
A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Overview

A-sort,

Sparse polynomials and matrices,

Low-level Access to Memory,

Hashing,

Heaps,

Arithmetic expressions, notations and conversion between
them,

Graphs and their representation,

Graph-algorithms.
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A-sort

A-sort: Sorting using an A-B-tree with your finger.

Your finger points at the leaf (of the B-tree) where we
inserted last.

We are not start the insertion process at the root but where
our finger is pointing.

Yields good results when the input is pre-sorted (we don’t
bubble too often to the root).
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Representation using linked lists

We want to represent sparse polynomials (i.e., polynomials
with just a few non-zero coefficients). How do we do that?

We use linked lists.

It is an advantage to use a bi-directional version...

...maybe even cyclic – and with a head.

Summing the polynomials up: Pass through the lists (and
merge them).

Polynomial multiplication: We have to pass in both directions.

Head can be used to find that we reached the end of the
polynomial.
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Sparse matrix representation

Again, we have just a few non-zero elements, thus we
compress the matrix.

Theoretically there are many possibilities and we have to be
careful which one to use, because a bad design can be much
worse than brute force. For example:

Linked list of the elements (ordered in both dimensions),

linked list of linked lists (list of rows consisting of list of
columns),

Dividing into quarters (divide the matrix into four parts – left
top, right top, left bottom, right bottom). If the submatrix is
”too large”and non-zero, we divide again.
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Low-level functions

procedure mark(var p:pointer); – returns the heap-top
do not use it (proposes colleague Kryl)

procedure release(var p:pointer); – set the heap-top
(deallocates everything above the top)
do not use it (DTTO)

It seems these functions are not in Free Pascal (they may be
dangerous). It is a simple form of garbage-collector.

function MemAvail: longint; – returns number of
available bytes on heap
(unavailable in Free Pascal since 2.0)

function MaxAvail: longint; – returns size of the largest
free block (largest allocable size)
(DTTO)
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Low-level functions

GetMem – allocates memory, compared to new it does not
examine how much – use only in emergency (advice of F.
Klaempfl)

FreeMem – deallocates memory allocated by GetMem –
(DTTO)
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Example of GetMem/FreeMem
We create an array of uncertain length

type parr=^tarr;

tarr=array[1..10000] of longint;

var arr:parr;

begin

GetMem(arr,500);{get 500 bytes}
arr^[10]:=1000;{This is OK}
arr^[500]:=1024;{Problem -- array too small!}
FreeMem(arr,500);{FreeMem(arr); should suffice}

end.
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large for explicit enumeration (e.g., strings). It makes sense to
compute some function (i.e., sum up ordinal values of
individual characters mod 256). This function gets denoted h.
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Hashing

Consider data that can be indexed, but where the range is too
large for explicit enumeration (e.g., strings). It makes sense to
compute some function (i.e., sum up ordinal values of
individual characters mod 256). This function gets denoted h.

Then we allocate a table much smaller than the universum
(range).

This is called the hashing.

It may happen that more candidates want to access the same
cell in the table. This is called a collision.
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possibilities. Either we pick next free cell or we design a
function that proposes next cell.
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Hashing
how to solve collisions

There are several methods how to solve collisions:
Each member contains a list of elements belonging to the
same cell,
coalescent, cuckoo-hashing,... – generally we are placing the
values into incorrect cells,
implies problem with delete (almost unimplementable as we
could break the chain).
Where to place the element in collision? There are many
possibilities. Either we pick next free cell or we design a
function that proposes next cell.
If we know the size of the data, we may try to implement
perfect hashing, i.e., hashing without collisions. Hashing
should be in more detail explained in the lecture of Algorithms
and Data Structures (proofs).
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Notations

How can we notate (write) the arithmetic expression?

(10 + 5) ∗ (15 − 4)/2 – infix notation (operator is between
operands),

/ ∗ + 10 5 − 15 4 2 – prefix notation (operator preceeds
the operands),

/ (∗ (+ 10 5) (− 15 4)) 2 (with brackets to make it clear),

10 5 + 15 4 − ∗ 2 / – postfix notation (operator is behind
the operands),

((10 5 +) (15 4 −) ∗) 2 / (with superfluous parentheses),

by a tree: Each node contains an operator (and has two sons -
operands) or a value (leaf).

Evaluation will be only sketched, pseudocode has to be
creatively interpreted!
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Arithmetic expressions and notations

Advantages and disadvantages (of individual notations)?

Is it possible to evaluate expressions in all these notations?

Can we convert one notation into another one?

