a transitive orientation of X and let
T be the modular tree representing X . For modules M1 and M2, we write M1 → M2

if x1 → x2 for all x1 ∈M1 and x2 ∈M2. Gallai [20] shows:

• If two modules M1 and M2 are adjacent, then either M1 → M2, or M1 ←M2.

• The graph X is a comparability graph if and only if each node of T is a compa-
rability graph.

• Every prime comparability graph has exactly two transitive orientations, one
being the reversal of the other.

The modular tree T encodes all transitive orientations as follows. For each prime
node of T , we choose one of the two possible orientations. For each degenerate node, we
choose some orientation. (If it is a complete graph Kn, it has n! possible orientations, if
it is an independent graph Kn, it has the unique orientation). A transitive orientation
of X is then constructed as follows. We orient the vertices of leaf nodes as above.
For every subtree with children M1, . . . ,Mk, we orient X [Mi] → X [Mj] if and only
if mi → mj in the root node. It is easy to check that this gives a valid transitive
orientation, and every transitive orientation can be constructed in this way.

A
tion Indu
ed On Transitive Orientations. Let o(X) be the set of all transitive
orientations of X . Let π ∈ Aut(X) and O ∈ o(X). We define the orientation π(O):

xOy ⇐⇒ π(x)π(O)π(y), ∀x, y ∈ V (X).

We can observe that π(O) is a transitive orientation of X , so π(O) ∈ o(X); see
Figure 4.3. Therefore Aut(X) defines an action on o(X).

37

Chapter 4. Comparability Graphs

2

1

4

3

6

5

8

7

1 2 3 4 5 6 7 8

Figure 4.3: Two automorphism reflect X and change the transitive orientation. On
the right, their action on the modular tree T .

Let S be the stabilizer of some orientation O. It consists of all automorphisms
which preserve this orientation, so they permute only the vertices that are incompa-
rable in O. In other words, S is the automorphism group of the poset created by the
transitive orientation O of X . We want to understand it in terms of Aut(T) for the
modular tree T representing X . Each automorphism Aut(T) somehow acts inside each
node, and somehow permutes the nodes, as characterized in Lemma 4.3.

Consider some subtree of T with the subtrees T1, . . . , Tk. Suppose that σ ∈ S
maps Ti to σ(Ti) = Tj . Then the marker vertices mi andmj have to be incomparable in
the root node of the subtree T . If the root node is an independent set, the isomorphic
subtrees can be arbitrarily permuted in S. If it is a complete graph, all subtrees are
preserved in S. If it is a prime graph, then isomorphic subtrees of incomparable marker
vertices can be permuted.

4.3 Automorphism Groups of Permutation Graphs

In this section, we derive the characterization of the automorphism groups of permu-
tation graphs stated in Theorem 1.4.

A
tion Indu
ed On Pairs of Transitive Orientations. Let X be a permutation graph.
In comparison to general comparability graphs, here, the main difference is that both
X and X are comparability graphs. From the results of Section 4.2 it follows that
Aut(X) induces an action on both o(X) and o(X). We work with these two actions
as with one action on the pair (o(X), o(X)), in other words on pairs (O,O) such that
O ∈ o(X) and O ∈ o(X). Figure 4.4 shows an example.

An action is called semiregular if only the identity has a fixed point. In other

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

Figure 4.4: The action of Aut(X) on four pairs of transitive orientations X. The
black generator flips the orientation of X, the gray automorphism of both X and X.

38

4.3. Automorphism Groups of Permutation Graphs

words, all stabilizers of a semiregular action are trivial.

Lemma 4.4. The action of Aut(X) on (o(X), o(X)) is semiregular.

Proof. We know that a permutation belonging to a stabilizer can only permute in-
comparable elements. Since incomparable elements in O are exactly the comparable
elements in O, the stabilizer is trivial.

Lemma 4.5. For a prime permutation graph X, Aut(X) is a subgroup of Z2 × Z2.

Proof. There are at most four pairs of orientations in (o(X), o(X)), so by Lemma 4.4
the order of Aut(X) is at most four. If π ∈ Aut(X), then π2 fixes the orientation of
both X and X . Therefore π2 is an identity, π an involution and Aut(X) is a subgroup
of Z2 × Z2.

A
tion Indu
ed On Permutation Representations. We explain the result PERM =
2-DIM of Even [14]. Let O ∈ o(X) and O ∈ o(X), and let OR be the reversal of O. We
construct two linear orderings L1 = O ∪ O and L2 = O ∪ OR. The comparable pairs
in L1 ∩ L2 are precisely the edges E(X).

Consider a permutation representation of a symmetric prime permutation graph.
The horizontal reflection corresponds to exchanging L1 and L2, which is equivalent to
reversing O. The vertical reflection corresponds to reversing both L1 and L2, which is
equivalent to reversing both O and O. The central rotation by 180◦ is the combination
of both, which is equivalent to reversing O; see Figure 4.5.

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Since {1} ∈ Aut(PERM), we need prove that Aut(PERM) is
closed under (b)–(d).

• Let G1, G2 ∈ Aut(PERM), and let X1 and X2 be two permutation graphs such
that Aut(X1) ∼= G1 and Aut(X2) ∼= G2. We construct a permutation graph X
by attaching X1 and X2 to an asymmetric permutation graph; see Figure 4.6b.
Clearly, we get Aut(X) ∼= G1 ×G2.

1 2 3 4 5 6

3 5 1 6 2 4

3 5 1 6 2 4

1 2 3 4 5 6

4 2 6 1 5 3

6 5 4 3 2 1 6 5 4 3 2 1

4 2 6 1 5 3

Figure 4.5: Four representations of a symmetric permutation graph. The black
automorphism is the horizontal reflection with reverses O and the gray automorphism
is the vertical reflection which reverses both O and O.

