
Linked lists revisited
now in C#

We know them from Pascal,

in C# we may implement them similarly (except of
deallocation):

class element{
public int value;

public element next;

}

Initialization: element a=null;

Deleting the list: a=null;

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Universal list
and its implementation

abstract class listgen

{ public listgen next;

public listgen Next

{ set{next=value;}
get{return next;}

}
public listgen() { next=null;}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example – son
of generic linked list

class intlist:listgen { public int val;

public intlist(int val)

{ this.val=val; }
} listgen l=new intlist(10);

...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Keyword using
for the last time

We know how to create namespaces, we know how to use
them (using), but there is yet one remarkable feature of this
keyword:

We may use it to create alias for a particular class.

Syntax: using <alias>=<class>;

Example: using c=System.Console;

c.WriteLine();

Now we know everything about the namespaces...

... except of their particular content (which you may learn
yourself).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Files I/V
StreamReader and StreamWriter

As in Pascal, it is very simple to work with text-files.

Compared to Pascal, in C# it behaves completely differently.

Standard input (output) is governed by class Console in
namespace System.

Text-files are represented by StreamReader and
StreamWriter.

These classes are in System.IO. We establish a variable of
this type and associate it with a file. Then it behaves similarly
to static class Console:

System.IO.StreamReader r = new

System.IO.StreamReader(@"c:\temp\file.txt");

Now variable r is associated with file.txt. To work with the
file, we will be calling its methods...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Files II/V
StreamReader and StreamWriter, their methods and attributes

void r.Close() //closes the Reader/Writer

string r.ReadToEnd() //reads the file until the

end

w.Write(what) //writes into the file

r.EndOfStream //attribute equivalent to EOF

@"..."//fixed string, backslash (e.g., \r) won’t

be interpretted

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Files III/V – example
make a copy of a file

System.IO.StreamReader r=new

System.IO.StreamReader("file.txt");

System.IO.StreamWriter w=new

System.IO.StreamWriter("cheapcopy.txt");

w.Write(r.ReadToEnd());

w.Close(); r.Close();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Copying file by characters
i.e., the same example in a different way

System.IO.StreamReader r=new

System.IO.StreamReader("file.txt");

System.IO.StreamWriter w=new

System.IO.StreamWriter("cheapcopy.txt");

while(!r.EndOfStream) w.Write((char)r.Read());

w.Close();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Files V/V – remarks

Methods ReadLine() and WriteLine(),

character-encoding – we may pass as a second argument to
the Reader/Writer constructor:

Example:
Encoding e=Encoding.GetEncoding(1250);
Encoding f=Encoding.GetEncoding(852);
System.IO.StreamReader r=new
System.IO.StreamReader(”file.txt”,e);
System.IO.StreamWriter w=new
System.IO.StreamWriter(”cheapcopy.txt”,f);
w.Write(r.ReadToEnd());
w.Close();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Computer simulation I
is a very important topic

Considering a problem complicated enough to get imagined,
we should get an opinion of it.

We may simulate many topics (e.g., injury – namely its
healing, how the alcohol gets spreaded through the organism,
how the elevators are serving people...)

Computer simulation is a simulation where for modelling a
computer-program is used.

The aim is to decide how the simulated objects interact, i.e.,
how the whole simulated system works.

Simulation should not optimize the processes!

Results may differ, basic information is time of end (of a
simulation).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Computer simulation II

Continuous VS Discrete event simulation,

problem of continuous simulation usually needs some
(differential) equation to get solved,

we restrict our attention to discrete event simulation,

continuous simulation can be approximated making small
steps and recalculating very often (which needs so called
stability of the system).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Cars transporting a sand
very typical problem on our lectures

We want to move a sand-heap to a building yard [site].

We have a given number of workers and a given number of
cars,

along the path, critical sections may turn up (at the building
year and at the heap, too).

Number of workers is bounded, road may be narrow (for one
car only driven by traffic-light or there are no overtaking
zones).

How to schedule workers and cars to move the heap as soon
as possible?

Discrete simulation simulates a given schedule (workers and
cars) and determins when the heap will be moved completely.

Usually we will consider one narrow zone (for one car only).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II


