
Charles University in Prague
Faculty of Mathematics and Physics

Computer Science Institute

Peter Zeman

Automorphism Groups of

Geometrically Represented Graphs

Supervisor

Mgr. Pavel Klavı́k
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Abstract

Many graphs arising from various applications have nontrivial groups of automor-
phisms. This gives some importance to the study of the automorphism groups of
graphs. It has also motivations in the complexity theory. For example, the famous
graph isomorphism problem has a polynomial-time reduction to the problem of finding
a generating set of the automorphism group some graph.

A famous result, known as Frucht’s theorem, says that every finite group is
isomorphic to the automorphism group of some finite graph. We are interested in the
automorphism groups of graphs with a strong structure. Probably the first nontrivial
class of graphs of which the automorphism groups were studied are finite trees. In
1869 Jordan gave a characterization of the class T of finite groups that are isomorphic
to the automorphism group of some finite tree.

Intersection-defined classes of graphs often arise in various applications. Surpris-
ingly, the automorphism groups of intersection graphs were studied only very briefly.
We study the problem of reconstructing the automorphism group of a geometric in-
tersection graph (a graph defined by intersections of geometric objects) from a good
knowledge of the structure of its representations.

In this thesis, we deal in particular with interval graphs, intersection graphs of
intervals on a real line. Our main result is that the class I of finite groups that are
isomorphic to the automorphism group of some finite interval graph is the same as the
class T . We give a characterization of I in terms of group products and show that it
is the same as Jordan’s characterization of T . We also show how to for a finite interval
graph find a tree such that their automorphism groups are isomorphic.
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1 Introduction

An automorphism of a graph X is a permutation of its vertices such that two vertices
and are connected with an edge if and only if their images are connected with an edge.
The group Aut(X) of all such permutations is called the automorphism group of X .
A graph X represents a group G if Aut(X) is isomorphic to G.

Most graphs are asymmetric, that is, they have no other automorphisms that
the identity automorphism (see e.g. [16]). However, many graphs arising from various
algebraic, topological and combinatorial applications have nontrivial automorphism
group, what gives some importance to the study of the automorphism groups of graphs.

Complexity Theory Motivation. The study of the automorphism groups of graphs
is also motivated by problems in computational complexity theory. A long-standing
open problem in the complexity theory is whether there exists an algorithm that can
test isomorphism of finite algebraic structures in polynomial time. All such algebraic
structures can be encoded by graphs in polynomial time [21, 33]. Therefore, it suffices
to solve the isomorphism problem for graphs.

Problem: GraphIso(X1, X2)
Input: A graph X1 and a graph X2.

Question: Is X1 isomorphic to X2?

Problem GraphIso(X1, X2) is very important in the complexity theory. It is one of
the few computational problems that are know to belong to NP, but are not known
whether they are solvable in polynomial time and are also not know to be NP-complete.
For many special classes of graphs, such as trees, planar graphs, interval graphs,
GraphIso(X1, X2) is know to be solvable in polynomial time. At the same time, there
exists a strong theoretical evidence against NP-completeness of GraphIso(X1, X2).
It is known that it belongs to the low hierarchy of the class NP [36], which implies
that it is not NP-complete unless the polynomial-time hierarchy collapses to its second
level. For basic concepts in the complexity theory we refer to [1]. One of the most
famous results concerning GraphIso(X) is that it can be solved in polynomial time
for graphs of bounded degree [28].

The graph isomorphism problem is closely related to a fundamental computa-
tional problem in algebraic graph theory, the problem of finding a generating set of
the automorphism group of a graph.
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Chapter 1. Introduction

Problem: GraphAut(X)
Input: A graph X .

Output: Generating permutations for Aut(X).

Problem GraphIso(X1, X2) has a polynomial time reduction to GraphAut(X).
Suppose that we are given two connected graphs X1 and X2. We set X to be the
disjoint union of X1 and X2 and find the generating set of Aut(X). If the generating
set contains a permutation π that swaps X1 and X2, then X1 and X2 are isomorphic.
If X1 and X2 are disconnected, then we set X to be the disjoint union of their com-
plements, since the automorphism group of a graph is isomorphic the automorphism
group of its complement.

X1 X2

π

On the other hand, GraphAut(X) can be solved by solving GraphIso(X1, X2) at
most O(n4) times [30].

1.1 Graphs With a Strong Structure

A famous result, known as Frucht’s theorem [13], says that every finite group is iso-
morphic to the automorphism group of some finite graph. We are interested in auto-
morphism groups of classes of graphs with a very strong structure.

Probably the first nontrivial result in this direction is from 1869 due to Jordan
[23]. He gave a characterization (see Theorem 2.6) of the automorphism groups of
the class T of finite groups that are isomorphic to the automorphism group of some
finite tree. It says that we can get the automorphism groups of trees from the trivial
group by a sequance of two operations: the direct product and the wreath product
with the symmetric group. The direct product constructs automorphisms that act
independently on non-isomorphic components, while the wreath product constructs
automorphisms that permute isomorphic components.

Another class of graphs of which the automorphism groups were studied are
planar graphs. In 1973 Babai [2] gave a characterization of the automorphism groups
of planar graphs.

Geometric Intersection Graphs. We can assign geometric objects to the vertices
of graphs and encode its edges by intersections of these objects. More formally, an
intersection representation R of X is a collection of sets {Rx : x ∈ V (X)} such that
Rx ∩ Ry 6= ∅ if and only if uv ∈ E(X). Every graph can be represented in this way
[29]. Therefore, to obtain reasonable classes of graphs, the sets Rx are usually some
very specific geometric objects. The most famous classes of geometric intersection
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1.1. Graphs With a Strong Structure

graphs include interval graphs, circle graphs, circular-arc graphs, permutation graphs
and function graphs.

The problem of characterizing the intersection graphs of families of sets having
some geometrical property is an interesting problem and is often motivated by real
world applications. Sometimes even application gives an intersection representation.
Many hard combinatorial problems can be often solved efficiently on geometric in-
tersection graphs. Another reason for considering an intersection representation of
a graph is that it can provide much better visualisation of the graph and therefore,
possibly a much better understanding of the structure of the graph. For example,
the structure of the graph from Figure 1.1 is much more clear from its interval rep-
resentation. For more information about intersection graph theory see for example
[37, 32, 17].

Surprisingly, automorphism groups of intersection-defined classes of graphs were
studied only briefly. Even for very deeply studied classes of intersection graphs the
structure of their automorphism groups is not known very well. For a given intersection-
defined class, the mostly studied are classical graph-theoretic properties (the chromatic
number, forbidden graph characterization, and so on) or the complexity of the recog-
nition problem.

We study the problem of reconstructing the automorphism group of geometric
intersection graph from a good knowledge of the structure of its representations. In
this thesis, we deal mainly with interval graphs.

Interval Graphs. Interval graphs are intersection graphs of intervals on a real line.
They are one of the oldest and most studied class of graphs, first introduced by Hajós
[19] in 1957.