39

Chapter 4. Comparability Graphs

X1 X2(b)
Y Y . . . Y

{ n
(c) (d)

X1

X1

X1

X1

X2

X2

X3 X3

Figure 4.6: The construction of the operations (b)–(d). It is easy to check that they
are permutation graphs with the correct automorphism groups.

• Let G ∈ Aut(PERM), and let Y be connected a permutation graph such that
Aut(Y) ∼= G. We construct a graph X by taking the disjoint union of n copies
of Y ; see Figure 4.6. Clearly, we get Aut(X) ∼= G ≀ Sn.

• Let G1, G2, G3 ∈ Aut(PERM), and let X1, X2, and X3 be permutation graphs
such that Aut(Xi) ∼= Gi, for i = 1, 2, 3. We construct a graph X as shown in
Figure 4.6. Clearly, we get Aut(X) ∼=

(

G4
1 ×G2

2 ×G2
3

)

⋊ Z2
2.

To show that for a given permutation graph X the group Aut(X) ∈ Aut(PERM)
we use Lemma 4.3. Let T be the modular tree representing X , let R be its root, and let
T1, . . . , Tk be the subtrees of R. By induction, we assume that Aut(Ti) ∈ Aut(PERM),
and we show that also Aut(T) ∈ Aut(PERM). We distinguish two cases.

• If R is a degenerate node (an independent set or a complete graph), then Aut(R)
is a direct product of symmetric groups. By Lemma 4.3, we get

Aut(T) ∼=
(

Aut(T1)× · · · ×Aut(Tk)
)

⋊
(

Sℓ1 × · · · × Sℓm

)

,

where ℓ1, . . . , ℓm are the sizes of the isomorphism classes of T1, . . . , Tk. Let Gi be
the direct product of all Aut(Tj) such that Tj belong to the same isomorphism
class i. We have

Aut(T) ∼= G1 ≀ Sℓ1 × · · · ×Gm ≀ Sℓm .

Therefore Aut(X) ∼= Aut(T) can be constructed using (b) and (c) and it belongs
to Aut(PERM).

• If R is a prime node, then by Lemma 4.5, Aut(R) is a subgroup of Z2
2. The only

interesting case is when Aut(R) ∼= Z2
2. From the orbit-stabilizer theorem, the

action of Z2
2 on V (R) can have orbits of sizes 4, 2, and 1. Moreover, each orbit of

size 2 corresponds to some stabilizer of size 2. Since there are three subgroups of
Z2
2 of size 2, there can be possibly three types of orbits of size 2. By a geometric

argument, we show that if R is a prime permutation graph, then one of the three
subgroups of size 2 can not be a stabilizer of any orbit of size 2, and therefore
there are at most two types of orbits of size 2.

The non-identity elements (1, 0), (0, 1), and (1, 1) of Z2
2 correspond to the re-

flection f of the permutation representation along the vertical axis, reflection f ′

along the horizontal axis, and rotation r around the center by 180◦, respectively;
see Figure 4.5. The reflection f stabilizes only segments that that coincide with
the vertical axis. Note that there can be at most one such segment, since oth-
erwise R would not be prime. Therefore, the reflection f does not stabilize any
orbit of size 2.

40

4.4. k-Dimensional Comparability Graphs

Let G1 be the direct product of all Aut(Tj) such that Tj is attached to a vertex
of R that belongs to an orbit of size four. The groups G2 and G3 are defined
similarly for the two types of orbits of size two, and G4 for the orbits of size one.
We have

Aut(T) ∼=
(

G4
1 ×G2

2 ×G2
3 ×G1

)

⋊ϕ Z2
2
∼=

(

G4
1 ×G2

2 ×G2
3

)

⋊ Z2
2 ×G4,

where ϕ : Z2
2 → Aut

(

G4
1×G

2
2×G

2
3×G1

)

is the homomorphism defined as follows.
The automorphism ϕ(1, 0) swaps the first two components of G4

1, swaps the com-
ponents of of G2

2, fixes the components of G2
3, and fixes G1. The automorphism

ϕ(0, 1) swaps the second two components of G4
1, fixes the components of G2

2,
swaps the components of G2

3, and fixes G1. We get that Aut(X) ∼= Aut(T) can
be constructed using (b) and (d) and it belongs to Aut(PERM).

4.4 k-Dimensional Comparability Graphs

In this section, we prove that Aut(4-DIM) contains all finite groups, i.e., each finite
group can be realised as an automorphism group of some 4-dimensional comparability
graph. Our construction also shows that graph isomorphism testing of 4-DIM is GI-
complete. Both results easily translate to k-DIM for k > 4 since 4-DIM (k-DIM.

The Constru
tion. LetX be a graph with V (X) = x1, . . . , xn and E(X) = {e1, . . . , em}.
We define

P =
{

pi : xi ∈ V (X)
}

, Q = {qik : xi ∈ ek}, R =
{

rk : ek ∈ E(X)
}

,

where P represents the vertices, R represents the edges and Q represents the incidences
between the vertices and the edges.

The constructed comparability graph CX is defined as follows, see Figure 4.7:

V (CX) = P ∪Q ∪ R, E(CX) = {piqik, qikrk : xi ∈ ek}.

Lemma 4.6. Let X be a connected graph such that X 6∼= Cn. Then

Aut(CX) ∼= Aut(X).

x2 x4

x1

x3

x5

e1e2

e3 e4
e5e6

X CX

p1 p2 p3 p4 p5

q21 q12 q23 q34 q45 q16q51 q22 q33 q44 q55 q46

r1 r2 r3 r4 r5 r6

Figure 4.7: The construction CX for the graph X = K2,3.

41

Chapter 4. Comparability Graphs

Proof. All vertices of Q and R have degree two, and by our assumption at least one
vertex pi in P has a different degree. Therefore, we obtain P as the set of the vertices
in CX whose distance from pi is divisible by four, Q as the set of their neighbors and R
as the remaining vertices. Every automorphism of CX has to preserve this partition,
therefore it induces an automorphism of X . Since this construction does not depend
on the labeling, every automorphism of X is an automorphism of CX . We have that
Aut(CX) ∼= Aut(X).