Yes, e.g., using a tree.
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Evaluating the prefix notation

We use recursion: function evaluate:integer;

begin

if (we read a number) then

evaluate:=value of the input number

else

begin operator:=read operator();

arg1:=evaluate;

arg2:=evaluate;

evaluate:=perform(operator,arg1,arg2);

end;

end;
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Tree from the prefix notation

function pref tree:tree;

begin

if(we read a number) then

pref tree:=leaf(value of input);

else

begin tmp:=inner node(operator);

tmp.arg1:=evaluate;

tmp.arg2:=evaluate;

evaluate:=tmp;

end;

end;

function leaf creates a leaf,
function inner node creates a node of out deg 2,
vertex of out deg 2 has sons arg1 a arg2.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

How to convert tree to all notations?

Recursively:



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

How to convert tree to all notations?

Recursively:

We search the tree in such a way that in one phase we search
the left child,



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

How to convert tree to all notations?

Recursively:

We search the tree in such a way that in one phase we search
the left child,

in one phase we search the right child and in one phase we
write the operator.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

How to convert tree to all notations?

Recursively:

We search the tree in such a way that in one phase we search
the left child,

in one phase we search the right child and in one phase we
write the operator.

All three notations arise by correct ordering of these phases.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

How to convert tree to all notations?

Recursively:

We search the tree in such a way that in one phase we search
the left child,

in one phase we search the right child and in one phase we
write the operator.

All three notations arise by correct ordering of these phases.

Even though we always visit the left child before the right one,
we change the time when we output the operator!
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Generating prefix notation

procedure gen pref(v:tree);

begin

if(leaf(v)) then

output(v);

else

begin output(v);

gen pref(v.arg1);

gen pref(v.arg2);

end;

end;

Function output outputs the operator or number (resp.),
function leaf decides whether a given node is a leaf.
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Generating postfix notation

procedure gen pref(v:tree);

begin

if(leaf(v)) then

output(v);

else

begin gen pref(v.arg1);

gen pref(v.arg2);

output(v);

end;

end;

Function output outputs the operator or number (resp.),
function leaf decides whether a given node is a leaf.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Generating infix notation
almost correctly!

procedure gen pref(v:tree);

begin

if(leaf(v)) then

output(v);

else

begin gen pref(v.arg1);

output(v);

gen pref(v.arg2);

end;

end;

Function output outputs the operator or number (resp.),
function leaf decides whether a given node is a leaf.
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Generating infix notation
ugly but correct!

procedure gen pref(v:tree);

begin

if(leaf(v)) then

output(v);

else

begin write(’(’);

gen pref(v.arg1);

output(v);

gen pref(v.arg2);

write(’)’);

end;

end;

Function output outputs the operator or number (resp.),
function leaf decides whether a given node is a leaf.
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Evaluating postfix notation
...towards the solution

Revision of our knowledge:
Buffer is a data structure with the following operations:

push – insert at the top of the buffer,

pop – remove from the top of the buffer,

i.e., last in, first out.
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Evaluating postfix notation

function eval post:integer;

begin

while not eof do

begin if (we read a number) then

push(number);

if (we read an operator) then

begin arg2:=pop;

arg1:=pop;

push(operator(arg1,arg2));

end;

end;

writeln(pop);{Result is on the buffer-top}
end;
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Tree from the prefix notation

function tree post:tree;

begin

while not eof do

begin if (we read a number) then

push(leaf(number));

if (we read an operator) then

begin pom:=node(operator);

pom.arg2:=pop;

pom.arg1:=pop;

push(pom);

end;

end;

tree post:=pop;{Result is on the buffer-top}
end;
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Evaluating the tree
should be clear, but let’s go:

function eval tree(v:tree);

begin

if(leaf(v)) then

eval tree:=value(v)

else

begin arg1:=eval tree(v.arg1);

arg2:=eval tree(v.arg2);

op:=operator(v);

eval tree:=op(arg1,arg2);

end;

end;
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Evaluating the infix notation
alias Massacre at the hangman’s tree

One possibility is to find the operator that gets performed as
the last one,

divide the expression into two parts, evaluate (recursively) and
perform the operation.

Advantage: After thinking over how to find the last operation
it is simple.

Disadvantage: We are still traversing through the expression
(looking for the operators).

How to find the operator that is being performed last?
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How to find operator that is being performed last?

1 Find the last operator of addition or subtraction outside
brackets,

Next year (or term) you’ll learn how to do it using grammars.
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2 else find the last operator of multiplication of division outside
brackets,
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Next year (or term) you’ll learn how to do it using grammars.
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How to find operator that is being performed last?

1 Find the last operator of addition or subtraction outside
brackets,

2 else find the last operator of multiplication of division outside
brackets,

3 if the expression is a number, evaluate it,

4 else ”peel the brackets”(remove the parenthesis at the
beginning and at the end).

