Overview

m The Power of Precomputation,

m Recursion (pars prima),

el, perm@kam.mff.cuni.cz




Precomputation

Maximum unit submatrix

Problem: Given an m x n matrix filled by zeroes and ones we want
to find the largest (continuous) submatrix that contains only ones
(numbers 1).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Naive approach

m Find all candidates for upper left and lower right corners.
Inspect the interior.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Naive approach

m Find all candidates for upper left and lower right corners.
Inspect the interior.

m This algorithm works. What is its complexity?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Naive approach

m Find all candidates for upper left and lower right corners.
Inspect the interior.

m This algorithm works. What is its complexity?

m ©O(mn) left-upper-corner candidates, ©(mn) right-lower...,
©(mn) elements inside the candidate matrix (why?),
altogether ©(m3n?).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Naive approach

m Find all candidates for upper left and lower right corners.
Inspect the interior.

m This algorithm works. What is its complexity?

m ©O(mn) left-upper-corner candidates, ©(mn) right-lower...,
©(mn) elements inside the candidate matrix (why?),
altogether ©(m3n?).

m Ideas for improvement?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

m For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

m For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

m These candidates must not be separated by 0 (i.e., they belong
to the same block of 1's in the row).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

m For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

m These candidates must not be separated by 0 (i.e., they belong
to the same block of 1's in the row).

m As we know numbers of 1's below each element, the height of
such matrix gets determined as minimum of these numbers.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

m For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

m These candidates must not be separated by 0 (i.e., they belong
to the same block of 1's in the row).

m As we know numbers of 1's below each element, the height of
such matrix gets determined as minimum of these numbers.

m The rest is just multiplying (the sizes) and comparisons (of the
sizes).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Precomputation

m For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

m We index each such candidate by the left- and right- upper
corner.

m For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

m These candidates must not be separated by 0 (i.e., they belong
to the same block of 1's in the row).

m As we know numbers of 1's below each element, the height of
such matrix gets determined as minimum of these numbers.

m The rest is just multiplying (the sizes) and comparisons (of the
sizes).

m Complexity: Precomputation O(mn), computation O(m?n).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

m Determine the number of ones below each element (— B),

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.
m Determine the number of ones below each element (— B),

m Determine the number of ones above each element (— C),

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.
m Determine the number of ones below each element (— B),
m Determine the number of ones above each element (— C),

m Index the candidate-matrices by the left critical end, i.e., the
left end where the matrix neighbors with a zero-element, i.e.,
ajj=1and ajj_1 =0o0rj=1(ajj_1 is not a member of a
matrix).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.
m Determine the number of ones below each element (— B),
m Determine the number of ones above each element (— C),

m Index the candidate-matrices by the left critical end, i.e., the
left end where the matrix neighbors with a zero-element, i.e.,
ajj=1and ajj_1 =0o0rj=1(ajj_1 is not a member of a
matrix).

m Try all possible candidates for the right end (in the
appropriate line).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Precomputation

Complexity analysis

m Precomputation (determining the matrices B and C): ©(mn),

m although it seems that the complexity does not change, the
truth is different:

m We are trying each right-end-candidate at most once!

m Therefore, altogether, ©(mn). As the complexity of the
problem is Q(mn), we have estimated the complexity of the
problem (©(mn)) and thus the algorithm is optimal (up to a
(multiplicative) constant).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Recursion

m It sometimes makes sense to call a function directly from itself.

Martin Pergel, perm@kam.mff.cuni.cz




Recursion

Recursion

m It sometimes makes sense to call a function directly from itself.

m This is called a recursion.

el, perm@kam.mff.cuni.cz




Recursion

Recursion

m It sometimes makes sense to call a function directly from itself.
m This is called a recursion.

m Recursion is nothing else than just a renamed induction!

el, perm@kam.mff.cuni.cz




Recursion

Recursion

It sometimes makes sense to call a function directly from itself.
This is called a recursion.

Recursion is nothing else than just a renamed induction!

Examples: Clerks at the authority-offices, factorial, Caesar's
cipher...

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Recursion

It sometimes makes sense to call a function directly from itself.
This is called a recursion.

Recursion is nothing else than just a renamed induction!

Examples: Clerks at the authority-offices, factorial, Caesar's
cipher...

m Note that we are showing problems where the recursion can
be applied (not necessarily problems optimally solved by
recursion)!

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Clerks in bureaus

m A citizen wants to perform a legal decision.

