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V tejto práci skúmame grupy automorfizmov grafov s vel’mi silnou štruktúrou.
Pravdepodobne jeden z prvých výsledkov v tomto smere je Jordanova charakterizácia
triedy grúp automorfizmov stromov T z roku 1869.

Prekvapivo, grupy automorfizmov prienikových grafov boli študované iba vel’mi
málo. Aj pre vel’mi pochopené triedy prienikových grafov, je štruktúra ich grúp auto-
morfizmov neznáma. Hlavná otázka, ktorou sa zaoberáme je, či sa z dobrej znalosti
reprezentácíı prienikového grafu geometrických objektov dá zrekonštruovat’ jeho grupa
automorfizmov. V práci skúmame hlavne intervalové grafy.

Intervalové grafy sú prienikové grafy intervalov na reálnej osi. Sú jednou z naj-
starš́ıch a najviac študovaných tried prienikových grafov. Náš hlavný výsledok ho-
voŕı, že trieda grúp automorfizmov intervalových grafov I je rovnaká ako trieda grúp
automorfizmov stromov T . Navyše ukazujeme postup ako pre daný intervalový graf
skonštruovat’ strom s rovnakou grupou automorfizmov a tak isto obrátene, pre daný
strom skonštruujeme intervalový graf.
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Abstract:

In this thesis, we are interested in automorphism groups of classes of graphs with
a very strong structure. Probably the first nontrivial result in this direction is from
1869 due to Jordan. He gave a characterization of the class T of the automorphism
groups of trees.

Surprisingly, automorphism groups of intersection-defined classes of graphs were
studied only briefly. Even for deeply studied classes of intersection graphs the structure
of their automorphism groups is not well known. We study the problem of reconstruct-
ing the automorphism group of a geometric intersection graph from a good knowledge
of the structure of its representations. We mainly deal with interval graphs.

Interval graphs are intersection graphs of intervals on the real line. They are
one of the oldest and most studied classes of geometric intersection graphs. Our main
result is that the class T is the same as the class I of the automorphism groups of
interval graphs. Moreover, we show for an interval graph how to find a tree with the
same automorphism group, and vice versa.
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1 Introduction

An automorphism of a graph X is a permutation of its vertices such that two vertices
are adjacent if and only if their images are connected with an edge. The group Aut(X)
of all such permutations is called the automorphism group of X . A graph X represents
a group G if Aut(X) is isomorphic to G.

Most graphs are asymmetric, that is, they have no other automorphisms aside
the identity (see e.g. [16]). However, many graphs arising from various algebraic, topo-
logical and combinatorial applications have non-trivial automorphism groups, which
makes the study of the automorphism groups of graphs important.

Complexity Theory Motivation. The study of the automorphism groups of graphs
is also motivated by problems in computational complexity theory. A long-standing
open problem in the complexity theory is whether there exists an algorithm that can
test isomorphism of finite algebraic structures in polynomial time. All such algebraic
structures can be encoded by graphs in polynomial time [21, 33]. Therefore, it suffices
to solve the isomorphism problem for graphs.

Problem: GraphIso(X1, X2)
Input: Graphs X1 and X2.

Question: Is X1 isomorphic to X2?

The problem GraphIso(X1, X2) is very important in the complexity theory. It is
one of the few computational problems that are known to belong to NP, but are
not known whether they are solvable in polynomial time and are also not know to
be NP-complete. For many special classes of graphs, such as trees, planar graphs,
interval graphs, GraphIso(X1, X2) is known to be solvable in polynomial time. At
the same time, there exists a strong theoretical evidence against NP-completeness
of GraphIso(X1, X2). It is known that it belongs to the low hierarchy of the class
NP [36], which implies that it is not NP-complete unless the polynomial-time hierarchy
collapses to its second level. For basic concepts in the complexity theory we refer to [1].
One of the most famous results concerning GraphIso(X) is that it can be solved in
polynomial time for graphs of bounded degree [28].

The graph isomorphism problem is closely related to a fundamental computa-
tional problem in algebraic graph theory. It is the problem of finding a generating set
of the automorphism group of a graph.

9



Chapter 1. Introduction

X1 X2

π

Figure 1.1: Suppose that we are given two connected graphs X1 and X2. We set
X to be the disjoint union of X1 and X2 and find the generating set of Aut(X). If
the generating set contains a permutation π that swaps X1 and X2, then X1 and X2

are isomorphic. If X1 and X2 are disconnected, then we set X to be the disjoint
union of their complements, since the automorphism group of a graph is isomorphic
the automorphism group of its complement.

Problem: GraphAut(X)
Input: A graph X .

Output: Generating permutations for Aut(X).

ProblemGraphIso(X1, X2) has a polynomial time reduction toGraphAut(X). The
reduction is shown in Figure 1.1. On the other hand, GraphAut(X) can be solved
by solving GraphIso(X1, X2) at most O(n4) times [30].

1.1 Graphs With a Strong Structure

A famous result, known as Frucht’s theorem [13], claims that every finite group is
isomorphic to the automorphism group of some finite graph. We are interested in
automorphism groups of classes of graphs with a very strong structure.

Probably the first nontrivial result in this direction is from 1869 due to Jor-
dan [23]. He gave a characterization (see Theorem 2.6) of the class T of the automor-
phism groups of trees. It says that we can get the automorphism groups of trees from
the trivial group by a sequence of two operations: the direct product and the wreath
product with a symmetric group. The direct product constructs automorphisms that
act independently on non-isomorphic subtrees, while the wreath product constructs
automorphisms that permute isomorphic subtrees.

Another class of graphs with understood automorphism groups are planar graphs.
Babai gave a characterization in 1973 [2]. He reduces a planar graph to a 3-connected
planar graph for which the automorphism group can be determined [39]. He proceeds
in such way that he is able to construct the automorphism group of the original planar
graph using group products.

Geometric Intersection Graphs. We can assign geometric objects to the vertices
of a graph and encode its edges by intersections of these objects. More formally, an
intersection representation R of X is a collection of sets {Rx : x ∈ V (X)} such that
Rx∩Ry 6= ∅ if and only if xy ∈ E(X). Every graph can be represented in this way [29].
Therefore, to obtain interesting classes of graphs, the sets Rx are usually some specific
geometric objects. The most famous classes of geometric intersection graphs include

10



1.1. Graphs With a Strong Structure

interval graphs, circle graphs, circular-arc graphs, permutation graphs and function
graphs.

The problem of characterizing the intersection graphs of families of sets having
some geometrical property is an interesting problem and is often motivated by real
world applications. Sometimes even an application gives an intersection representa-
tion. Many hard combinatorial problems can be often solved efficiently on geometric
intersection graphs. Another reason for considering an intersection representation of
a graph is that it can provide much better visualisation of the graph and therefore,
possibly a much better understanding of the structure of the graph. For example, the
structure of the graph in Figure 1.2 is more clear from its interval representation. For
more information about intersection graph theory see for example [37, 32, 17].

Surprisingly, automorphism groups of intersection-defined classes of graphs were
studied only briefly. Even for very deeply studied classes of intersection graphs the
structure of their automorphism groups is not well known. In this area, the mostly
studied are classical graph-theoretic properties (the chromatic number, forbidden graph
characterization, and so on) or the complexity of the recognition problem.

We study the problem of reconstructing the automorphism group of a geometric
intersection graph from a good knowledge of the structure of its representations. In
this thesis, we deal mainly with interval graphs.

Interval Graphs. Interval graphs are intersection graphs of intervals on the real line.
They are one of the oldest and most studied classes of graphs, first introduced by
Hajós [19] in 1957.

An interval representation R of a graph X is a set of closed intervals {Ix : x ∈
V (X)} such that xy ∈ E(X) if and only if Ix ∩ Iy 6= ∅. In other words, an edge of X
is represented by an intersection of intervals. A graph X is an interval graph if there
exists an interval representation R of X . Figure 1.2 shows an example.