Proof of Dimension 4. The harder part is to prove that the constructed graph CX has
dimension four, which we can do when X is bipartite.

Lemma 4.7. If X is a connected bipartite graph, then dim(CX) ≤ 4.

Proof. We construct four chains such that L1 ∩ L2 ∩ L3 ∩ L4 have two vertices com-
parable if and only if they are adjacent in CX . We describe linear chains as words
containing each vertex of V (CX) exactly once. If S1, . . . , Ss is a sequence of strings,
the symbol 〈St : ↑ t〉 is the concatenation S1S2 . . . Ss and 〈St : ↓ t〉 is the concatenation
SsSs−1 . . . S1. When the arrows are omitted as in 〈St〉, we concatenate in an arbitrary
order.

First, we define the incidence string Ii which codes pi and its neighbors qik:

Ii = pi
〈

qik : piqik ∈ E(CX)
〉

.

Notice that the concatenation IiIj contains the right edges but it further contains
edges going from pi and qik to pj and qjℓ. We remove these edges by concatenation
IjIi in some other chain.

Since X is bipartite, let (A,B) be partition of its vertices. We define

PA = {pi : xi ∈ A}, QA = {qik : xi ∈ A},

PB = {pj : xj ∈ B}, QB = {qjk : xj ∈ B}.

Each vertex rk has exactly one neighbor in QA and exactly one in QB.

We construct the four chains as follows:

L1 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↑ k〉〈Ii : pi ∈ PB, ↑ i〉,

L2 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↓ k〉〈Ii : pi ∈ PB, ↓ i〉,

L3 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB, ↑ k〉〈Ii : pi ∈ PA, ↑ i〉,

L4 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB, ↓ k〉〈Ii : pi ∈ PA, ↓ i〉.

See Figure 4.8 for properties of L1, . . . , L4. It is routine to verify that the inter-
section L1 ∩ L2 ∩ L3 ∩ L4 is correct.

The four defined chains have the following properties, see Figure 4.8:

• The intersection L1∩L2 forces the correct edges between QA and R and between
PB and QB. It poses no restrictions between QB and R and between PA and the
rest of the graph.

42

4.4. k-Dimensional Comparability Graphs

PA PB

QA QB

R

PA PB

QA QB

R

Figure 4.8: On the left, the forced edges in L1 ∩ L2, on the right in L3 ∩ L4.

• Similarly the intersection L3∩L4 forces the correct edges between QB and R and
between PA and QA. It poses no restrictions between QA and R and between
PB and the rest of the graph.

Claim 1: The edges in Q ∪ R are correct. For every k, we get rk adjacent to both qik
and qjk since it appear on the left in L1, . . . , L4. On the other hand, qikqjk /∈ E(CX)
since they are ordered differently in L1 and L3.

For every k < ℓ, there are no edges between N [rk] = {rk, qik, qjk} and N [rℓ] =
{rℓ, qsℓ, qtℓ}. This can be shown by checking the four ordering of these six elements:

in L1: rkqik rℓqsℓ qjk qtℓ , in L2: rℓqsℓ rkqikqjk qtℓ ,

in L3: rkqjk rℓqtℓ qik qsℓ , in L4: rℓqtℓ rkqjkqik qsℓ ,

where the elements of N [rℓ] are boxed. ⋄

Claim 2: The edges in P are correct. We show that there are no edges between pi and
pj for i 6= j as follows. If both belong to PA (respectively PB), then they are ordered
differently in L3 and L4 (respectively L1 and L2). If one belongs to PA and the other
one to PB, then they are ordered differently in L1 and L3. ⋄

Claim 3: The edges between P and Q ∪ R are correct. For every pi ∈ P and rk ∈ R,
we have pirk /∈ E(CX) because they are ordered differently in L1 and L3. On the other
hand, piqik ∈ E(CX), because pi is before qik in Ii, and for pi ∈ PA in L1 and L2, and
for pi ∈ B in L3 and L4.

It remains to show that piqjk /∈ E(CX) for i 6= j. If both pi and pj belong to PA

(respectively PB), then pi and qjk are ordered differently in L3 and L4 (respectively
L1 and L2). And if one belongs to PA and the other one to PB, then pi and qjk are
ordered differently in L1 and L3. ⋄

These three claims show that comparable pairs in the intersection L1∩L2∩L3∩L4

are exactly the edges of CX , so CX is a comparability graph with the dimension at
most four.

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. It is sufficient to prove the statement for 4-DIM. Let X be a
connected graph such that X 6∼= Cn. First, we take the bipartite incidence graph Y
between V (X) and E(X), and it easily follows that Aut(Y) ∼= Aut(X). Then we

43

Chapter 4. Comparability Graphs

construct CY . From Lemma 4.6 it follows that Aut(CY) ∼= Aut(Y) ∼= Aut(X) and by
Lemma 4.7, we have that CY ∈ 4-DIM. Similarly, if two graphs X1 and X2 are given,
we construct CY1

and CY2
such that X1

∼= X2 if and only if CY1

∼= CY2
; this gives the

reduction which shows GI-completeness of graph isomorphism testing.

44

5 Circle Graphs

Here, we study Aut(CIRCLE). Section 5.1 introduces the split tree of a graph. Split
tree captures the symmetries of a graph and in case of circle graphs, it can by used to
describe Aut(CIRCLE) as in Theorem 1.6. This is proved in Section 5.2. Finally, in
Section 5.3 we describe the action of the automorphism group of a circle graph on the
set of its circle representations.

5.1 Split Decomposition and Split Tree

First, we explain a split decomposition of a graph. Similarly to the modular decom-
position, it a recursive process that decomposes a graph into indecomposable graphs.
A split decomposition starts by finding a split.

A split of X is a partition of the vertices of X into four parts A, B, A′ and B′

such that:

• For every a ∈ A and b ∈ B, we have ab ∈ E(X).