An interval representation R of a graph X is a set of closed intervals {Ix : x ∈
V (X)} such that xy ∈ E(X) if and only if Ix ∩ Iy 6= ∅. In other words, an edge of X
is represented by an intersection of intervals. A graph X is an interval graph if there
exists an interval representation R of X . Figure 1.1 shows an example of an interval
graph and its interval representation.

One of the reasons why interval graphs were studied quite extensively is that they
have real world applications. One application is in biology. Benzer [3] showed a direct
relation between interval graphs and the arrangement of genes in the chromosome.
Mutations correspond to a damaged segment on a chromosome. Each mutation can
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Figure 1.1: Interval graph and its interval representation.
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Chapter 1. Introduction

damage a different set of genes. At that time, the only information that could be
gathered was the set of deformities caused by a mutation. We can form a graph by
making each mutation into a vertex and adding an edge between two vertices if the
mutations share a common deformity. Benzer found that a graph formed in this way
is an interval graph and this was considered a strong evidence supporting his theory
that genes are arranged in a simple linear fashion. Interval graphs have also many
other applications (see for example [34, 38]).

Interval graphs have also many useful theoretical properties and nice mathemati-
cal characterizations. In many cases, very hard computational problems are polynomi-
ally solvable for interval graphs. This problems include graph isomorphism, maximum
clique, k-coloring, maximum independent set, and so on.

1.2 Results of This Thesis

In this thesis, we study the automorphism groups of interval graphs. The structure of
their representations is already very well understood due to Booth and Lueker [4].

In 1981 Cobourn and Booth [8] designed a linear-time algorithm that for an
interval graph finds the generating automorphisms of its automorphism group. Our
result gives an explicit description of the automorphism group of an arbitrary interval
graph in terms of group products, so also from the algorithmic point of view we get
better information about the group. Moreover, our description of the automorphism
groups of interval graphs is much more detailed and shows the relation between the
structure of all representations of an interval graph and its automorphism group.

Let I be the class of finite groups that are isomorphic to the automorphism group
of some interval graph and let T be the class of finite groups that are isomorphic to the
automorphism groups of some finite tree. Our main result is the following theorem.

Thoerem. The class I is the same as the class T , that is, for each interval graph X
there exists a tree T such that Aut(X) is isomorphic to Aut(T ) and vice versa.

This is surprising because the class INT of finite interval graphs and the class
TREE of finite trees are two very different classes. The intersection INT ∩ TREE are
exactly the graphs called CATERPILLARS. Those are trees in which all vertices are
within distance one of central path. Another two important classes of graphs that
are related to INT are the classes AT-FREE and CHOR. The first one is the class
of asteroidal triple-free graphs. Three vertices of a graph form an asteroidal triple
if every two of them are connected by a path avoiding the neighbourhood of the
third. A graph is asteroidal triple-free if it does not contain any asteroidal triple. The
class CHOR is the class of chordal graphs. Chordal graph is a graph that does not

Figure 1.2: A graph that is not a tree and contains an asteroidal triple.
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1.2. Results of This Thesis

INT

AT-FREE CHOR

TREE

CATERPILLARS

Figure 1.3: The relation of some important classes of graphs.

contain an induced cycle of length four or more. Another characterization of chordal
graphs says that chordal graphs are intersection graphs of subtrees of a tree [15],
which is a generalization of interval graphs (if the tree is a path, then we get interval
graphs). It is well known that a graph is an interval graph if and only if it is in
AT-FREE∩CHOR [26]. Chordal graphs are also interesting on their own. The problem
GraphIso(X1, X2) is polynomially reducible to testing isomorphism of chordal graphs
[27]. This means that for an arbitrary graph there exists a chordal graph with the
same group of automorphisms. So, chordal graphs are universal for automorphism
groups and the structural study of their groups is finished.

The equality of I and T was already mentioned by Hanlon [20] in his paper
about counting interval graphs. However, his paper lacks an explanation or a proof of
this result. Moreover, to find for an interval graph X a tree T such that Aut(X) is
isomorphic to Aut(T ) states Hanlon as an open problem. We can solve this problem
easily using our description of the class I. This is a strong evidence that our under-
standing of the structure of I is much deeper. We are also able to find for a tree an
interval graph with the same group of automorphisms.

Our characterization of the class I is based on the Jordan’s characterization
(see Theorem 2.6) of the class T . We add a third operation, the semidirect product
with Z2, which corresponds to a reflection symmetry of the interval representation of
an interval graph. Then to prove the equality of I and T , we show that this third
operation can be replaced by a sequence of the first two opperations.

11
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2 Preliminaries

In Section 2.1, we recall some concepts from group theory that are essential for the
main result. For a comprehensive treatment of the basics of group theory see for
example [35, 10] or for a more visual treatment of group theory see [5]. In Section 2.2
we give a definition of PQ-trees and modified PQ-trees an explain how they capture
in some sense all possible representations of an interval graph.

2.1 Group Products

Here, we explain two basic group theoretic methods for constructing larger groups
from smaller ones, namely direct product and semidirect product. We show how can
these group operations used to construct automorphism groups of graphs. At the end
of this section, we prove Jordan’s characterization 2.6 of the class T .

Inspired by [5], we use Cayley graphs to visualize groups. Cayley graphs were
actually invented by Cayley [6] for visualizing groups and now they and now they play
an important role in combinatorial and geometric group theory. Cayley graph is a
colored oriented graph that encodes the abstract structure of a group. Suppose that G
is a graph and S is a generating set. The Cayley graph (G, S) is a graph constructed
as follows:

• Each element of G is assigned a vertex.

• Each generator s ∈ S is assigned a unique color c(x).

• For any g ∈ G and s ∈ S, the there is a directed edge (g, gs) of color c(s).

Figure 2.1 and Figure 2.2 show examples of graphs and Cayley graphs of their
automorphism groups.

2.1.1 Direct Product

The direct product G×H of groups G and H with operations ·G and ·H, respectively, is
the set of pairs (g, h) where g ∈ G and h ∈ H with operation defined componentwise:

(g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2).

13



Chapter 2. Preliminaries

C8

Aut(C8) ∼= D8

Figure 2.1: The graph C8 with the action of Aut(C8) on its vertices and Cayley
graph of Aut(C8). Note that Aut(C8) is isomorphic to D8. It is generated by two
automorphisms: the rotation symmetry (corresponds to the red arrow); the reflection
symmetry.

X Aut(X) ∼= Z8

Figure 2.2: A graph with the automorphism group isomorphic to the group Z8

and Cayley graph of Z8. A graph like this one has only the rotation symmetries as
automorphisms, therefore, its automorphism group is isomorphic to a subgroup of
Aut(C8).
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2.1. Group Products

When there is no confusion we simply write (g1 · g2, h1 · h2) or (g1g2, h1h2). The direct
product of n groups is defined analogously.

Suppose that we have the direct product G1 × · · · × Gn of groups G1, . . . , Gn.
We can define a homomorphism π : G1 ×G2 × · · · ×Gn → G2,× · · · ×Gn by

π((g1, g2, . . . , gn)) = (g2, . . . , gn).