One of the reasons why interval graphs were studied quite extensively is that
they have real world applications, for example in biology. Benzer [3] showed a direct
relation between interval graphs and the arrangement of genes in the chromosome.
Mutations correspond to a damaged segment on a chromosome. Each mutation can
damage a different set of genes. At that time, the only information that could be
gathered was the set of deformities caused by a mutation. We can form a graph by
making each mutation into a vertex and adding an edge between two vertices if the

3 12
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Figure 1.2: An interval graph and one of its interval representations.
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Chapter 1. Introduction

mutations share a common deformity. Benzer found that a graph formed in this way
from an experiment with mutations is an interval graph. This was considered a strong
evidence supporting the theory that genes are arranged in a simple linear fashion.
Interval graphs have also many other applications (see for example [34, 38]).

Interval graphs have also many useful theoretical properties and nice mathemat-
ical characterizations. In many cases, very hard computational problems are poly-
nomially solvable for interval graphs. These problems include graph isomorphism,
maximum clique, k-coloring, maximum independent set, and so on.

1.2 Results of This Thesis

In this thesis, we study the automorphism groups of interval graphs. The structure of
their representations is already very well understood due to Booth and Lueker [4].

In 1981 Cobourn and Booth [8] designed a linear-time algorithm that computes
generating automorphisms of automorphism group of an interval graph. Our result
gives an explicit description of these automorphism groups in terms of group products,
so also from the algorithmic point of view we get a better information about the
groups. Moreover, our description of the automorphism groups of interval graphs is
much more detailed and shows the relation between the structure of all representations
of an interval graph and its automorphism group.

Let I be the class of finite groups that are isomorphic to the automorphism group
of some interval graph and let T be the class of finite groups that are isomorphic to the
automorphism groups of some finite tree. Our main result is the following theorem.

Theorem 1.1. The class I of the automorphism groups of interval graphs is the same
as the class T of the automorphism groups of trees. For each interval graph X, there
exists a tree T such that Aut(X) is isomorphic to Aut(T ), and vice versa.

This is surprising because the class INT of finite interval graphs and the class
TREE of finite trees are very different graph classes. The intersection INT ∩ TREE
are exactly the graphs called CATERPILLARS. Those are the trees having a path P

such that all vertices are within distance at most one of P . Automorphism groups of
CATERPILLARS are very restricted compared to interval graphs and trees; see Propo-
sition 3.12.

Another important classes of graphs related to INT are the classes AT-FREE and
CHOR. The first one is the class of asteroidal triple-free graphs. Three vertices of a
graph form an asteroidal triple if every two of them are connected by a path avoiding

y

x z

Figure 1.3: A graph that is not a tree and contains an asteroidal triple (x, y, z).
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1.2. Results of This Thesis

INT

AT-FREE CHOR

TREE

CATERPILLARS

Figure 1.4: The inclusions between the described classes of graphs.

the neighbourhood of the third. A graph is asteroidal triple-free if it does not contain
any asteroidal triple. The class CHOR is the class of chordal graphs. A chordal graph
is a graph that does not contain an induced cycle of length four or more. Another
characterization of chordal graphs says that chordal graphs are intersection graphs of
subtrees of a tree [15], which is a generalization of interval graphs (if the tree is a path,
then we get an interval graph). It is well known that a graph is an interval graph if
and only if it is in AT-FREE ∩ CHOR [26].

The problem GraphIso(X1, X2) is polynomially reducible to testing isomor-
phism of chordal graphs [27]. Moreover, the reduction shows that for an arbitrary
graph there exists a chordal graph with the same automorphism group. So, chordal
graphs are universal for automorphism groups and the structural study of their groups
is finished.

The equality of I and T was already mentioned by Hanlon [20] in his paper
about counting interval graphs. However, his paper lacks an explanation or a proof of
this result. Moreover, for an interval graph X , finding a tree T such that Aut(X) is
isomorphic to Aut(T ) is stated as an open problem. We can solve this problem easily
using our description of the class I. Therefore our understanding of the structure of
I is much deeper. We are also able to find for a tree an interval graph with the same
group of automorphisms.

Our characterization of the class I is based on the Jordan’s characterization (see
Theorem 2.6) of the class T . We add a third operation, the semidirect product with
Z2, which corresponds to a reflection symmetry of a part of an interval representation.
Then we prove the equality of I and T . We show that this third operation can be
replaced by a sequence of the first two operations.

13



Chapter 1. Introduction
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2 Preliminaries

In Section 2.1, we describe some basic concepts of group theory that are essential for
the main result. For a comprehensive treatment of the basics of group theory, see for
example [35, 10], for a visual treatment of group theory, see [5]. In Section 2.2 we
give a definition of PQ-trees and modified PQ-trees. Each PQ-tree is a data structure
which captures all possible representations of an interval graph.

Notation. We use X and Y to denote graphs. The set of the vertices of a graph X
is denoted by V (X) and the set of the edges by E(X). The remaining letters like G
and H are used to denote groups.

We assume that the reader is familiar with the basic properties of groups. The
following notation is used for the standard groups:

• Sn is the symmetric group whose elements are n-element permutations,

• Dn is the dihedral group whose elements are symmetries of the regular n-gon,
including both rotations and reflections,

• Zn is the cyclic group whose elements are integers 0, . . . , n−1 and the operation
is addition modulo n.

We define an equivalence relation ∼TW on the vertices of an interval graph X

where x ∼TW y means that x and y belong to precisely the same maximal cliques, or
in other words, they have precisely the same neighbourhoods. If two vertices x and y
are in ∼TW we say that they are twin vertices. The equivalence classes of ∼TW are
called twin classes. Twin vertices are usually not interesting in the study of geometric
intersection graphs. However, they need to be considered for automorphism groups.

2.1 Group Products

In algebra, group products are used to decompose large groups into smaller ones.
Consider for example the well know puzzle called Rubik’s Cube. The Rubik’s Cube
group is the set G of all cube moves on the Rubik’s Cube. The cardinality of G is
given by

|G| = 43 252 003 274 489 856 000.

15



Chapter 2. Preliminaries

C8
Aut(C8) ∼= D8

Figure 2.1: The cycle graph C8 with the action of Aut(C8) on its vertices and a
Cayley graph of Aut(C8). Note that Aut(C8) is isomorphic to D8. It is generated
by two automorphisms: the rotation symmetry (depicted by the red arrows); the
reflection symmetry (depicted by the blue arrows).

The Rubik’s Cube group is large and its structure is not obvious. Using group prod-
ucts, one can derive that the group is isomorphic to

(Z7
3 × Z

11
2 )⋊ ((A8 × A12)⋊ Z2),

where An is the group of all even n-element permutations. From this, the structure of
the Rubik’s Cube group is much more clear.

Here, we explain two basic group theoretic methods for constructing larger groups
from smaller ones, namely direct product and semidirect product. We show how these
group operations can be used to construct automorphism groups of graphs. At the
end of this section, we prove Jordan’s characterization of the class T .

Inspired by [5], we use Cayley graphs to visualize groups. Cayley graphs were
actually invented by Cayley [6] for this purpose and now they also play an important
role in combinatorial and geometric group theory. A Cayley graph is a colored oriented
graph that depicts the abstract structure of a group. Suppose that G is a group and
S is a generating set. The Cayley graph (G, S) is a graph constructed as follows:

• The elements of G correspond one-to-one to the vertices.

• Each generator s ∈ S is represented by a unique colour c(s).

• For any g ∈ G and s ∈ S, the there is a directed edge (g, gs) of colour c(s).

Figure 2.1 and Figure 2.2 show examples of graphs and Cayley graphs of their
automorphism groups.

2.1.1 Direct Product

The direct product G×H of groups G and H with operations ·G and ·H , respectively, is
the set of pairs (g, h) where g ∈ G and h ∈ H with operation defined componentwise:

(g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2).

16



2.1. Group Products

X Aut(X) ∼= Z8

Figure 2.2: A graph with the automorphism group isomorphic to the group Z8 and
a Cayley graph of Z8. A graph like this one has only the rotation symmetries as
automorphisms. Therefore, its automorphism group is isomorphic to a subgroup of
Aut(C8). We note that the Frucht’s theorem is proved in a similar way. One has to
use some gadgets to encode the oriented edges and colours of a Cayley graph.

When there is no confusion we simply write (g1 · g2, h1 · h2) or (g1g2, h1h2). The direct
product of n groups is defined similarly.

Suppose that we have the direct product G1 × · · · × Gn of groups G1, . . . , Gn.
We can define a homomorphism π : G1 ×G2 × · · · ×Gn → G2,× · · · ×Gn by

π
(
(g1, g2, . . . , gn)

)
= (g2, . . . , gn).