• There are no edges between A′ and B ∪B′, and between B′ and A ∪A′.

• Both sides have at least two vertices: |A ∪A′| ≥ 2 and |B ∪ B′| ≥ 2.

A split decomposition of X is a collection of graphs constructed as follows.
Initially, it constains only X . Then we take a split (A,A′, B, B′) of X and re-
place X by graphs XA and XB defined as follows. The vertex set of XA is the set
V (XA) = A ∪ A′ ∪ {mA}, where mA is a new marker vertex adjacent exactly to the
vertices in A. The graph XB is defined analogously for B, B′ and mB; see Figure 5.1a.
We proceed recursively for XA and XB.

Graphs containing no splits are called prime graphs. We stop the construction of
a split decomposition also on degenerate graphs which are the complete graphs Kn and
the complete bipartite graphs K1,n. A split decomposition of a graph is therefore a
collection of prime and degenerate graphs. Note that the prime and degenerate graphs
with respect to a split decomposition are different as to modular decomposition (see
Section 4.1).

45

Chapter 5. Cir
le Graphs

A split decomposition does not have to be unique, however, Cunningham [9]
proved that the minimal split decomposition is. A split decomposition D is minimal
if every other split decomposition is constructed by at least as many splits as D.

It is not difficult to see that a connected graph X is a circle graph if and only
if both XA and XB are circle graphs. This is the key connection between the split
decomposition and circle graphs. In other words, a connected graph X is a circle graph
if and only if all the prime graphs obtained by the minimal split decomposition are
circle graphs (the degenerate graphs are clearly circle graphs).

Notice that a representation of a circle graph X is completely determined by
the circular order of the endpoints of the chords in its representation. Two chords
Cx and Cy, corresponding to some vertices x, y ∈ V (X), intersect if and only if their
endpoints alternate in this circular order. According to [19], every prime circle graph
has a unique circle representation up to rotations and reflections of the circular order
of the endpoints of the chords representing it. In other words, the circular order of the
endpoints of the chords representing a prime circle graph is unique, up to rotations
and reflections.

5.1.1 Split Tree

The split tree S representing a graph X encodes the minimal split decomposition
of X . A split tree, similarly as modular tree, is a graph with two types of vertices
(normal and marker vertices) and two types of edges (normal and tree edges). We
initially put S = X and modify it according to the minimal split decomposition. If
the minimal split decomposition takes a split (A,B,A′, B′) of Y , then we replace Y
by the graphs YA and YB, and connect the marker vertices mA and mB by a tree-edge
(see Figure 5.1a). We repeat this recursively on YA and YB; see Figure 5.1b.

Each prime or degenerate graph is a node of the split tree. Since the minimal
split decomposition of a graph is unique, we also have that the split tree of a graph is
unique. In the next lemma, we prove that the split tree S of a graph X captures the
adjacencies in X .

Lemma 5.1. We have xy ∈ E(X) if and only if there exists an alternating path
xm1m2 . . . mky in S such that each mi is a marker vertex and precisely the edges
m2i−1m2i are tree edges.

Proof. Suppose that xy ∈ E(X). We prove the existence of an alternating path
between x and y by induction. If xy ∈ E(S), then it clearly exists. Otherwise, let

X

B
A′ A

mA mBsplit

XA XB

12
3

4

5

6 7

8

9

10

1

23

4 5

6

7

8

9

10

X S(a) (b)

Figure 5.1: (a) An example of a split of the graph X. The marker vertices are
depicted in white. The tree edge is depicted by a dashed line. (b) The split tree S of
the graph X. We have that Aut(S) ∼= Z5

2 ⋊D5.

46

5.1. Split De
omposition and Split Tree

Y be the last graph in the construction of the minimal split decomposition such that
xy ∈ E(Y). The decomposition splits Y according to the split (A,B,A′, B′) such
that x ∈ A and y ∈ B, otherwise YA or YB would contain xy. We have x ∈ V (YA),
xmA ∈ E(YA), y ∈ V (YB), and ymB ∈ E(YB). By induction hypothesis, there exist
alternating paths between x and mA and between mB and y in S. There is a tree edge
mAmB, so we get an alternating path between x and y. On the other hand, if there
exists an alternating path xm1 . . .mky in S, by joining all splits, we get xy ∈ E(X).

5.1.2 Automorphisms of Split Trees

In [23], split-trees are defined in terms of graph-labeled trees. However, our definition
is more suitable for working with automorphism groups. An automorphism of a split-
tree S is an automorphism of S which preserves the types of vertices and edges, i.e, it
maps marker vertices to marker vertices, and tree-edges to tree edges. We denote the
automorphism group of S by Aut(S).

Lemma 5.2. If S is a split-tree representing a graph X, then Aut(S) ∼= Aut(X).

Proof. First, we show that each σ ∈ Aut(S) induces a unique automorphism α of X .
Since V (X) ⊆ V (S), we define α = σ ↾V (X). By Lemma 5.1, xy ∈ E(X) are adjacent
if and only if there exists an alternating path between them in S. Automorphisms
preserve alternating paths, so xy ∈ E(X) ⇐⇒ α(x)α(y) ∈ E(X).

It remains to show that α ∈ Aut(X) induces a unique automorphism σ ∈ Aut(S).
We define σ(x) = α(x) for every non-marker vertex x. On the marker vertices, we
define σ recursively as follows. Let (A,B,A′, B′) be a split of X chosen by the minimal
split decomposition. This split is mapped by α to another split (C,D,C ′, D′), i.e.,

α(A) = C, α(A′) = C ′, α(B) = D, and α(B′) = D′.