5 in cases 2i (i.e., 1, 2, 4) employ recursion.

Next year (or term) you’ll learn how to do it using grammars.
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Graph – definition

Definition

Graph is an ordered pair G = (V ,E ) where V is a set of vertices
and E ⊆

(

V

2

)

is a set of edges.
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Graph – definition

Definition

Graph is an ordered pair G = (V ,E ) where V is a set of vertices
and E ⊆

(

V

2

)

is a set of edges.

Definition

An ordered pair G = (V ,E ) is called an oriented graph with a
vertex set V and an edge set E , if E ⊆ V × V .

Graphs are generally discussed in Discrete mathematics, so
you have probably heard about particular algorithms. And the
algorithms can actually be implemented.
However, a formal definition of a graph is fine, but it does not
help much with programming. We have to ask ourselves:



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Graph – definition

Definition

Graph is an ordered pair G = (V ,E ) where V is a set of vertices
and E ⊆

(

V

2

)

is a set of edges.

Definition

An ordered pair G = (V ,E ) is called an oriented graph with a
vertex set V and an edge set E , if E ⊆ V × V .

Graphs are generally discussed in Discrete mathematics, so
you have probably heard about particular algorithms. And the
algorithms can actually be implemented.
However, a formal definition of a graph is fine, but it does not
help much with programming. We have to ask ourselves:
How should one represent a graph when programming?
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Graphs – remarks to definition

Goal: Advantages and disadvantages of individual
representations.

Define basic notions (walk, trail, path, connectivity, trees).
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Graph Representation

From the Discrete Mathematics lectures you know the
following:

Adjacency matrix AG

– is a square 0/1-matrix whose rows and columns are indexed
by individual vertices. One corresponds to an edge between
appropriate vertices (zero means no edge there).

Incidence matrix BG – rows index by vertices, columns by
edges, one in B [i , j] means that the edge j is incident with the
vertex i .

Advantages and disadvantages?

Can we convert these representations?
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Converting AG to BG and back

init with 0s(BG);

edge index:=1;

for i:=1 to n do begin

for j:=i+1 to n do begin

if(AG [i , j]=1) then

begin

BG[i,edge index]:=1;

BG[j,edge index]:=1;

inc(edge index);

end;

end;
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BG to AG

Either we analyze the incidence matrix (in a similar way) or:
AG := BG × BG

T ;
for i:=1 to n do

AG [i , i ] := 0;

Důkaz.

Exercise in Combinatorics and Graph Theory I
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Further graph representations

List of vertices and edges incident to individual vertices.

I.e., we are keeping a list of edges incident to each vertex in
the graph.

We employ linked-lists. If we employ an array, what do we get?

The adjacency matrix!

Functions necessary/sufficient to work with a graph:

find neighbors(v),

vertices,

edges or edge(u,v) – we can find it through vertices and
find neighbors,

further, e.g., (vertex weight(v), edge weight(e)...).

Advantages/disadvantages?

In the oriented case we have to modify the representation.
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A walk of length k is a sequence of edges
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A trail is a walk where each edge occurs at most once.
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Walk, trail, path, circle

Definition

A walk of length k is a sequence of edges
{v0, v1}, {v1, v2}, {v2, v3}, . . . , {vk−1, vk}.

A trail is a walk where each edge occurs at most once.

A path is a trail (or a walk) where each vertex occurs only
once (i.e., each vertex is incident to two consecutive edges).

A trail is a circle if it starts and ends in the same vertex and
each vertex occurs there exactly once.
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Connectivity, tree

Definition

A graph is connected if from any its vertices we can reach any
other vertex.

A graph is a tree if it is connected and it contains no circles.

Definitions are fine, but how we use them while programming?

How do we verify that a graph is connected?

We use a suitable claim.

How do we decide whether a graph is a tree?

Similarly!
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Graph connectivity
A graph is connected iff from one (fixed) vertex we can reach all the other vertices.

for i in vertices do

unvisit(i); {so far we visited nothing}
i:=start vertex;

queue:={i};{for reachable vertices}
while nonempty(queue) do begin

visit(i);

queue:=queue+unvisited neighbors(i);

end;

connected:=true;

for i in vertices do begin

if unvisited(i) then

connected:=false;
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Algorithm analysis

the for-cycle takes place at most n-times.

while-cycle passes for each vertex at most once and inspects
the neighbors of this vertex.

Complexity depends on the representation (how quickly we
find the neighbors of a given vertex).

Complexity is Ω(m) (Each edge must be inspected).

Considering a list of edges incident to each vertex, complexity
is O(m),

in the adjacency matrix, complexity is O(n2),

considering the incidence matrix, complexity may be Θ(mn2).