The kernel Ker(π) is clearly isomorphic to G1. Therefore, G1 is a normal subgroup
of G1 × · · · × Gn. Analogously, each Gi is a normal subgroup of G1 × · · · × Gn. On
the other hand, the semidirect product, discussed in Section 2.1.2, takes two groups
G and H and constructs a larger group such that only G is a normal subgroup.

Example 2.1. This figure shows a Cayley graph of the group Z2×Z2×Z2. Note that
the group contains two copies of Z2 × Z2, with the corresponding elements connected
according to the pattern of Z2.

Direct product can be used to construct automorphism groups of graphs that
are disconnected and their connected components pairwise are non-isomorphic. In this
case, the automorphism group of a graph X is a direct product of the automorphism
groups of its connected components X1, . . . , Xk:

Aut(X) = Aut(X1)× · · · ×Aut(Xk).

This is because each automorphism acts independently on each component Xi.

17



Chapter 2. Preliminaries

2.1.2 Semidirect Product

However, if we want to construct the automorphism group of a disconnected graph
which has some isomorphic connected components, direct product is not sufficient
because the automorphisms that permute the isomorphic components are not included
in the direct product.

Example 2.2. The automorphism group of the graph X is isomorphic to S3×Z2, but
the automorphism group of the graph Y is not Z2 × Z2. The direct product does not
include the automorphisms which swap the components. The automorphism group
of Y is not even Z2 × Z2 × Z2 because, for example, swapping the components and
swapping the vertices of the left component do not commute.

X Y

If we construct a larger group from some groups G and H using the direct prod-
uct, then both G and H are normal subgroups of the resulting group. The motivation
for the semidirect product is to construct a group from G and H for which G does not
have to be a normal subgroup.

The direct product G × H contains identical copies of G, with corresponding
elements connected according to the pattern of H , as shown in Example 2.1. In the
semidirect product of the groups G and H , the group H also determines a pattern
according to which some copies of G are connected, however, those copies of G do not
need to be all identical.

First, we explain a special case. The semidirect product of the group G with its
automorphism group Aut(G), denoted by

G⋊Aut(G).

The elements are all pairs (g, f) such that g ∈ G and f ∈ Aut(G). The operation is
defined in the following way:

(g1, f1) · (g2, f2) = (g1 · f1(g2), f1 · f2).

Note that G⋊Aut(G) with the operation defined like this forms a group. It is straight-
forward to see that the identity element is (1, 1) and that the inverse of the element
(g, f) is the element (f−1(g−1), f−1).

We can think of it as all possible isomorphic copies of G connected according
to the pattern of Aut(G). The element (g1, f1) is in the isomorphic copy G1 of G
which we get by applying the automorphism f1 on G. Multiplying (g1, f1) by (g2, 1)
corresponds to a movement inside G1. Multiplying (g1, f1) by (1, f2) corresponds to a
movement from G1 to another isomorphic copy of G.

In general, the semidirect product is defined for any two groups G and H , and a
homomorphism ϕ : H → Aut(G), denoted by

G⋊ϕ H.

18



2.1. Group Products

Figure 2.3: A Cayley graph of Aut(Y ) where Y is from Example 2.2. The generators
are the following: the permutation that swaps the left component and fixes the right
component (orange); the permutation that swaps the right component and fixes the
left component (purple); the permutation that swaps the components (black).
The subgroup of Aut(Y ) which acts on the components independently and does not
swap them, corresponds to the isomorphic copy of Z2 × Z2 which is on the left in the
Cayley graph. Swapping the components with the black automorphism changes the
orange automorphism changes the orange automorphism to the purple automorphism,
and vice versa. In other words, swapping the vertices of some component does no com-
mute with swapping the components. Therefore, the group Aut(Y ) is not isomorphic
to Z2 × Z2 × Z2.

It is the set of all pairs (g, h) such that g ∈ G and h ∈ H . The operation is defined
similarly to the operation defined on G⋊ Aut(G):

(g1, h1) · (g2, h2) = (g1 · ϕ(h1)(g2), h1 · h2).

Again, it is quite straightforward to check that G ⋊ϕ H is a group. We can think of
the homomorphism ϕ as if it assigns an isomorphic copy of G to each element of the
group H . The isomorphic copies of G are then connected according to the pattern of
the group H . We write G⋊H when there is no danger of confusion.

Example 2.3. Dihedral group D8 is equal to Z8⋊Z2. Figure 2.1 shows a Cayley graph
of D8 (on the right). The elements of the two isomorphic copies of Z8 are connected
according to the pattern of Z2.

Example 2.4. Let Y be the graph from Example 2.2. The group Aut(Y ) is isomorphic
to (Z2 × Z2)⋊ Z2. Figure 2.3 shows a Cayley graph of Aut(Y ). The elements of the
two isomorphic copies of Z2 × Z2 are connected according to the pattern of Z2.

Wreath Product. The group G ≀ Sn is the wreath product of a group G with Sn.
1

It is a shorthand for the semidirect product Gn
⋊ϕ Sn, where ϕ : Aut(G

n) → Sn is a
homomorphism defined by

ϕ(π) = the automorphism that maps (g1, . . . , gn) to (gπ(1), . . . , gπ(n)).

The reason for defining the wreath product is that it occurs quite often in the study
of the automorphism groups of graphs.

1For the purposes of this thesis, it is sufficient to define G ≀ Sn. In general, the wreath product
can be defined for any groups G and H .
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Chapter 2. Preliminaries

The following two theorems are due to Jordan [23]. Theorem 2.5 shows how to
construct the automorphism groups of a disconnected graph using group products.
Theorem 2.6 gives a characterization of the class of the automorphism groups of trees
in terms of direct and wreath products. We also prove these theorems because the
ideas are used later in Chapter 3.

Theorem 2.5 (Automorphism groups of disconnected graphs). If X1, . . . , Xn are pair-
wise non-isomorphic connected graphs and X is the disjoint union of ki copies of Xi,
for i = 1, . . . , n, then

Aut(X) = Aut(X1) ≀ Sk1 × · · · × Aut(Xn) ≀ Skn.

Proof. First, we deal with a special case. Suppose thatX consists only of k isomorphic
copies of X1, denoted by Y1, . . . , Yk1. Each automorphism α of X can be encoded by
a (k1 + 1)-tuple

α = (α1, α2, . . . , αk1, π),

where (α1, . . . , αk1) ∈ Aut(Y1)
k1 and π ∈ Sk1. The automorphism (α1, . . . , αk1 , π) first

acts on each component using (α1, . . . , αk1), and then it permutes the components
according to the permutation π.

The action of α · β = (α1, α2, . . . , αk1 , π) · (β1, β2, . . . , βk1 , ρ) can be described in
the following way. First, α acts independently on each Yj using αj , then it permutes
them by π, then β acts independently on each Yj and then it permutes them by ρ.
We want to represent this as one automorphism acting first independently on each Yj,
and then premuting them. The problem is that π does not commute with the action
of βj . Therefore, to swap them, we have to let βπ(j) act on Yj . Figure 2.4 shows an
example. So, the operation on Aut(X) can be defined by

α · β = (α1, α2, . . . , αk1 , π) · (β1, β2, . . . , βk1 , ρ)

= (α1 · βπ(1), α2 · βπ(2), . . . , αk1 · βπ(k1), π ◦ ρ).

In other words, we get

Aut(X) ∼= Aut(Y1)
k1 ⋊ϕ Sk1 = Aut(Y1) ≀ Sk1

where ϕ : Sk1 → Aut(Aut(Y1)
n) is the homomorphism defined by

ϕ(π) = the automorphism that maps (α1, α2, . . . , αk1) to (απ(1), απ(2), . . . , απ(k1)).

Now we consider the general case. No automorphism of X can swap a copy of Xi

with a copy of Xj because they are non-isomorphic. Therefore, each automorphism
acts independently on the isomorphic copies of each Xi, so to get Aut(X) is the direct
product of all Aut(Xi) ≀ Ski .

