
Precomputation Recursion

Overview

The Power of Precomputation,

Recursion (pars prima),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Maximum unit submatrix

Problem: Given an m × n matrix filled by zeroes and ones we want
to find the largest (continuous) submatrix that contains only ones
(numbers 1).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Naive approach

Find all candidates for upper left and lower right corners.
Inspect the interior.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Naive approach

Find all candidates for upper left and lower right corners.
Inspect the interior.

This algorithm works. What is its complexity?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Naive approach

Find all candidates for upper left and lower right corners.
Inspect the interior.

This algorithm works. What is its complexity?

Θ(mn) left-upper-corner candidates, Θ(mn) right-lower...,
Θ(mn) elements inside the candidate matrix (why?),
altogether Θ(m3n3).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Naive approach

Find all candidates for upper left and lower right corners.
Inspect the interior.

This algorithm works. What is its complexity?

Θ(mn) left-upper-corner candidates, Θ(mn) right-lower...,
Θ(mn) elements inside the candidate matrix (why?),
altogether Θ(m3n3).

Ideas for improvement?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).
These candidates must not be separated by 0 (i.e., they belong
to the same block of 1’s in the row).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).
These candidates must not be separated by 0 (i.e., they belong
to the same block of 1’s in the row).
As we know numbers of 1’s below each element, the height of
such matrix gets determined as minimum of these numbers.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).
These candidates must not be separated by 0 (i.e., they belong
to the same block of 1’s in the row).
As we know numbers of 1’s below each element, the height of
such matrix gets determined as minimum of these numbers.
The rest is just multiplying (the sizes) and comparisons (of the
sizes).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Precomputation

For each 1-element we compute the number of ones lying
(immediately) below it (i.e., in a column without being
interrupted by 0).

We index each such candidate by the left- and right- upper
corner.

For each left upper corner try all possibilities of right upper
corner (i.e., in the same row).
These candidates must not be separated by 0 (i.e., they belong
to the same block of 1’s in the row).
As we know numbers of 1’s below each element, the height of
such matrix gets determined as minimum of these numbers.
The rest is just multiplying (the sizes) and comparisons (of the
sizes).

Complexity: Precomputation O(mn), computation O(m2n).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

Determine the number of ones below each element (→ B),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

Determine the number of ones below each element (→ B),

Determine the number of ones above each element (→ C ),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

Determine the number of ones below each element (→ B),

Determine the number of ones above each element (→ C ),

Index the candidate-matrices by the left critical end, i.e., the
left end where the matrix neighbors with a zero-element, i.e.,
ai ,j = 1 and ai ,j−1 = 0 or j = 1 (ai ,j−1 is not a member of a
matrix).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Can we find a better algorithm?

Surprisingly, yes. And the algorithm also uses a precomputation.

Determine the number of ones below each element (→ B),

Determine the number of ones above each element (→ C ),

Index the candidate-matrices by the left critical end, i.e., the
left end where the matrix neighbors with a zero-element, i.e.,
ai ,j = 1 and ai ,j−1 = 0 or j = 1 (ai ,j−1 is not a member of a
matrix).

Try all possible candidates for the right end (in the
appropriate line).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Complexity analysis

Precomputation (determining the matrices B and C ): Θ(mn),

although it seems that the complexity does not change, the
truth is different:

We are trying each right-end-candidate at most once!

Therefore, altogether, Θ(mn). As the complexity of the
problem is Ω(mn), we have estimated the complexity of the
problem (Θ(mn)) and thus the algorithm is optimal (up to a
(multiplicative) constant).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Recursion

It sometimes makes sense to call a function directly from itself.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Recursion

It sometimes makes sense to call a function directly from itself.

This is called a recursion.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Recursion

It sometimes makes sense to call a function directly from itself.

This is called a recursion.

Recursion is nothing else than just a renamed induction!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Recursion

It sometimes makes sense to call a function directly from itself.

This is called a recursion.

Recursion is nothing else than just a renamed induction!

Examples: Clerks at the authority-offices, factorial, Caesar’s
cipher...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Recursion

It sometimes makes sense to call a function directly from itself.

This is called a recursion.

Recursion is nothing else than just a renamed induction!