By splitting according to (A,A′, B, B′), we get the graphs XA and XB with the
marker vertices mA ∈ V (XA) and mB ∈ V (XB). Similarly, for (C,C ′, D,D′) we get
XC , XD with mC ∈ V (XC) and mD ∈ V (XD). Since α is an automorphism, we have
that XA

∼= XC and XB
∼= XD. It follows that the unique split trees of XA and XC

are isomorphic, and similarly for XB and XD. Therefore, we define σ(mA) = mC and
σ(mB) = mD, and we finish the rest recursively. Since σ is an automorphism at each
step of the construction of S, it follows that σ ∈ Aut(S).

Re
ursive Constru
tion. Let S be as split tree representing a circle graph X , and let
R be an arbitrary node of S. Suppose that we root the split tree S by R. Let SR be
the resulting rooted split tree. Note that the group Aut(SR) is exactly the stabilizer
StabS(R) and in general it is not isomorphic to Aut(S). However, it can be constructed
similarly as the automorphism group of a modular tree; see Section 4.1.

Lemma 5.3. Let S1, . . . , Sk be the subtrees of R, and let mi ∈ V (Si) be the correspond-
ing marker vertices, for i = 1, . . . , k. Then

Aut(SR) ∼=
(

StabS1
(m1)× · · · × StabSk

(mk)
)

⋊Aut(R).

Proof. Analogous to the proof of Lemma 4.3.

47

Chapter 5. Cir
le Graphs

5.2 Automorphism Groups of Circle Graphs

We prove Theorem 1.6 which gives a characterization of Aut(connected CIRCLE). The
automorphism group of a disconnected circle graph can be easily determined using
Theorem 2.3. We use split trees, described in Section 5.1, similarly as modular trees
were used in Section 4.3.

To prove Theorem 1.6, we proceed similarly as in the proof of Jordan’s char-
acterization 2.4 of trees. By Lemma 5.2, it suffices to determine the automorphism
group of the split tree S representing a connected circle graph X .

Similarly as for trees, there exists a center of S. If the center is a tree edge,
we can construct a new split tree S ′ by subdividing the tree edge with K2. We do
this by creating two new marker vertices, and connecting them by a normal edge; see
Figure 5.2. It is easy to see that Aut(S) ∼= Aut(S ′). Therefore, we can assume that
the center C of S is a prime or a degenerate node. Each automorphism of S fixes C.
We have

StabS(C) = Aut(S).

Therefore, we can also assume that S is rooted by C.

The following lemma is analogous to Lemma 4.5. For a prime circle graph X
(with respect to the split decomposition) and a vertex m ∈ V (X), it determines
the group StabX(m). The automorphism group of a prime circle graph can be any
subgroup of a dihedral group, since according to [19], each prime circle graph has a
unique representation, up to rotation and reflection. However, in a rooted split tree,
each automorphism has to stabilize one vertex of a prime node that is not the root.
Therefore, Lemma 5.4 is relevant.

Lemma 5.4. Let X be a connected circle graph and let m ∈ V (X). If X is prime, then
StabX(m) is isomorphic to a subgroup of Z2 × Z2.

Proof. Each prime circle graph has a unique circle representation, up to rotations and
reflections of the circular order of the endpoints of the chords in the representation [19].
Therefore, every automorphism of X is a rotation or a reflection of the circular order.

Let the circular ordering of the endpoints of the chords be

mAm̂B,

where m and m̂ are the endpoints of the chord Cm representing m, and A and B are
strings of the endpoints of the chords obtained by traversing the circle counterclockwise
from m to m̂ and from m̂ to m, respectively.

S S′

Figure 5.2: The center of the split tree S is a tree edge. We get S′ by subdividing
the tree edge with a graph isomorphic to K2.

48

5.2. Automorphism Groups of Cir
le Graphs

m

m̂

11
2

2

3

3
4 4

5

5

6

6

m

m̂

11
6

6

5

5
4 4

3

3

2

2

m̂

m

44
5

5

6

6
1 1

2

2

3

3

m̂

m

44
3

3

2

2
1 1

6

6

5

5

Figure 5.3: A geometrical interpretation of Lemma 5.4. The transformations f
(black), and f ′ (gray) generate a group isomorphic to Z2 × Z2.

Each automorphism of Aut(X) that stabilizes m either fixes both m and m̂, or
swaps them. The first can be only achieved with the reflection f of mAm̂B along
m (and the identity) which gives mB′m̂A′, where A′ and B′ are reversed A and B,
respectively. The second can be only achieved with the rotation r of mAm̂B which
gives m̂BmA, and with the reflection f ′ which gives m̂A′mB′.

It is easy to see that f ′ = r · f . The transformations r and f of mAm̂B are
involutions and therefore 〈r, f〉 ∼= Z2 × Z2. The stabilizer of m is a subgroup of
Z2 × Z2 since r and f do not have to define an automorphism of X .

Geometrically, the transformations f and f ′, from the proof of Lemma 5.4, cor-
respond to the reflection of the representation along the chord Cm and to the reflection
along the line perpendicular to the chord Cm, respectively. The rotation r = f ′ · f
corresponds to the rotation of the representation around the center of the circle by
180◦; see Figure 5.3.

Our next goal is to relate the class S, defined in Theorem 1.6, to some suitable
subclass of Aut(connected CIRCLE). We define

Stab(connected CIRCLE) =
{

G ∼= StabX(x) : X ∈ CIRCLE, x ∈ V (X)
}

.

Lemma 5.5. The class Stab(connected CIRCLE) contains exactly the same groups as
the class S, defined in Theorem 1.6.

Proof. First, we construct the groups described in (a)–(d). We need to prove that
Stab(connected CIRCLE) is closed under (b)–(d).

• Let G1, G2 ∈ Stab(connected CIRCLE), and let X1 and X2 be circle graphs
such that StabX1

(x1) ∼= G1 and StabX2
(x2) ∼= G2, for some x1 ∈ V (X1) and

x2 ∈ V (X2). We construct a circle graph X by adding a new vertex x and
attaching each of the vertices x1 and x2 to x. We possibly need to subdivide one
of the edges x1x and x2x tho enforce StabX(x) ∼= G1 ×G2.