The kernel Ker(π) is clearly isomorphic to G1. Therefore, G1 is a normal subgroup of
G1 × · · · ×Gn. Analogously, each Gi is a normal subgroup of G1 × · · · ×Gn. On the
other hand, semidirect product, discussed in Section 2.1.2, takes two groups G and H
and constructs a larger group such that only G is a normal subgroup.

Example 2.1. This figure shows Cayley graph of the group Z2 × Z2 × Z2. Note that
the group contains two copies of Z2 × Z2, with the corresponding elements connected
according to the pattern of Z2.

Direct product can be used to construct automorphism groups of graphs that are
disconnected and their connected components are non-isomorphic. In this case, the
automorphism group of the whole graph is the direct product of the automorphism
groups of its connected components, because each automorphism of the graph acts
independently on each connected component.

2.1.2 Semidirect Product

However, if we want to construct the automorphism group of a disconnected graph
which has some isomorphic connected components, direct product is not sufficient
because automorphism that permute the isomorphic components are not included in
the direct product.

Example 2.2. The automorphism group of the graph X is isomorphic S3×Z2, but the
automorphism group of the graph Y is not Z2 × Z2 since the direct product does not
include the automorphism which swaps the components. The automorphism group
of Y is not even Z2 × Z2 × Z2 because, for example, swapping the components and
swapping the vertices of the left component do not commute.

X Y
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Chapter 2. Preliminaries

If we construct a larger group from some groups G and H using direct product,
then both G and H are normal subgroups of the resulting group. The motivation for
semidirect product is to construct a group from the groups G and H such that G does
not have to be its normal subgroup.

The direct product G × H contains identical copies of G, with corresponding
elements connected according to the pattern of H , as shown in Example 2.1. In the
semidirect product of the groups G and H , the group H also determines a pattern
according to which some copies of G are connected, however, those copies of G do not
need to be all identical.

First, we explain a special case of the semidirect product, the semidirect product
of the group G with its automorphism group Aut(G), denoted by

G⋊ Aut(G).

We define it to be the set of all pairs (g, f) such that g ∈ G and f ∈ Aut(G), with the
operation defined in the following way:

(g1, f1) · (g2, f2) = (g1 · f1(g2), f1 · f2).

Note that G⋊Aut(G) with the operation defined like this forms a group. It is straight-
forward to see that the identity element is (1, 1) and that the inverse of the element
(g, f) is the element (f−1(g−1), f−1).

We can think of it as all possible isomorphic copies of G connected according
to the pattern of Aut(G). The element (g1, f1) is in the isomorphic copy G1 of G
which we get by applying the automorphism f1 on G. Multiplying (g1, f1) by (g2, 1)
corresponds to a movement inside G1. Multiplying (g1, f1) by (1, f2) corresponds to a
movement from G1 to another isomorphic copy of G.

In general, there exists semidirect product group for any two groups G and H ,
and a homomorphism ϕ : H → Aut(G), denoted by

G⋊ϕ H.

It is the set of all pairs (g, h) such that g ∈ G and h ∈ H . The operation is defined
similarly to the operation defined on G⋊Aut(G):

(g1, h1) · (g2, h2) = (g1 · ϕ(h1)(g2), h1 · h2).

Again, it is quite straightforward to check that G ⋊ϕ H is a group. We can think of
the homomorphism ϕ as if it assigns an isomorphic copy of G to each element of the
group H . The isomorphic copies of G are then connected according to the pattern of
the group H . We write G⋊H when there is no danger of confusion.

Example 2.3. Dihedral group D8 is equal to Z8⋊Z2. Figure 2.1 shows Cayley graph
of D8 (on the right). The elements of the two isomorphic copies of Z8 are connected
according to the pattern of Z2.

Example 2.4. Let Y be the graph from Example 2.2. The group Aut(Y ) is isomorphic
to (Z2 × Z2)⋊ Z2. The figure shows Cayley graph of Aut(Y ). Again, the elements of
the two isomorphic copies of Z2 × Z2 are connected according to the pattern of Z2.

16



2.1. Group Products

The generators of Aut(Y ) are the following: the permutation that swaps the left
component and fixes the right component (orange); the permutation that swaps the
right component and fixes the left component (purple); the permutation that swaps
the components (black). The subgroup of Aut(Y ) which acts on the components
independently and does not swap them, corresponds to the isomorphic copy of Z2×Z2

which is on the left in the Cayley graph. Swapping the components with the black
automorphism changes the orange automorphism to the purple automorphism and vice
versa. In other words, swapping the vertices of some component does not commute
with swapping the components.

Wreath Product. Let K and L be groups, let ρ : K → Sn be a homomorphism, let
H be the direct product of n copies of L and let ψ be an injective homomorphism from
Sn into Aut(H). The composition ρ◦ψ is a homomorphism from K into Aut(H). The
wreath product is the semidirect product H ⋊ K with respect homomorphism ρ ◦ ψ
and is denoted by L ≀K. If K is Sn, then the wreath product L ≀Sn is simply Ln

⋊ϕ Sn

where ϕ : Sn → Aut(Ln) is s homomorphism defined by

ϕ(π) = the automorphism that maps (l1, . . . , ln) to (lπ(1), . . . , lπ(n)).

Theorem 2.5 shows how to construct the automorphism groups of a disconnected
graph using group products. Theorem 2.6 gives the characterization of the class of the
automorphism groups of trees in terms of group products.

Theorem 2.5 (Automorphism groups of disconnected graphs). If X1, . . . , Xn are pair-
wise non-isomorphic connected graphs and X is the disjoint union of ki copies of Xi,
i = 1, . . . , n, then

Aut(X) = Aut(X1) ≀ Sk1 × · · · × Aut(Xn) ≀ Skn .

Proof. First, we deal with a special case. Suppose that X consists only of k1 isomor-
phic copies of X1, we denote them by X1

1 , . . . , X
k1
1 . Each automorphism α of X acts

independently on X1
1 , . . . , X

k1
1 and permutes them arbitrarily. So, if α ∈ Aut(X), then

α = (α1, α2, . . . , αk1, π)

where Xj is an automorphism of Xj
1 and π ∈ Sk1. The operation on Aut(X) can be

algebraically written as

α · β = (α1, α2, . . . , αk1, π) · (β1, β2, . . . , βk1, ρ)

= (α1 · βπ(1), α2 · βπ(2), . . . , αk1 · βπ(k1), π ◦ ρ).

17



Chapter 2. Preliminaries

In other words, the action of α · β on X can be described in the following way. First,
α acts on each Xj

1 using αj and permutes X1
1 , . . . , X

k1
1 using π. Since after applying

α on X we have components X
π(1)
1 , . . . , X

π(k1)
1 , we have to make each βj act on the

correct component. We do this by letting βπ(j) act on X
π(j)
1 . It follows that

Aut(X) ∼= Aut(X1)
k1 ⋊ϕ Sk1 = Aut(X1) ≀ Sk1

where ϕ : Sk1 → Aut(Aut(X1)
n) is a homomorphism defined naturally by

ϕ(π) = the automorphism that maps (α1, α2, . . . , αk1) to (απ(1), απ(2), . . . , απ(k1)).