Theorem 2.6 (Jordan, 1869). A finite group G is isomorphic to an automorphism
group of a finite tree tree if and only if G ∈ T , where the class T of finite groups is
defined inductively as follows:

(a) {1} ∈ T .
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π

(α1, α2, α3)
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X3 X1 X2

βπ(3) βπ(1) βπ(2)

π

Figure 2.4: The figure shows a graph X with isomorphic components X1,X2,X3,
and the action of the automorphism encoded by the quadruple (α1, α2, α3, π) such
that (α1, α2, α3) ∈ Aut(X1) × Aut(X2) × Aut(X3) and π ∈ S3. The automorphism
α1 swaps the vertices 1 and 2, and α2, α3 are identities. Suppose that (β1, β2, β3, ρ)
encodes an automorphism of X. Each βj has to act on the correct component. This
is achieved by letting βπ(1) act on X1, βπ(2) on X2, and βπ(3) on X3.

(b) If G1, G2 ∈ T , then G1 ×G2 ∈ T .

(c) If G ∈ T and n ≥ 2, then G ≀ Sn ∈ T .

Proof. Every tree has a center, which is either a vertex, or an edge. If the center is
an edge, then we subdivide the edge. This does not change the automorphism group.
The center of a tree is fixed by every automorphism. Therefore, deleting the root
does not change the automorphism group of the tree. So the problem of determining
automorphism groups of trees can be reduced to rooted trees.

First, we construct for each G ∈ T a rooted tree T such that Aut(T ) ∼= G.

• Let G1, G2 ∈ T and let T1, T2 be rooted trees such that Aut(T1) ∼= G2 and
Aut(T2) ∼= G2. We construct the tree T by attaching the roots of T1 and T2 to
a new root r. If G1

∼= G2 we further subdivide one of the newly created edges.
Clearly, we get Aut(T ) ∼= G1 ×G2.

• If G ∈ T and T1 is a rooted tree such that Aut(T1) ∼= G, then we construct T
by attaching n copies of T1 to the same root. By Theorem 2.5 Aut(T ) ∼= G ≀ Sn.

Now, it remains to prove the converse. For each rooted tree T , the group Aut(T )
is in the class T . If T is a rooted tree containing only one vertex, then clearly Aut(T ) ∈
T . Otherwise, we delete the root and get a forest of rooted trees T1, . . . , Tn. We
determine the automorphism group of each Ti recursively and use Theorem 2.5 to
construct the group Aut(T ). It follows that Aut(T ) ∈ T .

2.2 Tree Representations of Interval Graphs

In this section, we briefly explain PQ-trees and show how they relate to interval graphs.
Then we introduce a modified version of PQ-trees which we use in Chapter 3 to
characterize the automorphism groups of interval graphs.
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Chapter 2. Preliminaries

2.2.1 PQ-trees

PQ-trees were invented by Booth and Lueker [4] for the purpose of solving the consec-
utive ordering problem. For a set S and restricting sets R1, . . . , Rk, the task is to find
a linear ordering of S such that every Ri appears consecutively in it as one block.

Example 2.7. Consider the set S = {a, b, c, d, e} and the restricting sets R1 = {a, b},
R2 = {c, d, e} and R3 = {b, c}. The orderings abcde, abced, decba and edcba are the
only feasible orderings of U , any other ordering violates some restriction. For instance,
the ordering abdce violates R3.

A PQ-tree is a rooted tree designed for solving the consecutive ordering problem
efficiently. In addition to that, they store all feasible orderings of the set S.

The leaves of the tree correspond one-to-one to the elements of S. The inner
nodes are of two types: The P-nodes and the Q-nodes. We assume that each P-node
has at least two children and that each Q-node has at least three children. For every
inner node, the order of its children is fixed.

The frontier of a PQ-tree T is a permutation of the set S obtained by ordering
the leaves of T from left to right. The frontier of T represents one ordering of S.

To obtain all feasible orderings of S we can modify T by applying a finite sequence
of the following two equivalence transformations :

• Arbitrarily permute the children of a P-node.

• Reverse the order of the children of a Q-node.

The PQ-tree obtained from T by applying a finite sequence of equivalence transfor-
mations ε is denoted by Tε. A PQ-tree T ′ is equivalent with T if one can be obtained
from the other using a finite sequence of equivalence transformations. Each sequence
of equivalence transformations encodes a permutation of V (T ), the nodes of T .

Booth and Lueker [4] proved that a PQ-tree exists for every instance of the
consecutive ordering problem and it can be constructed in a linear time. Figure 2.5
shows all equivalent PQ-trees representing, all feasible orderings of the set S, for
the instance of Example 2.7, with P-nodes are denoted by circles and Q-nodes by
rectangles.

PQ-trees and Interval Graphs. The following characterization of interval graphs
is given by Fulkerson and Gross [14]. It shows the relation between interval graphs
and the consecutive ordering problem.

Lemma 2.8 (Fulkerson and Gross). A graph X is an interval graph if and only if there
exists an ordering of the maximal cliques C(X) such that for every vertex x ∈ V (X),
the maximal cliques containing x appear consecutively in it.

Proof. Let {Ix : x ∈ X} be an interval representation of X and let C1, . . . , Ck be the
maximal cliques. By Helly’s Theorem, the intersection

⋂

x∈Ci
Ix is non-empty, and
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a b c

ed

a b c

de

c b a

ed

c b a

de

Figure 2.5: Four PQ-trees that represent all feasible orderings of the instance of
Example 2.7, the circles are P-nodes and the rectangles are Q-nodes.

therefore there exist a point ci in it. The ordering of c1, . . . , ck from left to right gives
the required ordering.

Given an ordering of the maximal cliques C1, . . . , Ck, we place points c1, . . . , ck
in this ordering on the real line. To each vertex v, we assign the minimal interval
Ix such that ci ∈ Ix if and only if x ∈ Ci. We obtain a valid interval representation
{Ix : x ∈ V (X)} of X .

Recognition of interval graphs in linear time was an open problem, first solved
by Booth and Lueker [4] using PQ-trees. By Lemma 2.8, the problem of recognizing
interval graphs can be simply reduced to the consecutive ordering problem. To test
whether a graph X is an interval graph, let S to be the set of all maximal cliques
C(X). For each vertex x, we define a restricting set Rx = {C ∈ C(X) : x ∈ C}.
Lemma 2.8 says that X is an interval graph if and only if there exist a linear ordering
of S such that every Rx appears consecutively in it. The algorithm for solving the
consecutive ordering problem constructs a PQ-tree T such that the frontier of T gives
one possible consecutive ordering of C(X). We get all possible orderings of C(X) by
applying sequences of equivalence transformations. Figure 2.6 shows an example of an
interval graphs and a PQ-tree representing it.

2.2.2 MPQ-trees

A modified PQ-tree (MPQ-tree) is basically a PQ-tree with some additional informa-
tion about the twin vertices. MPQ-trees were first mentioned by Korte and Möhring [25],
they used them to show simpler linear-time recognition algorithm for interval graphs
than the one of Booth and Lueker. MPQ-trees were used by Coulborn and Booth [8] to
design a linear-time algorithm for computing a set of generator of the automorphism
group of an interval graph, however, they mention them only implicitly.

Suppose that T is a PQ-tree representing an interval graph X . To obtain an
MPQ-tree M from T we assign sets, called sections, to the nodes of T . Leafs and
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C1 C2 C5 C6

C3 C4

Figure 2.6: An interval graph and a PQ-tree which represents one consecutive or-
dering of its maximal cliques. We can get all other possible orderings by applying the
equivalence transformations on the PQ-tree.

P-nodes have assigned only one section, while Q-nodes have one section for each of its
children. We assign the sections to the nodes of T in the following way:

• For every leaf L, the section sec(L) contains those vertices of X that are only in
the maximal clique represented by L, and no other maximal cliques.

• For every P-node P , the section sec(P ) contains those vertices of X that are in
all maximal cliques represented by the leaves of the subtree of P , and no other
maximal cliques.

• For every Q-node Q and its children Q1, . . . , Qn, the section seci(Q) contains
those vertices of X that are in the maximal cliques represented by the leaves
of the subtree of Qi and also some other Qj , but are not in any other maximal
clique represented by a leaf that is not in the subtree of Q. We denote the union
sec1(Q) ∪ · · · ∪ secn(Q) by sec(Q).

Figure 2.7 shows an example of an MPQ-tree.