• Let G ∈ Stab(connected CIRCLE), and let Y be a circle graph with StabY (y) ∼=
G, for some y ∈ V (Y). We take and n copies of Y and construct a circle graph

49

Chapter 5. Cir
le Graphs

X1

X1 X1

X1

X2

X2

X3 X3

X4 X4

x

X R

X4

X4

X2

X2

X3 X3

X1

X1

X1

X1

X1

X1

xx

Figure 5.4: The construction of the group in (d) and a circle representation of X.

X by adding a new vertex x and an edge xy, for each copy of Y . Clearly, we get
StabX(x) ∼= G ≀ Sn.

• Let G1, G2, G3, G4 ∈ Stab(connected CIRCLE), and let Xi be a circle graph with
StabXi

(xi) ∼= Gi, for some xi ∈ V (Xi). We construct a graph X as shown in
Figure 5.4. We get StabX(x) ∼=

(

G4
1 ×G2

2 ×G2
3 ×G2

4

)

⋊ Z2
2.

It is not difficult to see that in all of the cases, the graph X is a circle graph.

It remains to show that for a circle graph X and a vertex x ∈ V (X) the group
StabX(x) is isomorphic to a group from Stab(connected CIRCLE). Let S be the split
tree of X . Since Aut(S) ∼= Aut(X), it suffices to prove it for StabS(x). Let R be the
node of S such that x ∈ V (R). We root S by R, and denote the resulting rooted split
tree by SR.

For each node of SR, we need to determine how its children can be permuted.
For a node N of SR, this is given by StabN(y), where y ∈ V (N). If N 6= R, then y is
the marker vertex attached to the parent of N in SR, and if N = R, then y = x, since
the vertex x has to be stabilized.

We determine StabS(x) inductively, using Lemma 5.3. Let S1, . . . , Sk be the
subtrees of the root N , and let mi ∈ V (Si) be the corresponding marker vertices. By
induction, we assume that each StabSN

(y) ∈ Stab(connected CIRCLE). It follows from
Lemma 5.3 that

StabSN
(y) ∼=

(

StabS1
(m1)× · · · × StabSk

(mk)
)

⋊ StabN(y).

Note that StabSR
(y) = StabSR

(x) = StabS(x). We distinguish two cases.

• If N is a degenerate node, then StabN(y) is a direct product of symmetric groups.
We have

StabSN
(y) ∼=

(

StabS1
(m1)× · · · × StabSk

(mk)
)

⋊
(

Sℓ1 × · · · × Sℓm

)

,

where ℓ1, . . . , ℓm are the sizes of orbits of the marker vertices mi. Let Gi be the
direct product of all StabSj

(mj) such that mj is in orbit i. We have

StabSN
(y) ∼= G1 ≀ Sℓ1 × · · · ×Gm ≀ Sℓm .

50

5.2. Automorphism Groups of Cir
le Graphs

Therefore StabSN
(y) can be constructed using (b) and (c) and it belongs to

Stab(connected CIRCLE).

• If N is a prime node, then by Lemma 5.4, StabSN
(y) is a subgroup of Z2

2. The
only interesting case is when StabSN

(y) ∼= Z2
2. The action of Z2

2 on V (N) can
have orbits of sizes 4, 2, and 1. Moreover, each orbit of size 2 corresponds to
some stabilizer of size 2. Since there are three subgroups of Z2

2 of size 2, there
can be possibly three types of orbits of size 2. Note that Figure 5.4 shows that
unlike for permutation graphs (see proof of Theorem 1.4), the action of Z2

2 can
have three orbits of size 2, for circle graphs.

Let G1 be the direct product of all StabSj
(mj) such that mj is belongs to an

orbit of size four. The groups G2, G3, and G4 are defined similarly for the three
types of orbits of size two, and G5 for the orbits of size one. Similarly as in the
proof of Theorem 1.4, we get

StabSN
(y) ∼=

(

G4
1 ×G2

2 ×G2
3 ×G2

4

)

⋊ϕ Z2
2 ×G5,

where ϕ : Z2
2 → Aut

(

G4
1×G2

2×G2
3×G2

4

)

is the homomorphism defined similarly
as in the proof of Theorem 1.4. Therefore StabSN

(y) can be constructed using
(b) and (d) and it belongs to Stab(connected CIRCLE).

Now, we prove Theorem 1.6.

Proof of Theorem 1.6. Since {1} ∈ Aut(connected CIRCLE), we need to prove that
Aut(connected CIRCLE) is closed under (e)–(f).

• Let G ∈ S, let n ≥ 3, and let Y be a circle graph with StabY (y) ∼= G, for some
y ∈ V (Y). We take and n copies of Y and construct a circle graph X as shown
in Figure 5.5e. Clearly, we get Aut(x) ∼= Gn ⋊ Zn.

• Let G1, G2 ∈ S, let n ≥ 3, and let X1 and X2 be circle graphs such that
StabX1

(x1) ∼= G1 and StabX2
(x2) ∼= G2, for some x1 ∈ V (X1) and x2 ∈ V (X2).

We construct a circle graph X as shown in Figure 5.5f. We get Aut(X) ∼=
(Gn

1 ×G2n
2)⋊Dn.

Y

Y

Y Y

Y

(e) (f)

X2X1

X1

X2

X1

X1

X2

X1 X1

X2

X1

X1

X2

X1

X1

Figure 5.5: The construction of the operations (e)–(f). It is easy to check that they
are circle graphs with the correct automorphism groups.

51

Chapter 5. Cir
le Graphs

It is not difficult to see that in all of the cases, the graph X is a circle graph.