Now we consider the general case. No automorphism of X can swap some Xi

and Xj because they are non-isomorphic. Therefore, each automorphism acts inde-
pendently on the isomorphic copies of each Xi, so to get Aut(X) we only need to take
the direct product.

Theorem 2.6 (Jordan, 1869). A finite group G is isomorphic to an automorphism
group of a finite tree tree if and only if G ∈ T , where the class T of finite groups is
defined inductively as follows:

(a) {1} ∈ T .

(b) If G1, G2 ∈ T , then G1 ×G2 ∈ T .

(c) If G ∈ T and n ≥ 2, then G ≀ Sn ∈ T .

Proof. For each G ∈ T we construct a tree T such that Aut(T ) ∼= G.

• If G1, G2 ∈ T and T1, T2 are rooted trees such that G1
∼= Aut(T1) and G2

∼=
Aut(T2), the we construct the by connecting the root of T1 with one end of an
asymmetric path (see Figure 3.5) and T2 with the other. Clearly, Aut(T ) ∼=
G1 ×G2.

• If G ∈ T and T ′ is a rooted tree such that G ∼= Aut(T ′), then we construct T be
taking the disjoint union of n copies of T ′. By Theorem 2.6 G ≀ Sn

∼= Aut(T ).

Now, it remains to prove that for each rooted tree T , the group Aut(T ) is in
the class T . Every tree has a center, a vertex or an edge, which is fixed under each
automorphism. Therefore, deleting the root does no change the automorphism group
of the tree. So the problem of determining automorphism groups of trees can be
reduced to rooted trees.

If T is a rooted tree containing only one vertex, then clearly Aut(T ) ∈ T . Oth-
erwise, we delete the root and get a forest of rooted trees T1, . . . , Tn. We determine
the automorphism group of each Ti recursively and use Theorem 2.5 to construct the
group Aut(T ). It follows that Aut(T ) ∈ T .

18



2.2. Tree Representations of Interval Graphs

2.2 Tree Representations of Interval Graphs

2.2.1 PQ-trees

PQ-trees were invented for the purpose of solving the consecutive ordering problem.
For a set S and restricting sets R1, . . . , Rk, the task is to find a linear ordering of S
such that every Ri appears consecutively in it as one block.

Example 2.7. Consider the set S = {a, b, c, d, e} and the restricting sets R1 = {a, b},
R2 = {c, d, e} and R3 = {b, c}. The orderings abcde, abced, decba and edcba are the
only feasible orderings of U , any other ordering violates some restriction. For instance,
the ordering abdce violates R3.

A PQ-tree is a rooted tree designed for solving the consecutive ordering problem
efficiently and in addition to that, for a given input, they store all feasible orderings
of the set S.

The leaves of the tree correspond one-to-one to the elements of S. The inner
nodes are of two types: The P-nodes and the Q-nodes. We assume that each P-node
has at least two children and that each Q-node has at least three children. For every
inner node, the order of its children is fixed.

The frontier of a PQ-tree T is a permutation of the set S obtained by ordering
the leaves of T from left to right. The frontier of T represents one ordering of S.

To obtain all feasible orderings of S we can modify T by applying a finite sequence
of the following two equivalence transformations :

• Arbitrarily permute the children of a P-node.

• Reverse the children of a Q-node.

We denote the PQ-tree which we get from T by applying a finite sequence of equiva-
lence transformations ε by Tε. A PQ-tree T ′ is equivalent with T if one can be obtained
from the other using a finite sequence of equivalence transformations.

PQ-trees were invented by Booth and Lueker [4] and for the purposes of this
thesis it is sufficient to know that a PQ-tree can be constructed in linear time with
respect to the number of elements of S, number of restricting sets and total size of
restricting sets. Figure 2.3 shows PQ-trees that represent all feasible orderings of the
set S from Example 2.7, P-nodes are denoted by circles and Q-nodes by rectangles.

PQ-trees and Interval Graphs. The following characterization of interval graphs,
given by Fulkerson and Gross [14], shows the relation between interval graphs and the
consecutive ordering problem. We denote the set of all maximal cliques of X by C(X).

Lemma 2.8 (Fulkerson and Gross). A graph X is an interval graph if and only if there
exists an ordering of the maximal cliques C(X) such that for every vertex x ∈ V (X),
the maximal cliques containing x appear consecutively in it.
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Chapter 2. Preliminaries

a b c

ed

a b c

de

c b a

ed

c b a

de

Figure 2.3: Four PQ-trees that represent all feasible orderings of the set S from
Example 2.7, the circles are P-nodes and the rectangles are Q-nodes.

Proof. Let {Ix : x ∈ X} be an interval representation of X and let C1, . . . , Ck be the
maximal cliques. By Helly’s theorem, the intersection

⋂

x∈Ci
Ix is non-empty, and

therefore there exist a point ci in it. The ordering of c1, . . . , ck from left to right gives
the required ordering.

Given an ordering of the maximal cliques C1, . . . , Ck, we place points c1, . . . , ck in
this ordering on a real line. To each vertex v, we assign minimal interval Ix such that
ci ∈ Ix if and only if x ∈ Ci. We obtain a valid interval representation {Ix : x ∈ V (X)}
of X .

We define a relation ∼TW on the vertices of an interval graph X where x ∼TW y

means that x and y belong to precisely the same maximal cliques, and fix an ordering
<TW on each equivalence class of ∼TW . If two vertices x and y are in ∼TW we say
that they are twin vertices. In other words, twin vertices are indistinguishable from
the point of view of the intersection representation and not so interesting, however,
they need to be considered when studying automorphism groups.

Recognition of interval graphs in linear time was an open problem, first solved
by Booth and Lueker [4] using PQ-trees. By Lemma 2.8, the problem of recognizing
interval graphs can be simply reduced to the consecutive ordering problem. To test
whether a graph X is an interval graph we set S to be the set of all maximal cliques
C(X). For each vertex x we define a restricting set Rx = {C ∈ C(X) : x ∈ C}.
Lemma 2.8 says that X is an interval graph if and only if there exist a linear ordering
of S such that every Rx appears consecutively in it. The algorithm for solving the
consecutive ordering problem constructs a PQ-tree T such that the frontier of T gives
one possible consecutive ordering of C(X). We get all possible orderings of C(X)
by applying sequences of equivalence transformations. Each sequence of equivalence
transformations encodes a permutation of C(X). Figure 2.4 shows an example of an
interval graphs and a PQ-tree representing it.
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C1

3

C2

4

C3

7

C4

8

C5

11

C6

12

6
5

2
1

10
9

C1 C2 C5 C6

C3 C4

Figure 2.4: An interval graph and a PQ-tree which represents one consecutive or-
dering of its maximal cliques. We can get all other possible orderings by applying the
equivalence transformations on the PQ-tree.

2.2.2 MPQ-trees

A modified PQ-tree (MPQ-tree) is basically a PQ-tree with some additional informa-
tion about the twin vertices. MPQ-trees were first mentioned by Korte and Möhring
[25], they used them to show a more simple linear time recognition algorithm for in-
terval graphs than Booth and Lueker. MPQ-trees were also used by Coulborn and
Booth [8] to design a linear time algorithm for computing s set of generator of the au-
tomorphism group of an interval graph, however, they mention them only implicitly.