If x is a vertex of an interval graph X and M is an MPQ-tree representing X ,
then Nx denotes the node of M such that x ∈ sec(Nx). The following lemma shows
that the MPQ-tree M captures the structure of the graph X .

Lemma 2.9. For any two vertices x and y of X there is an edge between x and y if
an only if the nodes N(x) and N(y) lie on a path from the root of M to some leaf.

1, 2 1, 2, 5, 6 5, 6 5, 6, 9, 10 9, 10

∅[3] [4] [11] [12]

[7] [8]

Figure 2.7: An MPQ-tree that represents the interval graph from Figure 2.6. The
twin vertices belong to the same sections of the MPQ-tree.
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2.2. Tree Representations of Interval Graphs

Proof. If xy ∈ E(X), then there exists a maximal clique L of X such that x, y ∈ L.
Since L is one of the leaves of M , from the definition of MPQ-trees we have that Nx

and Ny lie on the path from the root of M to L.

If Nx and Ny lie on the same path from the root of M to some leaf L, then by
the definition we have that x, y ∈ L. Since L is a maximal clique of X , it follows that
xy ∈ E(X).

Corollary 2.10. Vertices x, y ∈ V (X) that are in the same sections of an MPQ-tree
M for the interval graph X belong to the same twin classes of X, i.e., x ∼TW y.
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3 Automorphism Groups
of Interval Graphs

In this chapter, we derive a characterization of the class I of the automorphism groups
of finite interval graphs. We show that it is equal to the class T of the automorphism
groups of finite trees. Finally, we show how to construct for an interval graph X a
tree T such that Aut(X) ∼= Aut(T ), and vice versa.

3.1 Automorphisms Groups of PQ-trees

Here, we give a definition of an automorphism of a PQ-tree and an MPQ-tree that
represent an interval graph X . We show that the automorphism group of the PQ-tree
is isomorphic to a subgroup of Aut(X). Further, the additional information in the
MPQ-tree makes its automorphism group isomorphic to Aut(X).

Automorphism Groups of PQ-trees. Let T be a PQ-tree representing an interval
graph X . We define each symmetric sequence of equivalence transformations to be
an automorphism of T . More formally, a sequence of equivalence transformations
ε : V (T ) → V (T ) is an automorphism of T if there exists a permutation α : V (X) →
V (X) of the vertices of X such that after replacing each leaf L in Tε with α(L) we get
T . We say that α cancels ε. Figure 3.1 shows an example.

Lemma 3.1. Automorphisms of a PQ-tree T representing X form a group.

Proof. Suppose that ε1 and ε2 are automorphisms of T and α1 cancels ε1, and α2

cancels ε2. The composition α2 ◦ α1 cancels ε1 · ε2, so ε1 · ε2 is also an automorphism
of the PQ-tree T . The inverse of an automorphism ε can be constructed similarly.

We denote the group of automorphisms of a PQ-tree T representing X by Aut(T ).
The following lemma shows that a permutation which cancels an automorphism of T
is an automorphism of X .

Lemma 3.2. If ε is an automorphism of a PQ-tree T representing X and α cancels
ε, then α is an automorphism of X.

Proof. Let x, y ∈ V (X) be two vertices. The vertices x and y are adjacent if and only if
they are contained in some maximal clique. The permutation α induces a permutation
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{1, 2, 8} {2, 3, 8} {3, 4, 8}

ε1

{5, 6, 8} {7, 8} {1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}

ε2

Figure 3.1: The equivalence transformation ε1 on the left is the only automorphism
of the PQ-tree. For example the transformation ε2 on the right is not an automorphism
because there is no permutation α of the vertices such that α({7, 8}) = {5, 6, 8}.

of the maximal cliques C(X), since it cancels ε. So, α(x) and α(y) are in the same
maximal clique if and only if x and y are in the same maximal clique.

By Lemma 3.2 each automorphism ε of T induces at least one automorphism of
X . The next lemma shows that each automorphism of X induces a unique automor-
phism of T .

Lemma 3.3. If α is an automorphism of X, then there exists a unique automorphism
ε of T that reorders C(X) in the same way as α.

Proof. The PQ-tree T stores all possible orderings of the maximal cliques C(X). There-
fore, there exists an automorphism ε of T such that it reorders the maximal cliques in
the same way as α. It is indeed an automorphism, since α−1 cancels ε. The automor-
phism ε is unique because there is only one possible reordering of the maximal cliques
induced by α.

Multiple automorphisms of X can reorder C(X) in the same way. If there exists a
twin class of size greater that one, then some automorphisms of X reorder C(X) in the
same way, but permute the twin class differently. We define a mapping φ : Aut(X) →
Aut(T ) by

φ(α) = ε

where ε the unique equivalence transformation of T that gives the same reordering of
C(X) as α. According to Lemma 3.2 and Lemma 3.3, the mapping φ is well defined
and surjective. It is straightforward to see that φ is a homomorphism. Moreover, φ
is a quotient homomorphism, that is, it is possible that two automorphisms of X are
mapped by φ to the same automorphism of T .

In general, the automorphism group of a PQ-tree T representing X is not isomor-
phic to the automorphism group of X . An automorphism α ∈ Aut(X) is in Ker(φ) if it
only swaps vertices x, y that belong to the same twin classes. By the first isomorphism
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3.1. Automorphisms Groups of PQ-trees

theorem, we get

Aut(T ) ∼=
Aut(G)

Ker(φ)
.

If Ker(φ) is nontrivial, then Aut(T ) is not isomorphic to Aut(X). In the following
text we show that an MPQ-tree representing X captures the whole Aut(X).

Automorphism Groups of MPQ-trees. Here we give a definition of an automor-
phism group of an MPQ-tree. Let M be an MPQ-tree representing an interval graphs
X and let T be the underlying PQ-tree.

An automorphism of a P-node P is a permutation of the set {x ∈ V (X) : x ∈
sec(P )} of vertices ofX . We denote the automorphism group of the node P by Aut(P ).
The automorphism gourp of P is isomorphic to Sk. The automorphism group Aut(L)
of a leaf L is defined in a similar way.

An automorphism of a Q-node Q is a permutation of some set of vertices of X
that belong to the same sections of Q. More formally, if V1, . . . , Vℓ are the subsets
of V (X) such that the vertices in each Vi belong to the same sections of Q, then an
automorphism of the Q-node Q is a ℓ-tuple (π1, . . . , πℓ) where πi is a permutation
of the set Vi. The automorphisms of the node Q form the group Aut(Q) with the
operation defined componentwise.

Example 3.4. The automorphism group of the Q-node in Figure 2.7 is isomorphic
to S2 × S2 × S2. This is because the sets V1 = {1, 2}, V2 = {5, 6} and V3 = {9, 10}
are the subsets of the vertex set of the graph represented by the MPQ-tree such that
the vertices in each Vi belong to the same sections of the Q-node. The automorphism
group of each leaf is the trivial group.

Let N1, . . . , Nk be the nodes of M . Each group Aut(Ni) is isomorphic to a
symmetric group if Ni is a P-node or a leaf and if Ni is a Q-node, then Aut(Ni)
is isomorphic to a direct product of symmetric groups. Therefore, also the group
Aut(N1)× · · · × Aut(Nk) is isomorphic to a direct product of symmetric groups.

An automorphism of the MPQ-tree M is a (k + 1)-tuple (νN1
, . . . , νNk

, ε) where
νNi

is an automorphism of the node Ni and ε is an automorphism of the underlying
PQ-tree T . Figure 3.2 shows an example of an automorphism of an MPQ-tree.

Lemma 3.5. The automorphisms of M form the group Aut(M) with the operation
defined as follows

(µN1
, . . . , µNk

, δ) · (νN1
, . . . , νNk

, ε) = (µN1
· νδ(N1), . . . , µNk

· νδ(Nk), δ · ε).

Proof. The automorphism (µN1
, . . . , µNk

, δ) first acts on each node Ni by µNi
and then

it permutes the nodes according to the equivalence transformation δ. Therefore, the
automorphism νδ(Ni) of the node δ(Ni) has to be composed with µNi

.