Examples: Clerks at the authority-offices, factorial, Caesar’s
cipher...

Note that we are showing problems where the recursion can
be applied (not necessarily problems optimally solved by
recursion)!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Clerks in bureaus

A citizen wants to perform a legal decision.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Clerks in bureaus

A citizen wants to perform a legal decision.

A clerk wants particular forms to get filled-in (which requires
visits of further authorities).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Clerks in bureaus

A citizen wants to perform a legal decision.

A clerk wants particular forms to get filled-in (which requires
visits of further authorities).

Solution:
procedure fill in(to fill:list of forms);

var x:list of forms;

for form in to fill do

begin

x:=ask a clerk(form);

fill in(x);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Factorial

n! = 1 · 2 · . . . · n

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Factorial

n! = 1 · 2 · . . . · n

How to implement this?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Factorial

n! = 1 · 2 · . . . · n

How to implement this?

Using a loop:
fakt:=1;

for i:=1 to n do

fakt:=fakt*i;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Factorial

n! = 1 · 2 · . . . · n

How to implement this?

Using a loop:
fakt:=1;

for i:=1 to n do

fakt:=fakt*i;

or using recursion.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Factorial using recursion

function factorial(a:integer):integer;

begin

if a<2 then

factorial:=1;

else factorial:=a*factorial(a-1);

end;

Computational complexity of this function?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room

When going to the lecture-room, the lecturer uses a
stair-case. When making a step he has two options. Place his
foot on the next step (in the stair) or to skip one step (and
place his foot on the step beyond that.

In how many distinct ways he can reach the room S11?
(do not calculate exact number of stairs, try to estimate with
a reasonable precision)

Ideas?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Recurrence is nothing else than a mathematically notated
recursion.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Recurrence is nothing else than a mathematically notated
recursion.

Solution:
function stairs(a:integer):integer;

begin

if a=1 then stairs=1;

else if a=2 then stairs=2;

else

stairs:=stairs(a-1)+stairs(a-2);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Recurrence is nothing else than a mathematically notated
recursion.

Solution:
function stairs(a:integer):integer;

begin

if a=1 then stairs=1;

else if a=2 then stairs=2;

else

stairs:=stairs(a-1)+stairs(a-2);

end;

What is the problem (with this solution)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

Lecturer goes to the lecture-room – a solution

We get a recurrence fn = fn−1 + fn−2.

Recurrence is nothing else than a mathematically notated
recursion.

Solution:
function stairs(a:integer):integer;

begin

if a=1 then stairs=1;

else if a=2 then stairs=2;

else

stairs:=stairs(a-1)+stairs(a-2);

end;

What is the problem (with this solution)?

Complexity!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

The Basic Idea behind Recursion

Recursion is a method how to solve a given problem in such a
way that in particular (consecutive) steps we are decreasing
the size of the instance (up to a small-enough instance) and
then we are extending the solutions (for the smaller instances)
to the solution of the given (larger) instance.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

The Basic Idea behind Recursion

Recursion is a method how to solve a given problem in such a
way that in particular (consecutive) steps we are decreasing
the size of the instance (up to a small-enough instance) and
then we are extending the solutions (for the smaller instances)
to the solution of the given (larger) instance.

Further example: Output all the numbers in a given numeral
system (with a given base and length).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

The Main Program

program q;

const MAX=10;

var dig,base:integer;

arr:array[1..MAX] of integer;

begin

write(’Input the number of digits: ’);

readln(dig);

if(dig>MAX) then

halt;{Number too long}
write(’Input the base of the system: ’);

readln(base);

if base>10 then

halt;{Too large base!}
fill(1);

end.
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

The Recursive Kernel

procedure fill(where:integer);

var i:integer;

begin

if(where<=dig) then

for i:=0 to base-1 do

begin

arr[where]:=i;

fill(where+1);

end

else output;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Precomputation Recursion

The Output-procedure

procedure output;

var i:integer;

start:boolean;

begin

start:=true;

for i:=1 to dig do

if((not start) or (arr[i]<>0)) then

begin

start:=false;

write(arr[i]);

end;

if start then write(0);

writeln;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I


	Precomputation
	Recursion