Suppose that T is a PQ-tree representing an interval graph X . To obtain an
MPQ-tree M from T we assign sets, called sections, to the nodes of T . Leafs and
P-nodes are assigned only one section, while Q-nodes have a section for each of its
children. We assign the sections to the nodes of T in the following way:

• For every leaf L, the section sec(L) contains those vertices of X that are only in
the maximal clique represented by L, and no other maximal cliques.

• For every P-node P , the section sec(P ) contains those vertices of X that are in
all maximal cliques represented by the leaves of the subtree of P , and no other
maximal cliques.

• For every Q-node Q and its children Q1, . . . , Qn, the section seci(Q) contains
those vertices of X that are in the maximal cliques represented by the leaves
of the subtree of Qi and also some other Qj , but are not in any other maximal
clique represented by a leaf that is not in the subtree of Q.

Figure 2.5 shows an example of an MPQ-tree.

Observation 2.9. Vertices x, y ∈ V (X) that are in the same sections of an MPQ-tree
representing an interval graph X belong to the same maximal cliques of X, that is,
x ∼TW y.
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1, 2 1, 2, 5, 6 5, 6 5, 6, 9, 10 9, 10

∅[3] [4] [11] [12]

[7] [8]

Figure 2.5: An MPQ-tree that represents the interval graph from Figure 2.4. Twin
vertices belong to the same sections of the MPQ-tree, they are ordered from left to
right. Note that some sections can be empty. The ordering <TW of the vertices that
belong to the same sections is given from left to right.
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3 Automorphism Groups of Interval
Graphs

In this chapter, we derive a characterization of the class I of the automorphism groups
of finite interval graphs and show that it is equal to the class T of the automorphism
groups of finite trees.

3.1 Automorphisms Groups of PQ-trees

Here, we give a definition of an automorphism of a PQ-tree and an MPQ-tree that
represent an interval graph X . We show that the automorphism group of the PQ-tree
is isomorphic to a subgroup of Aut(X) and that the additional information in the
MPQ-tree is sufficient for its automorphism group to be isomorphic to Aut(X).

Automorphism Groups of PQ-trees. Let T be a PQ-tree representing an interval
graph X . We define each symmetric sequence of equivalence transformations to be
an automorphism of T . More formally, a sequence of equivalence transformations
ε : C(X) → C(X) is an automorphism of T if there exists a permutation α : V (X) →
V (X) of the vertices of X such that after replacing each leaf L in Tε with α(L) we get
T . We say that α cancels ε. Figure 3.1 shows an example of the automorphism of a
PQ-tree.

Lemma 3.1. Automorphisms of a PQ-tree T representing X form a group.

Proof. Suppose that ε1 and ε2 are automorphisms of T and α1 cancels ε1, and α2

cancels ε2. The composition α2 ◦ α1 cancels ε1 · ε2, so ε1 · ε2 is also an automorphism
of the PQ-tree T .

We denote the group of automorphisms of a PQ-tree T representing X by Aut(T ).
The following lemma shows that a permutation which cancels an automorphism of T
is an automorphism of X .

Lemma 3.2. If ε is an automorphism of a PQ-tree T representing X and α cancels
ε, then α is an automorphism of X.

Proof. Let x, y ∈ V (X) be two vertices. Vertices x and y are adjacent if and only if
they are contained in some maximal clique. The permutation α defines a permutation
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{1, 2, 8} {2, 3, 8} {3, 4, 8}

ε1

{5, 6, 8} {7, 8} {1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}

ε2

Figure 3.1: The equivalence transformation ε1 on the left is the only automorphism
of the PQ-tree. For example the transformation ε2 on the right can not be an automor-
phism because there is no permutation α of the vertices such that α({7, 8}) = {5, 6, 8}.

of the maximal cliques C(X), since it cancels ε. So, α(x) and α(y) are in the same
maximal clique if and only if x and y are in the same maximal clique.

An automorphism α of X reorders the maximal cliques C(X). Since all PQ-trees
that are equivalent with a PQ-tree T representing X contain all feasible orderings of
the maximal cliques, there exists an equivalence transformation ε of T which reorders
C(X) in the same way as α. The next lemma shows that ε is an automorphism of T .

Lemma 3.3. If α ∈ Aut(X) and ε is an equivalence transformation of T such that ε
reorders C(X) in the same way as α, then ε ∈ Aut(T ).

Proof. The automorphism α−1 cancels ε.

There can be more automorphisms of X that reorder C(X) in the same way. If
the equivalence relation ∼TW has an equivalence class of size greater that one, then
some automorphism of X reorder C(X) in the same way, but permute the equivalence
class differently. We define a mapping φ : Aut(X) → Aut(T ) by

φ(α) = ε

where ε is an equivalence transformation of T that gives the same reordering of C(X)
as α. According to Lemma 3.2 and Lemma 3.3 φ is a well defined surjective mapping.
It is straightforward to see that φ is a homomorphism. Moreover, φ is a quotient
homomorphism, that is, it is possible that two automorphisms of X are mapped by φ
to the same automorphism of T .

In general, the automorphism group of a PQ-tree T representing X is not isomor-
phic to the automorphism group of X . An automorphism α ∈ Aut(X) is in Ker(φ) if
it only swaps vertices x, y that belong to the same maximal cliques, that is, x ∼TW y.
By the first isomorphism theorem

Aut(T ) ∼=
Aut(G)

Ker(φ)
.
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9, 10

2 2, 3 3

[1] ∅ [4]

6 6, 7 7

[5] ∅ [8]

10, 9

7 7, 6 6

[8] ∅ [5]

2 2, 3 3

[1] ∅ [4]

(ε, ν)

Figure 3.2: The pair (ε, ν) is an automorphism of the MPQ-tree. The automorphism
ε of the underlying PQ-tree reverses the order of the children of the right Q-node, and
then swaps the children of the P-node. The node preserving permutation ν swaps
vertices 9, 10 and it is the only possible node preserving permutation.

Therefore, if Ker(φ) is nontrivial, then Aut(T ) is not isomorphic to Aut(X). In the
following text we show that an MPQ-tree representing X captures the whole automor-
phism group of X .

Automorphism Groups of MPQ-trees. Let M be an MPQ-tree representing an
interval graph X and let T be the underlying PQ-tree. If ε : C(X) → C(X) is an
automorphism of T and ν : V (X) → V (X) is a permutation that only swaps vertices
of X belonging to the same sections in M , then the pair (ε, ν) is an automorphism of
M . We say that ν is a node preserving permutation with respect to M . Figure 3.2
shows an example of an automorphism of an MPQ-tree.

Observation 3.4. Automorphisms of an MPQ-tree M representing an interval graph
X form a group with the operation defined componentwise.

We denote the automorphism group of an MPQ-tree by Aut(M). From the
definition of an automorphism of M if follows that

Aut(M) = E ×N,

where E is the automorphism group of the underlying PQ-tree T and N is the group
of all node preserving permutations.

Proposition 3.5. The automorphism group of M is isomorphic to the automorphism
group of X.