By Lemma 3.5, it follows that the group Aut(M) is a semidirect product of
Aut(N1)× · · · × Aut(Nk) and Aut(T ). More formally,

Aut(M) ∼=
(
Aut(N1)× · · · × Aut(Nk)

)
⋊ψAut(T )
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P
13, 14

2, 4, 5 2, 3, 4, 5 3, 4, 5

[1] ∅ [6]

Q1 Q2

8, 10, 11 8, 9, 10, 11 9, 10, 11

[7] ∅ [12]

P
14, 13

Q2

8, 10, 11 8, 9, 10, 11 9, 10, 11

[7] ∅ [12]

Q1

2, 5, 4 2, 3, 5, 4 3, 5, 4

[1] ∅ [6]

(νP , νQ1
, νQ2

, ε)

Figure 3.2: One automorphism (νP , νQ1
, νQ2

, ε) of an MPQ-tree. The automorphism
νP of the node P swaps the vertices 13 and 14, the automorphism νQ1

of the node Q1

is the identity automorphism, the automorphism νQ2
of the node Q2 swaps the vertices

4 and 5, and the automorphism ε is an automorphism of the underlying PQ-tree.

where ψ : Aut(T ) → Aut(Aut(N1)× · · · ×Aut(Nk)) is the homomorphism defined as

ψ(ε) = the automorphism that maps (νN1
, . . . , νNk

) to (νε(N1), . . . , νε(Nk)).

Proposition 3.6. The automorphism group of M is isomorphic to the automorphism
group of X.

Proof. Let M be an MPQ-tree representing an interval graph X and let N1, . . . , Nk

be the nodes of M . We fix some consecutive ordering on the maximal cliques C(X)
(see Lemma 2.8) and we also fix an ordering <TW on each twin class.

Suppose that α is an automorphism of X . Then α can be decomposed into
α1 ◦ α2 such that α1 only permutes those vertices of X that are in the same twin
class, and α2 permutes the maximal cliques C(X) in the same way as α and preserves
the ordering <TW on each equivalence class of ∼TW . The decomposition is shown in
Figure 3.3. The permutation α1 can be uniquely identified with an element of the
group Aut(N1) × · · · × Aut(Nk) and the permutation α2 can be uniquely identified
with an element of the group Aut(T ). Therefore, the permutation α can be uniquely
identified with the automorphism (νN1

, . . . , νNk
, ε).

If (νN1
, . . . , νNk

, ε) is an automorphism ofM , then the k-tuple (νN1
, . . . , νNk

) can
be uniquely identified with an automorphism α1 of X such that it does not change the
ordering of the maximal cliques. There exists a unique automorphism α2 of X that
preserves the ordering <TW , and permutes the maximal cliques C(X) in the same way
as ε. So, the automorphism (νN1

, . . . , νNk
, ε) of M can be uniquely identified with the

decomposition α = α1 ◦ α2.
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<TW <TW <TW <TW <TW <TW

α2

An equivalence class of ∼TW An equivalence class of ∼TW

Figure 3.3: The permutation α1 permutes the vertices in the equivalence class on
the left and the permutation α2 preserves the ordering <TW .

We can define a bijective mapping φ : Aut(X) → Aut(M) by

φ(α) = (νN1
, . . . , νNk

, ε)

where νN1
, . . . , νNk

, ε are as above. It is straightforward to check that φ is an isomor-
phism.

3.2 Characterization of the Automorphism Groups

In this section we derive a characterization of the class I of the automorphism groups
of interval graphs, and prove that it is equal to the class T of the automorphism
groups of trees. We use an MPQ-tree to represent an interval graph. To determine
the automorphism group of the MPQ-tree we distinguish the case when the root is a
P-node, and when the root is a Q-node. A similar analysis to the one in Theorem 2.6
can be done in the P-node case. The most important is Lemma 3.9 which deals with
the Q-node case. Finally, we show that each group in I can be built inductively from
the trivial group using two group products.

Suppose that X is an interval graph. Let M be an MPQ-tree representing X
and let T be the underlying PQ-tree. From the previous section we have that

Aut(X) ∼= Aut(M) ∼= F ⋊ψ Aut(T )

where F is the direct product of the automorphism groups of the nodes ofM . It corre-
sponds to the automorphisms of X that preserve the ordering of the maximal cliques,
that is, automorphisms that permute only twin vertices. Clearly F is isomorphic to
a subgroup of Aut(X). Each automorphism of X can perform two operations: (1)
permute the twin vertices; (2) change the consecutive ordering of the maximal cliques
C(X). Those two operations are not commutative.

To obtain the automorphism group of X , we just need to determine Aut(M).
For this, we use a similar technique as Jordan used for the automorphisms group of a
trees; see Theorem 2.6. We distinguish two cases: (1) the root of M is a P -node; (2)
the root of M is a Q-node. First, we prove a lemma that claims that the class I is
closed under the direct product.

Lemma 3.7. If G1, G2 ∈ I, then also G1 × G2 ∈ I. In other words, let X1, X2 be
interval graphs such that Aut(X1) ∼= G1 and Aut(X2) ∼= G2. Then there exists a graph
X such that Aut(X) ∼= G1 ×G2.
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X1 X2

Figure 3.4: Two interval graphs are attached to an asymmetric path. The automor-
phism group is Aut(X1)×Aut(X2).

Proof. We just use the disjoint union of X1 and X2. In the case that X1 and X2 are
isomorphic, we further attach them to an asymmetric path; see Figure 3.4. Since the
asymmetric path is an interval graph, it follows that the whole graph X is an interval
graph. In both cases , we get Aut(X) = G1 ×G2.

The following two lemmas deal with the P-node case and with the Q-node case,
respectively.

Lemma 3.8 (The P-node case). Suppose that the root of M is a P-node P with
sec(P ) = {x1, . . . , xℓ}. If M1, . . . ,Mn are pairwise non-isomorphic MPQ-trees, and
the subtrees of P consist of ki isomorphic copies of Mi, i = 1, . . . , k, then

Aut(M) ∼= Aut(M1) ≀ Sk1 × Aut(M2) ≀ Sk2 × · · · × Aut(Mn) ≀ Skn × Sℓ.

Proof. The group Aut(M) is isomorphic to Aut(M ′)× Sℓ where M
′ is MPQ-tree ob-

tained from M by removing the section. If we remove the root of M ′, the resulting
graph is disconnected with each subtree corresponding to one connected component.
By Theorem 2.5 the group Aut(M ′) is isomorphic to the direct product of the wreath
products Aut(Mi) ≀ Ski .

In the next lemma we deal with a Q-node in the root of M . A Q-node Q
is symmetric if there exists an automorphism of M that reverses the order of the
subtrees of Q. Otherwise, Q is asymmetric.

Lemma 3.9 (The Q-node case). Suppose that the root of M is a Q-node Q.

(1) If Q is asymmetric, then Aut(M) is isomorphic to a direct product of groups
from the class I.

(2) If Q is symmetric, then

Aut(M) ∼= (G1 ×G2 ×G3)⋊ϕ Z2,

where G1, G2, G3 ∈ I, G1
∼= G3 and ϕ : Z2 → Aut(G1 × G2 × G3) is the homo-

morphism defined by

ϕ(0) = the identity automorphism,

ϕ(1) = the automorphism that maps (g1, g2, g3) to (g3, g2, g1).
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M1 M2 M3 M4 M5

Figure 3.5: An example of a symmetric node. The arrows represent the action of an
automorphism that reverses the order of the subtrees of the Q-node.

Proof. Let Q be asymmetric. If M1, . . . ,Mn are the subtrees of Q, then

Aut(M) ∼= Aut(M1)× Aut(M2)× · · · ×Aut(Mn)× Aut(Q).

Each subtree corresponds to an interval graph, so each Aut(Mi) is in the class I by
Proposition 3.6. Since every symmetric group is in I, it follows from Lemma 3.7 that
also Aut(Q) is in I.

If Q is symmetric, then Aut(M) contains automorphisms that reverse the sub-
trees of Q. In this case, the group

Aut(M1)× · · · ×Aut(Mn)×Aut(Q)

is the subgroup of Aut(M) that preserves the ordering of the subtrees. The idea is to
write this subgroup as a direct product of three groupsG1×G2×G3 such that G1

∼= G3.
The group G1 corresponds to the automorphisms that act on the left side of the tree,
G2 to the automorphisms that act in the middle, andG3 to the automorphisms that act
on the right side. The reason for this is that reversing the subtrees of Q swaps the left
side with the right side. In other words, it swaps the action of G1 and G3. Therefore,
the group Aut(M) can be expressed as the semidirect product of G1 ×G2 ×G3 with
Z2. An example is shown in Figure 3.5.