Martin Pergel, perm@kam.mff.cuni.cz




Recursion

Clerks in bureaus

m A citizen wants to perform a legal decision.

m A clerk wants particular forms to get filled-in (which requires
visits of further authorities).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Clerks in bureaus

m A citizen wants to perform a legal decision.

m A clerk wants particular forms to get filled-in (which requires
visits of further authorities).

m Solution:
procedure fill in(to_fill:1list of forms);
var x:list_of_forms;
for form in to_fill do
begin
x:=ask_a_clerk(form) ;
£fill_ in(x);
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |




Recursion

Ma Pergel, perm@kam.mff.cun

Programovani |



Recursion

Factorial

mnl=1-2-...-n

m How to implement this?

el, perm@kam.mff.cuni.cz




Recursion

Factorial

mnl=1-2-...-n
m How to implement this?

m Using a loop:
fakt:=1;
for i:=1 to n do
fakt:=fakt*i;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Factorial

mnl=1-2-...-n
m How to implement this?

m Using a loop:
fakt:=1;
for i:=1 to n do
fakt:=fakt*i;

B or using recursion.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Factorial using recursion

function factorial(a:integer):integer;
begin
if a<2 then
factorial:=1;
else factorial:=axfactorial(a-1);
end;

Computational complexity of this function?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room

m When going to the lecture-room, the lecturer uses a
stair-case. When making a step he has two options. Place his
foot on the next step (in the stair) or to skip one step (and
place his foot on the step beyond that.

m In how many distinct ways he can reach the room S117
(do not calculate exact number of stairs, try to estimate with
a reasonable precision)

m ldeas?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room — a solution

m We get a recurrence f, = f,_1 + fr_o.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room — a solution

m We get a recurrence f, = f,_1 + fr_o.

m Recurrence is nothing else than a mathematically notated
recursion.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room — a solution

m We get a recurrence f, = f,_1 + fr_o.

m Recurrence is nothing else than a mathematically notated
recursion.
m Solution:
function stairs(a:integer) :integer;
begin
if a=1 then stairs=1;
else if a=2 then stairs=2;
else
stairs:=stairs(a-1)+stairs(a-2);
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room — a solution

m We get a recurrence f, = f,_1 + fr_o.

m Recurrence is nothing else than a mathematically notated
recursion.
m Solution:
function stairs(a:integer) :integer;
begin
if a=1 then stairs=1;
else if a=2 then stairs=2;
else
stairs:=stairs(a-1)+stairs(a-2);
end;

m What is the problem (with this solution)?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

Lecturer goes to the lecture-room — a solution

m We get a recurrence f, = f,_1 + fr_o.

m Recurrence is nothing else than a mathematically notated
recursion.
m Solution:
function stairs(a:integer) :integer;
begin
if a=1 then stairs=1;
else if a=2 then stairs=2;
else
stairs:=stairs(a-1)+stairs(a-2);
end;
m What is the problem (with this solution)?
m Complexity!

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

The Basic Idea behind Recursion

m Recursion is a method how to solve a given problem in such a
way that in particular (consecutive) steps we are decreasing
the size of the instance (up to a small-enough instance) and
then we are extending the solutions (for the smaller instances)
to the solution of the given (larger) instance.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

The Basic Idea behind Recursion

m Recursion is a method how to solve a given problem in such a
way that in particular (consecutive) steps we are decreasing
the size of the instance (up to a small-enough instance) and
then we are extending the solutions (for the smaller instances)
to the solution of the given (larger) instance.

m Further example: Output all the numbers in a given numeral
system (with a given base and length).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

The Main Program

program g;
const MAX=10;
var dig,base:integer;
arr:array[1..MAX] of integer;
begin
write(’Input the number of digits: ’);
readln(dig) ;
if (dig>MAX) then
halt;{Number too long}
write(’Input the base of the system: ’);
readln(base) ;
if base>10 then
halt;{Too large base!}
£i11(1);

=hala
Martin Pergel, perm@kam.mff.cuni.cz

Programovani |



Recursion

The Recursive Kernel

procedure fill(where:integer);
var i:integer;
begin
if (where<=dig) then
for 1:=0 to base-1 do
begin
arr [where] :=i;
£ill (where+1);
end
else output;
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



Recursion

The Output-procedure

procedure output;
var i:integer;
start:boolean;
begin
start:=true;
for i:=1 to dig do
if ((not start) or (arr[i]<>0)) then
begin
start:=false;
write(arr[i]);
end;
if start then write(0);
writeln;
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |



	Precomputation
	Recursion