Proof. Let M be an MPQ-tree representing an interval graph X . We fix some con-
secutive ordering on the maximal cliques C(X) (see Lemma 2.8). Suppose that α ∈
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<TW <TW <TW <TW <TW <TW

α2

Equivalence class of ∼TW Equivalence class of ∼TW

Figure 3.3: The permutation α1 permutes the vertices in the equivalence class on
the left and the permutation α2 preserves the ordering <TW .

Aut(X). Then α can be decomposed to α1 ◦ α2 such that α1 only permutes the twin
vertices, and α2 permutes the maximal cliques C(X) in the same way as α and pre-
serves the ordering <TW on the equivalence classes of the twin relation ∼TW . The
decomposition is shown in Figure 3.3.

The permutation α1 can be uniquely identified with a node preserving permutation
ν and the permutation α2 can be uniquely identified with a sequence of equivalence
transformations ε. Therefore, the permutation α can be uniquely identified with the
automorphism (ε, ν).

On the other hand, if (ε, ν) is an automorphism of M , then there exists a unique
automorphism α of X such α′ preserves the ordering <TW on the equivalence classes
of ∼TW and permutes the maximal cliques C(X) in the same way as ε. Then the
composition α = ν ◦ α′ is an automorphism of X uniquely assigned to (ε, ν).

We can define a bijective mapping φ : Aut(X) → Aut(M) by

φ(α) = (ε, ν)

where ε and ν are as above. It is straightforward to check that φ is an isomorphism.

3.2 Characterization of the Automorphism Groups

In this section we finally derive the characterization of the class I. We show that
each group isomorphic to the automorphism group of some interval graph can be built
inductively from the trivial group using group products. We use Proposition 3.5 to
determine the automorphism group of an interval graph.

Suppose that X is an interval graph. Let M be an MPQ-tree representing X
and let T be the underlying PQ-tree. From Proposition 3.5 we have that

Aut(X) ∼= Aut(M) = E ×N

where E is the automorphism group of the underlying PQ-tree T and N is the group
of node preserving permutations. In other words, each automorphism of X can inde-
pendently perform two operations: (1) change the consecutive ordering of the maximal
cliques C(X); (2) permute the twin vertices. Those two operations are commutative.

It is quite straightforward to see that the group N is isomorphic to a direct
product of symmetric groups. Each node preserving permutation permutes vertices
that belong to the same sections ofM , that is, vertices that are in the same equivalence
class of ∼TW . The group which permutes one equivalence class of ∼TW is isomorphic
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T1 T2

. . .

Tn T1 T2

. . .

Tn

Figure 3.4: Either the root is a P-node, or a Q-node.

to Sk. So, to get the whole group N we just take the direct product of symmetric
groups. Therefore,

N ∼= S
l1
k1
× S

l2
k2
× · · · × S

ln
kn

where k1, . . . , kn, l1, . . . , ln ∈ N and k1, . . . , kn are pairwise distinct.

To determine the automorphism group of X , we need to determine E. To do
this, we use a similar technique as Jordan used to determine the automorphism group
of a tree (see Theorem 2.6). We distinguish two basic cases: (1) the root of T is a
P -node; (2) the root of T is a Q-node. They are depicted in Figure 3.4. The following
two lemmas deal with the two cases, respectively.

Lemma 3.6 (The P-node case). Suppose that the root of T is a P-node P . If T1, . . . , Tn
are pairwise non-isomorphic PQ-trees, and the subtrees of P consist of ki isomorphic
copies of Ti, i = 1, . . . , k, then

Aut(T ) ∼= Aut(T1) ≀ Sk1 × Aut(T2) ≀ Sk2 × · · · × Aut(Tn) ≀ Skn .

Proof. The proof is similar to the proof of Jordan’s Theorem 2.6. First, we deal with
a special case. Suppose that the subtrees of P consist only of k1 isomorphic copies of
T1, we denote them by T 1

1 , . . . , T
k1
1 . From the definition, each automorphism ε of T

acts independently on T 1
1 , . . . , T

k1
1 and permutes them arbitrarily. So, if ε ∈ Aut(T ) is

an automorphism of T , then

ε = (ε1, ε2, . . . , εk1, ρ)

where εj is an automorphism of T j
1 and ρ ∈ Sk1 . The operation on Aut(T ) can be

algebraically written as

δ · ε = (δ1, δ2, . . . , δk1, π) · (ε1, ε2, . . . , εk1, ρ)

= (δ1 · επ(1), δ2 · επ(2), . . . , δk1 · επ(k1), π ◦ ρ).

In other words, the action of δ · ε on T can be described in the following way. First,
δ acts on each T j

1 using δj and permutes T 1
1 , . . . , T

k1
1 using π. Since after applying δ

on T we have subtrees T
π(1)
1 , . . . , T

π(k1)
1 , we have to make each εj act on the correct

subtree. We do this by letting επ(j) act on T
π(j)
1 . It follows that

Aut(T ) ∼= Aut(T1)
k1 ⋊ϕ Sk1 = Aut(T1) ≀ Sk1

where ϕ : Sk1 → Aut(Aut(T1)
n) is a homomorphism defined naturally by

ϕ(ρ) = the automorphism that maps (ε1, ε2, . . . , εk1) to (ερ(1), ερ(2), . . . , ερ(k1)).

27



Chapter 3. Automorphism Groups of Interval Graphs

Now we consider the general case. From the definition of an automorphism of
T we know that no automorphism of T can swap some Ti and Tj because they are
non-isomorphic. Therefore, each automorphism acts independently on the isomorphic
copies of each Ti, so to get Aut(T ) we only need to take the direct product.

Lemma 3.7 (The Q-node case). Suppose that the root of T is a Q-node Q. If
T1, . . . , Tn are the subtrees of Q and T1 ∼= Tn, T2 ∼= Tn−1, and so on, then

Aut(T ) ∼= (Aut(T1)× Aut(T2)× · · · × Aut(Tn))⋊ϕ Z2

where ϕ : Z2 → Aut(Aut(T1)× · · · × Aut(Tn)) is a homomorphism defined by

ϕ(0) = the identity automorphism,

ϕ(1) = the automorphism that maps (ε1, ε2, . . . , εn) to (εn, εn−1, . . . , ε1).

Proof. From the definition, each automorphism ε of T acts independently on T1, . . . , Tn
and possibly reverses their order. So, if ε ∈ Aut(T ) is an automorphism of T , then

ε = (ε1, ε2, . . . , εn, z)

where εi is an automorphism of Ti and z ∈ Z2, and if z = 1, then ε reverses the order
of T1, . . . , Tn. The operation on Aut(T ) can be algebraically written as

(δ1, . . . , δn, z1) · (ε1 . . . , εn, z2) =

{

(δ1 · ε1, δ2 · ε2, . . . , δn · εn, z1 + z2) if z1 = 0

(δ1 · εn, δ2 · εn−1, . . . , δn · ε1, z1 + z2) if z1 = 1.