Thus a good representation yields the complexity Θ(m + n).
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Remarks

If we use a queue, we are implementing the wave-algorithm
(BFS).

We may use a buffer and get a DFS.

Advantages/disadvantages:

DFS may get implemented using recursion (and thus without
an auxiliary data-structure).

BFS visits the vertex using the shortest path.
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Looking for a cycle
A graph has a cycle if we return to a particular vertex while searching the graph.

cycle:=false; {so far no cycle}
for i in vertices do unvisit(i);
for i in vertices do

if unvisited(i) then{new component}
begin queue:={i};

while(nonempty(queue)) do
begin dequeue from queue and assing into(i);

if(visited(i)) then
cycle:=true;

else for j in neighbors(i) do
begin queue:=queue+{j};

erase edge({i,j});
end;

end; end;
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Tree

We may test whether the graph is connected without cycles
(use previous algorithms).

Or we test cycle-freeness and connectivity (one component).

Or we test connectivity (or cycle-freeness) and an appropriate
number of edges (Euler’s formular).
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Shortest path

When looking for the shortest path, it depends on the
representation:

Perform BFS (considering the list of vertices and edges),

Theorem

In AG
k position i , j gives number of walks with length k from

(vertex) i to j .

Corollary

In (AG + I )k position i , j says the number of walks of length at
most k from i to j.
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Shortest path

When looking for the shortest path, it depends on the
representation:

Perform BFS (considering the list of vertices and edges),

make the power of adjacency-matrix using
matrix-representation.

Theorem

In AG
k position i , j gives number of walks with length k from

(vertex) i to j .

Corollary

In (AG + I )k position i , j says the number of walks of length at
most k from i to j.
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Dijkstra’s algorithm
Looks for the shortest path from a given vertex into all other vertices

Input: Graph with nonnegatively evaluated edges.

We keep the ”queue”for vertices ordered by the shortest so far
found path.

At the beginning we initialize the distances to all vertices
[except start] by infinity [large-enough value], distance to start
is 0.

We add start into the queue for reachable vertices.

Remove the first vertex of the ”queue”and inspect its
neighbors.

Repeat this while the ”queue”is non-empty.
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Extending the path

When extending the path, for a vertex v in distance d(v) we try
for each edge {v ,w} whether

d(w) > d(v) + length({v ,w}).

If so, let d(w) := d(v) + length({v ,w}) and correct the position
of w in the ”queue”.
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Analysis

The algorithm is proven in Invitation to Discrete Mathematics
(and many other books).

Finiteness: Each iteration removes one vertex from the
”queue”. This vertex never appears there anew (as all the
edge-lengths are non-negative).

Partial correctness uses the invariant:
In each iteration we have the shortes paths using only the
vertices that were already removed from the ”queue”.

Invariant shows the correctness.

The algorithm is kind of modification of BFS!

Complexity depends on the representation of the graph and of
the ’queue’ !
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Remarks

If the graph is unweighted, Dijkstra’s algorithm collapses into
BFS!

Applications of graph algorithms – the whole theoretical
computer science.

Examples of graph-algorithms:

Théseus and Minotaurus,

King (and other garbage) on chessboard with some squares
prohibited,

...



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?

Hamiltonicity – a circle that visits all the vertices (each
exactly once),



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?

Hamiltonicity – a circle that visits all the vertices (each
exactly once),

Clique – maximum complete subgraph,



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?

Hamiltonicity – a circle that visits all the vertices (each
exactly once),

Clique – maximum complete subgraph,

Chromaticity – minimum number of colors s. t. we can color
all vertices in such a way that neighboring vertices have
distinct colors.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?

Hamiltonicity – a circle that visits all the vertices (each
exactly once),

Clique – maximum complete subgraph,

Chromaticity – minimum number of colors s. t. we can color
all vertices in such a way that neighboring vertices have
distinct colors.

Edge chromaticity – we color edges and no pair of edges
incident with a common vertex has the same color.



A-sort Sparse objects Administrating the memory Hashing Arithmetic expressions Graph Representation Definition Graph prop

Further graph-optimization problems (algorithms)

Minimum spanning tree – a.k.a. how to optimally place
electric power lines.

Eulerian graph, i.e., can we draw all the edges of the graph by
one trail (without passing any edge twice)?

Hamiltonicity – a circle that visits all the vertices (each
exactly once),

Clique – maximum complete subgraph,

Chromaticity – minimum number of colors s. t. we can color
all vertices in such a way that neighboring vertices have
distinct colors.

Edge chromaticity – we color edges and no pair of edges
incident with a common vertex has the same color.

...
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End

Thank you for your attention...
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