On the other hand, let X be a connected circle graph, and let S be its split tree.
We show that Aut(S) ∈ Aut(connected CIRCLE). We root S by its central node C,
and let SC be the resulting rooted split tree. Clearly, StabS(C) = Aut(SC) = Aut(S).
Let S1, . . . , Sk be the subtrees of C, and let mi ∈ V (Si) be the corresponding marker
vertices, for i = 1, . . . , k. Then by Lemma 5.3, we have

Aut(SC) ∼=
(

StabS1
(m1)× · · · × StabSk

(mk)
)

⋊ Aut(C).

According to [19], the circular ordering of the endpoints of the chords in the repre-
sentation of a prime circle graph is unique, up to rotations and reflections. Therefore,
each automorphism of a prime circle graph can be either a rotation, or a reflection of
this circular ordering. Therefore, the group Aut(C) is a subgroup of a dihedral group,
i.e., either Aut(C) ∼= Zk, or Aut(C) ∼= Dℓ, for k 6= 2 and ℓ ≥ 3. From Lemma 5.5 it
follows that

StabS1
(m1)× · · · × StabSk

(mk) ∈ Stab(connected CIRCLE),

and therefore the group Aut(SC) can be constructed using (e)–(f). Note that for
Aut(C) ∼= Z2, D1, and D2 the group Aut(SC) belongs to the class S.

5.3 Groups Acting On Circle Representations

For a circle graph X , the set Rep consists of all assignments of chords of a circle which
define X . Two representations are equivalent if they have the same circular order of
endpoints of the chords, up to reflections. Therefore each Aut(R) is a subgroup of a
dihedral group. Different orbits of the action of Aut(X) may be non-isomorphic and
Aut(R) may not be a normal subgroup of Aut(X).

The results of the previous sections have the following interpretation in terms
of the action of Aut(X). Lemma 5.2 shows for the split tree S representing X that
Aut(S) ∼= Aut(X). Assume that the center C is a prime circle graph, otherwise Aut(R)
is much more restricted. We choose a representation R belonging to the smallest orbit,
i.e., R is one of the most symmetrical representations. Then Aut(R) describes the
rotations/reflections of C. Let H be the point-wise stabilizer of C in Aut(S). We
know that H is generated by permutations of isomorphic subtrees attached to nodes
N 6= C. If N is a prime graph, we can only apply the geometric reflection with the axis
perpendicular to the chord of the marker vertex, which corresponds to reflecting a small
part of a circle representation. If N is a degenerate graph, then isomorphic subtrees
can be arbitrarily permuted which corresponds to permuting small identical parts of
a circle representation. The proof of Theorem 1.6 shows that Aut(S) ∼= H ⋊Aut(R).

52

6 Conclusions

We conclude this thesis with several open problems concerning intersection-defined
classes of graphs.

As already mentioned in the introduction, Frucht [17] proved that each finite
group G can be realized as an automorphism group of some graph X . It is known
that an analogous result holds for the endomorphism monoids. An endomorphism of
a graph X is a mapping f : V (X) → V (X) that preserves adjacencies, i.e., it is a
graph homomorphism of X to itself. Endomorphisms of a graph X form a monoid,
denoted by End(X). It can be shown that every finite monoid can be realized as an
endomorphism monoid of X .

In Theorem 1.3, we proved that Aut(INT) = Aut(TREE). For a class C of graphs,
we define

End(C) =
{

M : M is an abstract monoid, ∃X ∈ C such that G ∼= End(X)
}

.

Similarly as Aut(C), the class End(C) contains all monoids that can be realized as an
endomorphism monoid of some graph X ∈ C.

Problem 6.1. Does End(TREE) equal End(INT)?

Circular-arc graphs (CIRCULAR-ARC) are intersection graphs of circular arcs
and they naturally generalize interval graphs; see Figure 6.1. Surprisingly, this class
is very complex and quite different from interval graphs. Hsu [32] gives a linear-time
recognition algorithm for circular-arc, and relates them to circle graphs.

Problem 6.2. What groups belong to Aut(CIRCULAR-ARC)?

1

5 2

4 3

1

3

4

5
2

Figure 6.1: A circular-arc graph (on the left) that is not an interval graph, and its
representation (on the right).

53

Chapter 6. Con
lusions

Let Y be a fixed graph. The class Y -GRAPH consists of the intersections graphs
of connected subgraphs of a subdivision of Y . Observe that K2-GRAPH = INT and

⋃

T∈TREE

T -GRAPH = CHOR.

We have an infinite hierarchy between INT and CHOR, since INT ⊆ T -GRAPH (CHOR.
If Y contains a cycle of length at least four, then Y -GRAPH 6⊆ CHOR. The simplest
of these classes are circular-arc graphs which are equal to K3-GRAPH.

Conje
ture 6.3. For every fixed graph Y , the class Y -GRAPH is non-universal.

The last class from the infinite hierarchy between 2-DIM and COMP whose auto-
morphism groups remain unknown is 3-DIM.

Conje
ture 6.4. The class 3-DIM is universal.

54

Bibliography

[1] L. Babai. Automorphism groups of planar graphs II. In Infinite and finite sets
(Proc. Conf. Kestzthely, Hungary), 1973.

[2] K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial orders of dimension 2.
Networks, 2:11–28, 1972.

[3] S. Benzer. On the topology of the genetic fine structure. Proceedings of the
National Academy of Sciences of the United States of America, 45(11):1607, 1959.

[4] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci., 13:335–
379, 1976.

[5] N. Carter. Visual group theory. MAA, 2009.

[6] C. J. Colbourn. On testing isomorphism of permutation graphs. Networks,
11(1):13–21, 1981.

[7] C. J. Colbourn and K. S. Booth. Linear times automorphism algorithms for trees,
interval graphs, and planar graphs. SIAM J. Comput., 10(1):203–225, 1981.

[8] Derek G Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P
Sprague. Simple linear time recognition of unit interval graphs. Information
Processing Letters, 55(2):99–104, 1995.

[9] W.H. Cunningham. Decomposition of directed graphs. SIAM Journal on Alge-
braic Discrete Methods, 3:214–228, 1982.

[10] D. S. Dummit and R. M. Foote. Abstract algebra. 2004.