In other words, the action of δ · ε on T can be described in the following way. First,
δ acts on each Ti using δi. If z1 = 1, then δ reverses the order of T1, . . . , Tn. In this
case we have to make εi act on the correct subtree. We achieve this by letting εn act
on T1, ε2 act on T2, and so on. It follows that

Aut(T ) ∼= (Aut(T1)× · · · ×Aut(Tn))⋊ϕ Z2

where ϕ : Z2 → Aut(Aut(T1) × · · · × Aut(Tn)) is a homomorphism defined as in the
statement of the lemma.

Lemma 3.6 and Lemma 3.7 suggest that the class I is closed under direct product,
wreath product with Sn and semidirect product of a direct product with Z2. Lemma
3.8 gives the characterization of I in terms group products.

Lemma 3.8. A finite group G is isomorphic to an automorphism group of a finite
interval graph if and only if G ∈ I, where the class I of finite groups is defined
inductively as follows:

(a) {1} ∈ I.

(b) If G1, G2 ∈ I, then G1 ×G2 ∈ I.

(c) If G ∈ I and n ≥ 2, then G ≀ Sn ∈ I.
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(d) If G1, . . . , Gm ∈ I, m ≥ 3 and G1
∼= Gm, G2

∼= Gm−1, and so on, then

(G1 × · · · ×Gm)⋊ϕ Z2 ∈ I,

where ϕ : Z2 → Aut(G1 × · · · ×Gm) is a homomorphism defined by

ϕ(0) = the identity automorphism,

ϕ(1) = the automorphism that maps (g1, g2, . . . , gn) to (gn, gn−1, . . . , g1).

Proof. First, we prove that for each group G ∈ I there exist an interval graph X such
that G ∼= Aut(X). We proceed by induction:

• If G = {1}, then X is the graph containing one vertex.

• Suppose that G1, G2 ∈ I. By the induction hypothesis there exist interval graphs
X1 and X2 such that G1

∼= Aut(X1) and G2
∼= Aut(X2). We need to show that

there exists a graph X such that G1×G2
∼= Aut(X). To do this, we just take the

disjoint union of X1 and X2, or in case that X1 and X2 are isomorphic, we hang
them on an asymmetric path. The latter case is showed in Figure 3.5. Since the
asymmetric path is an interval graph, it follows that the whole graph X is an
interval graph.

• Suppose that G ∈ I and n ≥ 2. By the induction hypothesis there exists an
interval graph X ′ such that G ∼= Aut(X ′). We need to show that there exists
an interval graph X such that G ≀ Sn

∼= Aut(X). To do this, it suffices to take
the disjoint union of n copies of X ′. The result is an interval graph and from
Theorem 2.5 we have that Aut(X) is isomorphic to G ≀ Sn.

• Suppose that G1, . . . , Gm ∈ I, m ≥ 3 and G1
∼= Gm, G2

∼= Gm−1, and so on.
By the induction hypothesis there exists interval graphs X1, . . . , Xm such that
G1

∼= Aut(X1), . . . , Gm
∼= Aut(Xm). Without a loss of generality we assume

that X1
∼= Xm, X2

∼= Xm−1, and so on. We need to construct a graph X such
that (G1 × · · · × Gm) ⋊ϕ Z2

∼= Aut(X) where ϕ is a homomorphism defined as
in the theorem statement. To do this, we hang X1, . . . , Xm on a path, as shown
in Figure 3.6.

X1 X2

Figure 3.5: Two interval graphs are hanged on an asymmetric path. The two vertices
from the asymmetric path are connected with to vertex from the corresponding interval
graph.
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v1 v2 vm−1 vm

X1 X2 Xm−1 Xm

· · ·

Figure 3.6: Interval graphs hanged on a path. We connect the vertex vi to each
vertex of the graph Xi.

Note that there are only two types of automorphisms of X : the automorphism
that swaps the path v1v2 . . . vm and the automorphism that fixes the path. This
is because we connected vi with each vertex of Xi. The proof that (G1 × · · · ×
Gm)⋊ϕ Z2

∼= Aut(X) is very similar to the proof of Lemma 3.7.

Now, it remains to prove that for each interval graph X there exists a group
G ∈ I such that G ∼= Aut(X). Here, we make a use of Lemma 3.6, Lemma 3.7 and
Proposition 3.5. To determine the group E we use Lemma 3.6 in case the root of T
is a P-node, and Lemma 3.7 in case the root T is Q-node. Since Aut(M) = E × N

where N is a direct product of symmetric groups, we know that Aut(M) ∈ I. From
Proposition 3.5 we know that Aut(M) ∼= Aut(X).

Theorem 3.9. The class I is the same as the class T .

Proof. We show that if we add the operation (d) from the statement of Lemma 3.8 to
the Jordan’s characterization 2.6 of the class T , then we still get the class T .

Suppose that G1, . . . , Gm ∈ T and T1, . . . , Tm are rooted trees such that G1
∼=

Aut(T1), G2
∼= Aut(T2), and so on. We assume that T1 ∼= Tm, T2 ∼= Tm−1, and so

on. We need to construct a tree T such that (G1 × · · · × Gm)⋊ϕ
∼= Aut(T ). To do

this, we hang the trees T1, . . . , Tm on the vertices v1, . . . , vm of a path by their roots,
respectively. Figure 3.7 shows rooted trees hanged on a path by their roots.

It is not true that Aut(T ) ∼= (G1 × · · · ×Gm)⋊ϕ Z2. This can be also seen from
the example in Figure 3.7. However, we can fix this easily by subdividing the edges
v1v2, v2v3, . . . , vm−1vm. We proceed from left to right. If the tree hanged on the vertex
vi is isomorphic to the tree on the left of vi, then we subdivide the edge vi−1vi and
also, symmetrically, the edge vm−i+1vm−i+2. We stop in the middle. Figure 3.7 shows
the subdivisions that are sufficient to make for the tree in the figure. The proof that
Aut(T ) is as desired is similar to the proof of Lemma 3.7.

3.3 On Equality of The Automorphism Groups

We proved that the class I of the automorphism groups of finite interval graphs is the
same as the class T of the automorphism groups of finite trees. A natural problem
is to find for each interval graph X a tree T such that the automorphism group of
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v1 v2 v3 v4 v5

T1

T2

T3

T4

T5

Figure 3.7: Rooted trees hanged on a path by their roots. There exists an automor-
phism that T3 with the tree on the left of v3, and an automorphism that swaps T2

with the tree on the left of v2. We fix this by subdividing the edge v1v2 and due to
the symmetry of the tree also v4v5.

X is isomorphic to the automorphism group of T and vice versa. Here, we solve this
problem what also gives an alternative proof of Theorem 3.9.

From Interval Graph to Tree. To construct a tree T for an interval graph X such
that Aut(X) ∼= Aut(T ) we use Proposition 3.5. Suppose that M is an MPQ-tree
representing X . From Proposition 3.5 we have that Aut(X) ∼= Aut(M) and Aut(M) =
E×N where E the automorphism groups of the underlying PQ-tree and N is a direct
product of symmetric groups. We first construct a tree T1 that has the automorphism
group isomorphic to E and a tree T2 that has the automorphism group isomorphic to
N . Then we construct the tree T by hanging T1 and T2 on an asymmetric path (an
example of an asymmetric path is shown in Figure 3.5).