The twin classes ofX that are inQ are symmetric. This means that if {x1, . . . , xℓ}
is a twin class and x1, . . . , xℓ belong to seci(Q), . . . , seci+k(Q), then there exist vertices
y1, . . . , yℓ belonging to the sections secn−i−k+1(Q), . . . secn−i+1(Q). This can be seen in
Figure 3.5. If i = n− i− k+1 and i+ k = n− i+1, then {x1, . . . , xℓ} is in the middle
and is fixed by each automorphism that reverses the order of the subtrees of Q.

We can write Aut(Q) as a direct product of three subgroups H1×H2×H3. The
subgroup H1 permutes the vertices in the twin classes that are in the left part of Q, H2

permutes the middle and H3 permutes the right side of Q. The automorphism group
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of the tree in Figure 3.5 is isomorphic to

(

Aut(M1)× Aut(M2)×

H1

︷ ︸︸ ︷

S3 × S2
︸ ︷︷ ︸

G1

× Aut(M3)×

H2

︷ ︸︸ ︷

S2 × S3
︸ ︷︷ ︸

G2

×

H3

︷ ︸︸ ︷

S2 × S3 ×Aut(M4)× Aut(M5)
︸ ︷︷ ︸

G3

)

⋊ϕ Z2.

More formally, H1 is the subgroup of Aut(Q) that permutes the sets {x1, . . . , xn} such
that x1, . . . , xℓ ∈ seci(Q), . . . , seci+k(Q) and i < n − i − k + 1, H2 is the subgroup of
Aut(Q) that permutes the sets for which i = n− i− k + 1, and H3 permutes the sets
for which i > n− i− k + 1. It holds that Aut(Q) = H1 ×H2 ×H3.

We define
G1 = Aut(M1)× · · · × Aut(M⌊n/2⌋)×H1,

and
G3 = H3 × Aut(M⌈n/2⌉+1)× · · · ×Aut(Mn).

Note that G1
∼= G3. The group G2 is defined according to the parity of n. If n is odd,

then G2 = Aut(M⌈n/2⌉)×H2. Otherwise, G2 = H2. Clearly, G1, G2, G3 belong to the
class I, since each Aut(Mi) and each Hi is in I. It is straightforward to see that the
subgroup of Aut(M) that preserves the ordering of the subtrees of Q is G1×G2 ×G3.

Each automorphism of M is can be encoded by a quadruple (g1, g2, g3, z) where
(g1, g2, g3) ∈ G1 × G2 × G3 and z ∈ Z2. The automorphism (g1, g2, g3, z) first acts on
the subtrees of M and the twin classes in Q by (g1, g2, g3). The value z represents
whether the ordering of the subtrees is reversed (z = 1) or preserved (z = 0).

The action of the composition

(g1, g2, g3, z1) · (k1, k2, k3, z2)

of two automorphism of M can be described in the following way. Let us consider the
special case when z1 = 1 and z2 = 0. First, (g1, g2, g3, z1) acts on the subtrees and
the twin classes using (g1, g2, g3). Then the ordering of the subtrees is reversed, since
z1 = 1. So, (k1, k2, k3) acts onM such that k1 acts on the right side and k3 acts on the
left side. This means that we have to compose g1 with k3, and g3 with k1. Therefore,

(g1, g2, g3, z1) · (k1, k2, k3, z2) = (g1 · k3, g2 · k2, g3 · k1, z1).

In general,

(g1, g2, g3, z1) · (k1, k2, k3, z2) =

{

(g1 · k1, g2 · k2, g3 · k3, z1 + z2) if z1 = 0

(g1 · k3, g2 · k2, g3 · k1, z1 + z2) if z1 = 1

Formally, Aut(M) is isomorphic to the semidirect product (G1×G2×G3)⋊ϕZ2,
where ϕ : Z2 → Aut(G1 ×G2 ×G3) is the homomorphism defined as in the statement
of this lemma.
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X1 X2 X3

Figure 3.6: Interval graphs attached to a path.

Lemma 3.8 and Lemma 3.9 suggest that the class I is closed under the direct
products, the wreath products with Sn and the semidirect products of direct products
with Z2. Lemma 3.10 gives a characterization of I in terms of group products.

Lemma 3.10. A finite group G is isomorphic to an automorphism group of a finite
interval graph if and only if G ∈ I, where the class I of finite groups is defined
inductively as follows:

(a) {1} ∈ I.

(b) If G1, G2 ∈ I, then G1 ×G2 ∈ I.

(c) If G ∈ I and n ≥ 2, then G ≀ Sn ∈ I.

(d) If G1, G2, G3 ∈ I and G1
∼= G3, then

(G1 ×G2 ×G3)⋊ϕ Z2 ∈ I,

where ϕ : Z2 → Aut(G1 ×G2 ×G3) is the homomorphism defined by

ϕ(0) = the identity automorphism,

ϕ(1) = the automorphism that maps (g1, g2, g3) to (g3, g2, g1).

Proof. Clearly {1} ∈ I. We prove that the class I is closed under the operations (b),
(c) and (d). From Lemma 3.7 we have that I is closed under the operation (b).

For (c), let G ∈ I and n ≥ 2. Then there exists an interval graph X1 such that
Aut(X1) ∼= G. We construct an interval graph X by taking the disjoint union of n
copies of X1. From Theorem 2.5 we have that G ≀Sn ∼= Aut(X). Therefore, I is closed
under the operation (c).

It remains to prove (d). If G1, G2, G3 ∈ I and G1
∼= G3, then there exist interval

graphs X1, X2, X3 such that G1
∼= Aut(X1), G2

∼= Aut(X2), G3
∼= Aut(X3). Without

a loss of generality we assume that X1
∼= X3. We construct an interval graph X by

attaching X1, X2, X3 to a path, as shown in Figure 3.6. It is straightforward to see
that (G1 ×G2 ×G3)⋊ϕ Z2

∼= Aut(X). Therefore, I is closed under the operation (d).

For the converse, we want to show that each interval graph X has Aut(X)
isomorphic to a group G ∈ I. Let M be an MPQ-tree representing X . According to
Lemma 3.8 and Lemma 3.9, we have that Aut(M) ∈ I and by Proposition 3.6 also
Aut(X) ∈ I.

Theorem 3.11. The class I is the same as the class T .
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v1 v2 v3

T1

T2

T3

Figure 3.7: Trees attached to a path by their roots. The automorphism group of
the tree is not isomorphic to

(
Aut(T1) × Aut(T2) × Aut(T3)

)
⋊ϕ Z2. We fix this by

subdividing the edges v1v2 and v2v3.

Proof. We show that the class T of the automorphism groups of trees is closed under
the operation (d) from the statement of Lemma 3.10.

Suppose that G1, G2, G3 ∈ T and G1
∼= G3, then there exist trees T1, T2, T3 such

that G1
∼= Aut(T1), G2

∼= Aut(T2), G3
∼= Aut(T3). Without a loss of generality we

assume that T1 ∼= T3. We construct a tree T by attaching T1, T2, T3 on a path by a
vertex, as shown in Figure 3.7. If is not true that (G1 × G2 × G3) ⋊ϕ Z2

∼= Aut(T ),
then we fix this by subdividing the edges, as shown in Figure 3.7.

3.3 On Equality of The Automorphism Groups

We proved that the class I of the automorphism groups of finite interval graphs is the
same as the class T of the automorphism groups of finite trees. Natural problems is
to find for each interval graph X a tree T such that the automorphism group of X
is isomorphic to the automorphism group of T , and vice versa. Here, we solve these
problems which also gives an alternative proof of Theorem 3.11.

From Interval Graphs to Trees. For an interval graph X we construct a tree T
such that Aut(X) ∼= Aut(T ). Let M be an MPQ-tree representing X . From Proposi-
tion 3.6 we have that Aut(M) ∼= Aut(X). We construct the tree T inductively.

If the root of M is a P-node P , then we use Lemma 3.8. Let M1, . . . ,Mn be the
subtrees of P as in the statement of the lemma and let T1, . . . , Tn be trees such that
Aut(Ti) ∼= Aut(Mi). We construct T by attaching the trees T1, . . . , Tn to a new vertex
v by their roots. In case the section sec(P ) is nonempty, then we attach |sec(P )| edges
to the vertex v (we subdivide them if necessary).