[11] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal of Math-
ematics, 63(3):600–610, 1941.

[12] P. Erdös, S. Fajtlowicz, and A. J. Hoffman. Maximum degree in graphs of diameter
2. Networks, 10(1):87–90, 1980.

[13] S. Even and A. Itai. Queues, stacks and graphs. Theory of Machines and Com-
putations, pages 71–86, 1971.

55

[14] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive graphs.
Journal of the ACM (JACM), 19(3):400–410, 1972.

[15] J. Fiala, P. Klav́ık, J. Kratochv́ıl, and R. Nedela. Algorithmic aspects of regular
graphs covers with applications to planar graphs. In Lecture Notes in Computer
Science, Automata, Languages, and Programming ICALP 2014, volume 8572,
pages 489–501, 2014.

[16] J. Fiala, P. Klav́ık, J. Kratochv́ıl, and R. Nedela. 3-connected reduction for regular
graph covers. arXiv:1503.06556, 2015.

[17] R. Frucht. Herstellung von graphen mit vorgegebener abstrakter gruppe. Com-
positio Mathematica, 6:239–250, 1939.

[18] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pac.
J. Math., 15:835–855, 1965.

[19] C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Recognizing circle graphs in poly-
nomial time. Journal of the ACM (JACM), 36(3):435–473, 1989.

[20] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica,
18(1):25–66, 1967.

[21] Michael R Garey, David S Johnson, Gary L Miller, and Christos H Papadimitriou.
The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic
Discrete Methods, 1(2):216–227, 1980.

[22] Fanica Gavril. Maximum weight independent sets and cliques in intersection
graphs of filaments. Information Processing Letters, 73(5):181–188, 2000.

[23] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: Character-
izations and fully dynamic algorithms for totally decomposable graphs. Discrete
Appl. Math., 160(6):708–733, 2012.

[24] C. D. Godsil and G. Royle. Algebraic graph theory, volume 207. Springer New
York, 2001.

[25] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004.

[26] M. C. Golumbic, D. Rotem, and J. Urrutia. Comparability graphs and intersection
graphs. Discrete Mathematics, 43(1):37–46, 1983.

[27] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. In Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’12, pages 173–192, 2012.

[28] G. Hajós. Über eine Art von Graphen. Internationale Mathematische
Nachrichten, 11:65, 1957.

[29] P. Hanlon. Counting interval graphs. Transactions of the American Mathematical
Society, 272(2):383–426, 1982.

56

[30] Z. Hedrĺın, A. Pultr, et al. On full embeddings of categories of algebras. Illinois
Journal of Mathematics, 10(3):392–406, 1966.

[31] A. J. Hoffman and R. R. Singleton. On moore graphs with diameters 2 and 3.
IBM Journal of Research and Development, 4(5):497–504, 1960.

[32] W. L. Hsu. O(M ·N) algorithms for the recognition and isomorphism problems
on circular-arc graphs. SIAM Journal on Computing, 24(3):411–439, 1995.

[33] C. Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik, 70:185–190, 1869.

[34] N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput., 18(1):68–81, 1989.

[35] G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph
isomorphism. Journal of the ACM (JACM), 26(2):183–195, 1979.

[36] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polyno-
mial time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

[37] R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3):131–136, 1979.

[38] B. D. McKay, M. Miller, and J. Širáň. A note on large graphs of diameter two
and given maximum degree. J. Combin. Theory Ser. B, 74(1):110–118, 1998.

[39] M. Miller and J. Širáň. Moore graphs and beyond: A survey of the de-
gree/diameter problem. Electronic Journal of Combinatorics, 61:1–63, 2005.

[40] F. S. Roberts. Discrete mathematical models, with applications to social, biolog-
ical, and environmental problems. 1976.

[41] Fred S Roberts. Indifference graphs. Proof techniques in graph theory, 139:146,
1969.

[42] J. J. Rotman. An introduction to the theory of groups, volume 148. Springer,
1995.

[43] U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37(3):312–323, 1988.

[44] J. Šiagiová. A note on the McKay–Miller–Širáň graphs. J. Combin. Theory Ser.
B, 81(2):205–208, 2001.

[45] J. P. Spinrad. Efficient Graph Representations.: The Fields Institute for Research
in Mathematical Sciences., volume 19. American Mathematical Soc., 2003.

[46] K. E. Stoffers. Scheduling of traffic lightsa new approach. Transportation Re-
search, 2(3):199–234, 1968.

57

[47] H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc., 34:339–
362, 1932.

[48] M. Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic Discrete Methods, 3(3):351–358, 1982.

[49] S. Zhou. A class of arc-transitive Cayley graphs as models for interconnection
networks. SIAM Journal on Discrete Mathematics, 23(2):694–714, 2009.

58

	Introduction
	Automorphism Groups of Graphs
	Graph Isomorphism Problem
	Our Results
	Intersection Representations
	Groups Acting On Geometric Intersection Representations

	Preliminaries
	Notation
	Group Products
	Direct Product
	Semidirect and Wreath Products
	Automorphism Groups of Disconnected Graphs

	Automorphism Groups of Trees

	Interval Graphs
	PQ- and MPQ-trees
	PQ-trees
	MPQ-trees.
	Automorphisms of MPQ-trees

	Automorphism Groups of Interval Graphs
	Direct Constructions
	Unit Interval Graphs
	Groups Acting On Interval Representations

	Comparability Graphs
	Modular Decomposition and Modular Tree
	Modular Tree
	Automorphisms of Modular Trees

	Automorphism Groups of Comparability Graphs
	Automorphism Groups of Permutation Graphs
	bold0mu mumu kkkkkk-Dimensional Comparability Graphs

	Circle Graphs
	Split Decomposition and Split Tree
	Split Tree
	Automorphisms of Split Trees

	Automorphism Groups of Circle Graphs
	Groups Acting On Circle Representations

	Conclusions