To construct T1, we take the underlying PQ-tree of the MPQ-treeM and replace
every leaf and every P-node by a single vertex, and every Q-node by a path. Figure
3.8 shows how each Q-node is replaced by a path. We need to force that every such
path can be only reversed and fixed by an automorphism. To do this, we do some
subdivision as in the proof of Theorem 3.9 if necessary. It is possible that some leaves
in the underlying PQ-tree can not be swapped by an automorphism. This can be
forced in the constructed tree T1 by attaching asymmetric paths of various lengths to
the corresponding leaves.

Figure 3.8: Each Q-node in the underlying PQ-tree is replaced by a path.

If N is isomorphic to Sl
k then T2 is a rooted tree constructed by rooting l sub-

31



Chapter 3. Automorphism Groups of Interval Graphs

Figure 3.9: A tree with the automorphism group isomorphic to S
3
3.

divided complete bipartite graphs K1,k. Figure 3.9 shows an example of such tree for
N ∼= S3

3. If N is isomorphic to S
l1
k1

× · · · × S
ln
kn

then we construct a tree for each S
li
ki

and by rooting them together we get T2.

From Tree to Interval Graph. The idea is to place the intervals so that they copy
the pattern of the given tree T , as shown in Figure 3.10. We assume that T is a rooted
tree, let r be the root and let c1, . . . , cn be its children. We choose an interval R to
represent the root r. Then we choose an interval Ci for each of its children so that
Ci ∩ Cj = ∅ and Ci ⊆ R. We recursively by construct the subtrees of each child ci.

Figure 3.10: Intervals placed according to the pattern of the tree.

If T contains vertices with only one child, then it is not true that the automor-
phism group of the interval graph constructed in this way is isomorphic to Aut(T ).
The construction creates twin vertices that can be permuted. This can be fixed by
adding asymmetric paths. Figure 3.11 shows an example.

A

A

A

Figure 3.11: The automorphism group of an interval graph constructed by placing
intervals according to the pattern of a tree can be lager than the automorphism group
of the tree. We fix this by adding copies of an asymmetric path A (an example
of an asymmetric path is shown in Figure 3.5), which has the automorphism group
isomorphic to the trivial group.
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4 Conclusions

We conclude this thesis by describing some important intersection-defined classes of
graphs, namely circle graphs, function graphs and circular-arc graphs. We know that
those classes of geometric intersection graphs have different automorphism groups
than trees, since all of them contain the graph C4. The automorphism group of C4 is
isomorphic to the dihedral group D4 which does not belong to T .

Circle Graphs. Circle graphs are intersection graphs of chords of a circle. They were
first considered by Even and Itai [11] in the study of stack sorting techniques. The
structure of all representations of circle graphs is described in [7].

A circle representation R of a graph X is a set of chords {Cx : x ∈ V (X)} such
that xy ∈ E(X) if and only if the chords Cx and Cy intersect. A graph X is a circle
graph if there exists a circle representation R of X . Figure 4.1 shows an example of
circle graph and its circle representation.

Function Graphs. A representation of a function graph assigns a continuous func-
tion f : [0, 1] → R to every vertex of the graph. Edges are represented by intersections
of those functions. The class of permutation graphs, which is a subclass of function
graphs, contains graphs that can be represented in the same way, but by linear func-
tions. Figure 4.2 shows an example of a permutation graph. The structure of all
representations of function is described in [24].

Function graphs are the complements of so-called comparability graphs [18]. A
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Figure 4.1: Circle graph and its circle representation. The automorphism group of
the graph is isomorphic to Z

4
2 ⋊D4.
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Figure 4.2: Permutation graph and its representation. The automorphism group of
the graph is isomorphic to D4.

comparability graph the graph of some partial ordering. In other words, comparability
graphs are graphs of which edges can be oriented trasitively. Permutation graphs are
exactly the intersection of function and comparability graphs [12].

Circular-arc Graphs. Circular-arc graphs are intersection graphs of arcs on a circle.
Figure 4.3 shows an example of a circular-arc graph. They are natural generalization
of interval graphs. If there exists a point on the circle that is not covered by an arc,
then the circle can be cut at that point and stretched to a line, which yields an interval
representation.

The class of circular-arc graphs is very different from the class of interval graphs.
The main difference is that in the case of circular-arc graphs, the maximal cliques do
not behave so nicely. A circular-arc graph can have exponential number of maximal
cliques.

Generalizing some of the results known for interval graphs to the class of all
circular-arc graphs is a challenging problem. McConnel [31] solved the recognition
problem for circular-arc graphs in linear time. However, no polynomial-time isomor-
phism test for circular-arc graphs is currently known. For some time it seemed that
the problem is solved since Hsu [22] claimed to have a polynomial-time algorithm, but
only recently it was proved he dealt incorrectly with one case [9].
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Figure 4.3: Circular-arc graph and its representation. The automorphism group of
the graph is isomorphic to Z2 × Z2.

34



Bibliography

[1] Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

[2] Babai, L.: Automorphism groups of planar graphs ii. In: Infinite and finite sets
(Proc. Conf. Kestzthely, Hungary) (1973)

[3] Benzer, S.: On the topology of the genetic fine structure. Proceedings of the
National Academy of Sciences of the United States of America 45(11), 1607 (1959)

[4] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–
379 (1976)

[5] Carter, N.: Visual group theory. MAA (2009)

[6] Cayley, P.: Desiderata and suggestions: No. 2. the theory of groups: graphical
representation. American Journal of Mathematics 1(2), 174–176 (1878)

[7] Chaplick, S., Fulek, R., Klav́ık, P.: Extending partial representations of circle
graphs. In: Lecture Notes in Computer Science, GD. vol. 8242, pp. 131–142 (2013)

[8] Colbourn, C.J., Booth, K.S.: Linear times automorphism algorithms for trees,
interval graphs, and planar graphs. SIAM J. Comput. 10(1), 203–225 (1981)

[9] Curtis, A.R., Lin, M.C., McConnell, R.M., Nussbaum, Y., Soulignac, F.J., Spin-
rad, J.P., Szwarcfiter, J.L.: Isomorphism of graph classes related to the circular-
ones property. arXiv preprint arXiv:1203.4822 (2012)

[10] Dummit, D.S., Foote, R.M.: Abstract algebra (2004)

[11] Even, S., Itai, A.: Queues, stacks and graphs. Theory of Machines and Compu-
tations pp. 71–86 (1971)

[12] Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs.
Journal of the ACM (JACM) 19(3), 400–410 (1972)

[13] Frucht, R.: Herstellung von graphen mit vorgegebener abstrakter gruppe. Com-
positio Mathematica 6, 239–250 (1939)

35



[14] Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J.
Math. 15, 835–855 (1965)

[15] Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)

[16] Godsil, C.D., Royle, G., Godsil, C.: Algebraic graph theory, vol. 207. Springer
New York (2001)

[17] Golumbic, M.C.: Algorithmic graph theory and perfect graphs, vol. 57. Elsevier
(2004)

[18] Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection
graphs. Discrete Mathematics 43(1), 37–46 (1983)
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