If the root of M is a Q-node Q, then we use Lemma 3.9. Let M1, . . . ,Mn be the
subtrees of Q, and let T1, . . . , Tn be trees such that Aut(Ti) ∼= Aut(Mi), and let TS
be a tree such that Aut(TS) ∼= Aut(Q). If Q is asymmetric, then we construct T by
attaching T1, . . . , Tn, TS to an asymmetric path (and subdivide edges if necessary). If
Q is symmetric, then we construct T similarly as in Theorem 3.11.

From Trees to Interval Graphs. For a tree T we construct an interval graph X

such that Aut(T ) ∼= Aut(X). The idea is to place the intervals so that they copy the
pattern of the given tree T , as shown in Figure 3.8. We assume that T is a rooted
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A
A

Figure 3.8: First, we place the intervals according to the pattern of the tree. The
automorphism group of the constructed interval graph is isomorphic to S3 × S2 × S3.
However, the automorphism group of the tree is S2 × S3. We fix this by adding copies
of an asymmetric path A (an example of an asymmetric path is shown in Figure 3.4),
which has the automorphism group isomorphic to the trivial group.

tree, let r be the root and let c1, . . . , cn be its children. We choose an interval R to
represent the root r. Then we choose an interval Ci for each of its children so that
Ci ∩ Cj = ∅ and Ci ⊆ R. We recursively construct the subtrees of each child ci.

If T contains some vertices with only one child, then Aut(T ) is a subgroup of
the automorphism groups of the constructed interval graph. The issue is that the
construction creates twin vertices that can be permuted. This can be fixed by adding
asymmetric paths, as in Figure 3.8.

Automorphism Groups of Caterpillar Graphs. Here, we apply the results from
the previous chapter to characterize the automorphism groups of CATERPILLARS.
Those are the trees for which removing the leaves produces a path P . We call this
path a central path.

Proposition 3.12. Let X be a caterpillar graph and let P be the central path.

(1) If no automorphism swaps the path P , then the group Aut(X) is isomorphic to
a direct product of symmetric groups.

(2) If there exists an automorphism of X that swaps the path P , then

Aut(X) ∼= (G1 ×G2 ×G3)⋊ϕ Z2,

where G2 is isomorphic to Sk, G1
∼= G3 are isomorphic to a direct product of

symmetric groups, and ϕ is the homomorphism defined as in Lemma 3.9.

Proof. The root of an MPQ-tree M representing a caterpillar graph X is a Q-node.
All twin classes are trivial, since X is a atree. Each child of the root is either a P-node,
or a leaf. All children of every P-node are leaves. If there exist an automorphism that
swaps the central path P , then the root is symmetric, otherwise it is asymmetric.
We apply Lemma 3.8 and Lemma 3.9 to determine the automorphism group of the
MPQ-tree M .
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4 Conclusions

We conclude by describing three open problems concerning important intersection-
defined classes of graphs, namely circle graphs, function graphs and circular-arc graphs.
The structure of their automorphism group is currently unknown. We know that those
classes of geometric intersection graphs have different automorphism groups than trees,
since all of them contain the graph C4. The automorphism group of C4 is isomorphic
to the dihedral group D4 which does not belong to T .

Circle Graphs. Circle graphs are intersection graphs of chords of a circle. They were
first considered by Even and Itai [11] in the study of stack sorting techniques. The
structure of all representations of circle graphs is described in [7].

A circle representation R of a graph X is a set of chords {Cx : x ∈ V (X)} such
that xy ∈ E(X) if and only if the chords Cx and Cy intersect. A graph X is a circle
graph if there exists a circle representation R of X . Figure 4.1 shows an example of
circle graph and its circle representation.

Problem 4.1. What is the class of the automorphism groups of circle graphs?

Function Graphs. A representation of a function graph assigns a continuous func-
tion f : [0, 1] → R to every vertex of the graph. Edges are represented by intersections
of those functions. The class of permutation graphs, which is a subclass of function
graphs, contains graphs that can be represented in the same way, but by linear func-

1

2

5

6

3

4

7

8
1

1

2

2 3

3

4

4

5

5

6

6
7

7

8

8

Figure 4.1: A circle graph and on of its circle representations. The automorphism
group of the graph is isomorphic to Z

4
2 ⋊D4.
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Figure 4.2: A permutation graph and one of its representations. The automorphism
group of the graph is isomorphic to D4.

tions. Figure 4.2 shows an example of a permutation graph. The structure of all
representations of function is described in [24].

Function graphs are the complements of so-called comparability graphs [18]. A
comparability graph is a graph of some partial ordering. In other words, comparability
graphs are graphs of which edges can be oriented transitively. Permutation graphs are
exactly the intersection of function and comparability graphs [12].

Problem 4.2. What is the class of the automorphism groups of function graphs?

Circular-arc Graphs. Circular-arc graphs are intersection graphs of arcs of a circle.
Figure 4.3 shows an example of a circular-arc graph. They are a natural generalization
of interval graphs. If there exists a point of the circle that is not covered by an arc,
then the circle can be cut at that point and stretched to a line, which yields an interval
representation.

Surprisingly, the class of circular-arc graphs is very different from the class of
interval graphs. The main difference is that in the case of circular-arc graphs, the
maximal cliques do not behave nicely. A circular-arc graph can have exponential
number of maximal cliques.

Generalizing some of the results known for interval graphs to the class of all
circular-arc graphs is a challenging problem. McConnel [31] solved the recognition
problem for circular-arc graphs in linear time. However, no polynomial-time isomor-
phism test for circular-arc graphs is currently known. For some time it seemed that
the problem is solved since Hsu [22] claimed to have a polynomial-time algorithm, but
only recently it was proved he dealt incorrectly with one case [9].

Problem 4.3. What is the class of the automorphism groups of circular-arc graphs?
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Figure 4.3: A circular-arc graph and one of its representations. The automorphism
group of the graph is isomorphic to Z2 × Z2.

41



Chapter 4. Conclusions

42



Bibliography

[1] Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

[2] Babai, L.: Automorphism groups of planar graphs ii. In: Infinite and finite sets
(Proc. Conf. Kestzthely, Hungary) (1973)

[3] Benzer, S.: On the topology of the genetic fine structure. Proceedings of the
National Academy of Sciences of the United States of America 45(11), 1607 (1959)

[4] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–
379 (1976)

[5] Carter, N.: Visual group theory. MAA (2009)

[6] Cayley, P.: Desiderata and suggestions: No. 2. the theory of groups: graphical
representation. American Journal of Mathematics 1(2), 174–176 (1878)

[7] Chaplick, S., Fulek, R., Klav́ık, P.: Extending partial representations of circle
graphs. In: Lecture Notes in Computer Science, GD. vol. 8242, pp. 131–142 (2013)

[8] Colbourn, C.J., Booth, K.S.: Linear times automorphism algorithms for trees,
interval graphs, and planar graphs. SIAM J. Comput. 10(1), 203–225 (1981)

[9] Curtis, A.R., Lin, M.C., McConnell, R.M., Nussbaum, Y., Soulignac, F.J., Spin-
rad, J.P., Szwarcfiter, J.L.: Isomorphism of graph classes related to the circular-
ones property. arXiv preprint arXiv:1203.4822 (2012)

[10] Dummit, D.S., Foote, R.M.: Abstract algebra (2004)

[11] Even, S., Itai, A.: Queues, stacks and graphs. Theory of Machines and Compu-
tations pp. 71–86 (1971)

[12] Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs.
Journal of the ACM (JACM) 19(3), 400–410 (1972)

[13] Frucht, R.: Herstellung von graphen mit vorgegebener abstrakter gruppe. Com-
positio Mathematica 6, 239–250 (1939)

43



[14] Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J.
Math. 15, 835–855 (1965)

[15] Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)

[16] Godsil, C.D., Royle, G., Godsil, C.: Algebraic graph theory, vol. 207. Springer
New York (2001)

[17] Golumbic, M.C.: Algorithmic graph theory and perfect graphs, vol. 57. Elsevier
(2004)

[18] Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection
graphs. Discrete Mathematics 43(1), 37–46 (1983)
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